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Abstract

The metric traveling salesman problem is one of the most prominent APX-complete op-
timization problems. An important particularity of this problem is that there is a large
gap between the known upper bound and lower bound on the approximability (assuming
P 6= NP ). In fact, despite more than 30 years of research, no one could find a better ap-
proximation algorithm than the 1.5-approximation provided by Christofides. The situation
is similar for a related problem, the metric Hamiltonian path problem, where the start and
the end of the path are prespecified: the best approximation ratio up to date is 5/3 by an
algorithm presented by Hoogeveen almost 20 years ago.

In this paper, we provide a tight analysis of the combined outcome of both algorithms.
This analysis reveals that the sets of the hardest input instances of both problems are disjoint
in the sense that any input is guaranteed to allow at least one of the two algorithms to achieve
a significantly improved approximation ratio. In particular, we show that any input instance
that leads to a 5/3-approximation with Hoogeveen’s algorithm enables us to find an optimal
solution for the traveling salesman problem. This way, we determine a set S of possible pairs
of approximation ratios. Furthermore, for any input we can identify one pair of approximation
ratios within S that forms an upper bound on the achieved approximation ratios.

1 Introduction

While being one of the hardest problems with respect to approximability in its general formulation
[21], the metric traveling salesman problem (∆TSP) is well know to be APX-complete. Unless
P = NP , it does not permit an approximation ratio that is better than 220/219 [19]. The best
algorithm available is a 1.5-approximation algorithm by Christofides [10]. The situation is very
similar for the metric Hamiltonian path problem with prespecified start and end vertex (∆HPP2):
the lower bound is closely related to that of the ∆TSP and the 5/3-approximative algorithm by
Hoogeveen [16] was not improved so far. An alternative proof for the same result was given by
Guttmann-Beck et al. [15]. For both problems, the upper bounds on the approximability have
resisted all attempts of improvement for many years.

The two problems are closely related, since both of them take a complete metric graph as input
and the goal of both problems is to visit each of the vertices. The ∆TSP is basically the ∆HPP2,
where the start vertex and the end vertex are the same.

In this paper, we significantly improve our former result from [8]. We characterize hard input
instances for both Christofides’ and Hoogeveen’s algorithm and show that the sets of worst-case
instances for these algorithms are disjoint in the sense that a hard instance for one problem allows
a significantly improved approximation for the other one. We determine the set S of all possible
pairs of approximation ratios that are achieved this way (depicted in Figure 1). This includes the
guarantee that a worst-case input for Hoogeveen’s algorithm, for which we can only compute a
5/3-approximative solution, enables us to compute an optimal solution for ∆TSP on that input.
We are guaranteed that the cost of this optimal solution is exactly 4/3 times as high as that of an
optimal solution for ∆HPP2. In addition to the results on the structure of hard inputs, we show
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that for each input, we can determine a pair of approximation ratios from S that forms an upper
bound on the achieved ratios.

To show that our analysis is tight, we present a class of hard input instances for each of the
possible pairs from S that forms an upper bound.

Our detailed analysis of these algorithms provides deep insight of the core of the hardness
involved in classes of input instances for which we cannot provide an improved approximation.
We show for instance that in any worst case instance for Hoogeveen’s algorithm, the minimum
spanning tree involved in the algorithm contains a path between the end vertices of cost exactly
1/3 of the cost of an optimal solution and a gradual relaxation of this bound for inputs that do not
cause worst-case behavior. This generalizes some of the results from [15]. The properties revealed
in this work restrict the types of inputs that a possible improved algorithm for the ∆HPP2 has to
cope with. This might be helpful for creating improved algorithms for the ∆HPP2 or the ∆TSP.

1.1 Related Known Results

The result of this paper is a win/win strategy for approximation algorithms. The concept of
win/win strategies is to specify a parameter of the input instance and to guarantee — for any value
of the parameter — that we can compute an improved solution for one of two problems according
to some complexity measure. Here, the parameter is the computed bound on the approximation
ratio for the Hamiltonian path problem and the complexity measure is the approximation ratio.

Win/win strategies fit well into the framework of parameterized complexity [11, 18] as well as
stability of approximation [5, 14, 7], because all of these approaches are based on studying the
“hardness” of their problem instances.

In parameterized algorithms, win/win strategies are a tool used for kernelization [1], which is a
technique used in order to reduce the size of the problem instance and the parameter. Prieto and
Sloper presented such a kernelization of the k-internal spanning tree problem by using a win/win
strategy that relates the k-internal spanning tree problem and the vertex cover problem [20]. An
overview on the use of win/win strategies in parameterized algorithms can be found in [13].

The concept of win/win strategies relates to the design of hybrid algorithms as proposed by
Vassilevska et al. [22]. They presented algorithms that allow either an improved approximation
ratio or an improved (but still exponential) runtime for computing exact solutions.

Win/win strategies for approximation were independently introduced in our paper [8] and by
Eppstein [12]. Eppstein uses the name paired approximation for this concept. He was able to use
win/win as an upper bound technique and he showed for some pairs of problems that they do not
have such a relation.

Our results open an interesting connection to another field of algorithmics called reoptimization.
In reoptimization, one is given an optimal or almost optimal solution for some input instance. Now
the problem is to find a solution for a different input instance that is closely related to the given
one. Some approximation results on reoptimization can be found in [2, 3, 4, 6]. In [9], one can
find an overview on reoptimization. Let us consider the reoptimization problem of ∆HPP2, where
the modification is to change one of the end vertices. If there is an approximation algorithm for
this reoptimization problem that is better than 5/3-approximative, then we can use this algorithm
for ∆HPP2: for a given worst-case instance I of Hoogeveen’s algorithm, we determine an optimal
∆TSP solution and use this as input for the reoptimization problem by declaring the start vertex
of I to be the start vertex as well as the end vertex. Then I is the modified instance that is to be
solved by the reoptimization algorithm. However, to improve the approximation ratio for ∆HPP2

by a constant factor, we depend on the ability of the reoptimization algorithm to handle a broader
range of input instances: instead of requiring an optimal solution for the given input graph, it has
to be able to accept solutions that deviate by a (small) constant factor from an optimal solution.

1.2 Organization of the Paper

Section 2 fixes the notation used in the paper. The core of this paper is located in Section 3,
where we show the combined upper bounds on the approximation ratios achieved by Christofides’
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and Hoogeveen’s algorithm. Section 4 then provides a more detailed analysis of hard instances.
Finally, Section 5 shows that the analyses of all upper bounds shown in this paper are tight.

2 Preliminaries

For graphs, we use a notation similar to [23]. In a graph G = (V,E), the edges are sets of two
vertices. A trail from u to v is a sequence of adjacent edges leading from u to v, where no edge
may be used more than once. A trail is uniquely defined by a list of vertices uw1w2 . . . wiv, where
consecutive vertices describe the edges of the trail. We say that w1 . . . wi are the inner vertices.
The length of a trail is the number of its edges. A trail, where each vertex is used at most once, is
a path. A closed trail, i. e., a trail that starts and ends with the same vertex, is a circuit. A circuit,
where each inner vertex is visited only once, is a cycle. In a graph G = (V,E), a Hamiltonian path
from u to v is a path of length |V | − 1 from u to v and a Hamiltonian tour is a cycle of length
|V |. Let [n] denote the set {1, 2, . . . , n}, where n is an integer.

We call a complete graph G = (V,E) with cost function c : E → Q+ metric, if the edge costs
satisfy the triangle inequality c({u, v}) ≤ c({u,w}) + c({w, v}) for any pairwise distinct vertices
u, v, w ∈ V .

The metric traveling salesman problem, ∆TSP, is the problem of finding a minimum-cost
Hamiltonian tour in a complete metric graph. Themetric minimum-cost Hamiltonian path problem
in complete graphs, where the two end vertices are fixed, is called ∆HPP2.

Given a graph G = (V,E) and two vertices u and v in G, then we define G + {u, v} as
(V,E ∪ {{u, v}}). In a graph, a vertex is odd or even, if its degree is odd or even.

3 A Win/Win Strategy for ∆TSP and ∆HPP2

In this section, we provide an improved analysis of a simple algorithm that combines the two well-
known algorithms from [10] and [16]. The algorithm is exactly that from [8]. For completeness,
we state this algorithm here.

Algorithm 1 Path and Cycle [8]

Input: A complete graph G = (V,E), a metric cost function c : E → Q+, and two vertices s and
t.

1: Compute a minimum spanning tree T in G.
2: Compute a minimum perfect matching MC on the odd vertices of T in G.
3: Compute a minimum perfect matching MP on the odd vertices of the multigraph T + {s, t}

in G.
4: Compute an Eulerian tour EulC in the multigraph T ∪MC and an Eulerian path EulP in the

multigraph T ∪MP .
5: Shorten EulC and EulP to a Hamiltonian tour HC and a Hamiltonian path HP , respectively.

Output: HC and HP .

We first bound the costs of the matchings involved in the algorithm. Let OptP and OptC be
optimal solutions for the ∆HPP2 and the ∆TSP, respectively.

Lemma 1.

c(MP ) + c(MC) ≤ min{c(OptP ), c(OptC)}

Proof. First we show that c(MP ) + c(MC) ≤ c(OptP ) holds. Let P be an optimal Hamiltonian
path from s to t in G and let v1, v2, . . . , vk be the odd vertices of T . Let us assume without loss
of generality that they are in the order as they appear in OptP. It is clear that k is even. Then
we define the matching M ′

C as the set of edges {vi, vi+1}, where i is odd. Analogously, M ′

P is
the matching containing the edges {vj , vj+1}, where j is even. Additionally, M ′

P contains {s, v1}
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if v1 6= s and {vk, t} if vk 6= t. Observe that M ′

C is a perfect matching on the odd vertices of T
and M ′

P is a perfect matching on the odd vertices of T + {s, t}. Since M ′

C and M ′

P are disjoint,
due to the triangle inequality c(M ′

P ) + c(M ′

C) ≤ c(OptP ). Since MP and MC are minimal,
c(MP ) ≤ c(M ′

P ) and c(MC) ≤ c(M ′

C).
Now we show that c(MP ) + c(MC) ≤ c(OptC). Note that MC is a minimum-cost perfect

matching of v1, v2, . . . , vk. By Christofides’ analysis, we have c(MC) ≤ c(OptC)/2: due to the
triangle inequality, the cycle formed by v1, v2, . . . , vk in the order as these vertices appear in an
optimal Hamiltonian tour OptC is not more expensive than OptC itself. Since this cycle has two
disjoint perfect matchings, the cheaper one has a cost of at most half of the cycle’s cost. An
analogous analysis shows

c(MP ) ≤ c(OptC)/2. (1)

The only difference is the set of vertices that forms the minimum cost perfect matching which is
composed of the odd vertices from T + {s, t}.

Let α := c(HP )/c(OptP) be the approximation ratio for the computed Hamiltonian path and
let β := c(HC)/c(OptC) be the approximation ratio for the computed Hamiltonian tour for a given
input G, c, s, t, where HP and HC are the solutions of Algorithm 1. Furthermore, we determine a
value p from the costs of intermediate graphs in Algorithm 1 as

p := max{c(T ), c(MP ) + c(MC), 1.5c(MP )}.

We will show in the following, that p forms a lower bound on the cost of an optimal solution for
∆HPP2.

Let α′ be the value such that c(HP ) = α′p. Thus, we can determine the value of α′, whereas
we do not know the value α. We will use α′ as a parameter that determines a guarantee for the
achieved approximation ratios for ∆TSP and ∆HPP2.

Lemma 2. For any input of Algorithm 1,

(2α− 2)c(OptP ) ≤ (2α′ − 2)p ≤ c(OptC) ≤ (3− α′)p ≤ (3− α)c(OptP ).

Proof. We first show that p ≤ c(OptP) holds. Since OptP is a spanning tree, c(T ) ≤ c(OptP).
Due to Lemma 1, also c(MP ) + c(MC) ≤ c(OptP). Due to the analysis of Hoogeveen’s algorithm
in [16], c(MP ) ≤ 2c(OptP)/3 and thus 3c(MP )/2 ≤ c(OptP). Therefore, also the maximum of the
three values is at most c(OptP).

Since p is a lower bound on c(OptP),

(2α− 2)c(OptP ) = 2c(HP )− 2c(OptP) ≤ 2c(HP )− 2p = (2α′ − 2)p,

which shows the first inequality of the lemma.
We continue the proof by showing (2α′ − 2)p ≤ c(OptC). Since c(HP ) = α′p ≤ c(T ) + c(MP ),

(2α′ − 2)p ≤ 2(c(T ) + c(MP ))− 2p ≤ 2(c(T ) + c(MP ))− 2c(T ) = 2c(MP ).

Now the second inequality follows because of (1).
For the third inequality c(OptC) ≤ (3−α′)p, we note that c(HC) ≤ c(T )+ c(MC). Due to the

definition of p, c(MC) + c(MP ) ≤ p and c(T ) ≤ p. Therefore,

c(T ) + c(MC) ≤ 2p− c(MP ).

Since c(MP ) ≥ c(HP )− c(T ) holds,

c(MP ) ≥ α′p− c(T ) =

(

α′ −
c(T )

p

)

p ≥ (α′ − 1)p.

Therefore we get
c(HC) ≤ 2p− (α′ − 1)p = (3− α′)p. (2)
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The last inequality follows, since

(3− α′)p = 3p− α′p = 3p− c(HP ) ≤ 3c(OptP)− αc(OptP) = (3− α)c(OptP).

As a first consequence of Lemma 2, we can relate the actual approximation ratio α that A
achieved for the given input for ∆HPP2 to that for ∆TSP, β.

Theorem 1. For any input of A,

β ≤ min

{

1.5,
1

α− 1
−

1

2

}

and α ≤ min

{

5

3
,

1

β + 1/2
+ 1

}

.

Proof. Due to the analysis of Christofides and Hoogeveen, we can bound β and α from above by 1.5
and 5/3. For the second bound of β we note that, due to Lemma 2 and (2), c(HC) ≤ (3−α)c(OptP).
Since Lemma 2 also states that c(OptC) ≥ (2α− 2)c(OptP), we get

β =
c(HC)

c(OptC)
≤

(3− α)c(OptP )

(2α− 2)c(OptP )
=

3− α

2α− 2
=

2− (α− 1)

2(α− 1)
=

1

α− 1
−

1

2
. (3)

The remaining statement of the theorem now follows immediately, since β ≤ 1/(α − 1) − 1/2
implies α ≤ 1/(β + 1/2) + 1.

Figure 1 gives a graphical representation of the theorem. The set S of all valid combinations
of approximation ratios achieved by Algorithm 1 is represented as the gray area.
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 1.55

 1.6

 1.65

 1.7

 1.75

 1  1.1  1.2  1.3  1.4  1.5

α

β

Figure 1: The gray area describes the set S of all combinations of the approximation ratios α and
β for the ∆HPP2 and the ∆TSP achieved by Algorithm 1. The solid line describes the upper
bound on the approximation ratios achieved by that algorithm. The dashed lines represent the
upper bounds on the approximation ratios proven in [8]. The hatched area contains the set of
possible pairs of solutions given that α′ coincides with the highest value of α within the area.

The following corollary follows from Theorem 1 by setting α = 5/3.

Corollary 1. Any worst-case instance for Hoogeveen’s algorithm for ∆HPP2 allows us to compute
an optimal Hamiltonian cycle in G.

Theorem 1 described properties that belong to the core of the relation between the two prob-
lems. Now we will change the focus and describe how to use the revealed relations in order to
guarantee improved approximations according to parameters that we can measure, namely α′.
More precisely, we determine the approximation ratios according to the spanning tree T and the
matchings MP and MC . Let δ = p− c(T ). Note that δ ≥ 0 and α ≤ α′ holds.
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Theorem 2. For any input of A,

β ≤ min{1.5, 1/(α′ − 1)− 1/2} − δ/c(OptC).

Proof. Analogous to the proof of Theorem 1, c(HC) ≤ c(OptC) · (1/(α
′ − 1)− 1/2) and c(HC) ≤

c(OptC) · 1.5. In this analysis, however, we estimated c(T ) by c(OptP). The cost of the actual
solutionHC is at least δ cheaper than we estimated previously. Therefore, the claim of the theorem
follows.

The effect of Theorem 2 is depicted in the hatched area in Figure 1.

4 Implications of the Win/Win strategy

In this section, we classify hard input instances for the ∆HPP2. To this end, similar to [15] we
combine Algorithm 1 and a variant of the well-known tree-doubling algorithm for the ∆TSP,
namely Algorithm 2, which enables us to restrict the class of hard input instances.

Algorithm 2 Tree Doubling

Input: A complete graph G = (V,E), a metric cost function c : E → Q+, and two vertices s and
t.

1: Compute a minimum spanning tree T in G.
2: Let Pst be the unique path in T that connects s and t.
3: Find an Eulerian tour EulP in the multi-graph T + (T − Pst).
4: Shorten EulP to a Hamiltonian path HP .

Output: HP .

In particular, we focus on the distance of s and t in G. Let A be the algorithm that runs
both Algorithm 1 and Algorithm 2. The output of A is the cycle HC from Algorithm 1 and the
path HP that is the smaller one of the two computed Hamiltonian paths. We introduce α̃ and α̃′

similar to α and α′, but with a slightly extended meaning: these values are based on A instead of
Algorithm 1. For simplicity, we assume both algorithms involved in A to use the same spanning
tree T .

Theorem 3. For any input of A,

(2α̃− 3)c(OptP ) ≤ (2α̃′ − 2)p− c(OptP ) ≤ c({s, t}) ≤ c(Pst)

≤ (2− α̃′)p ≤ (2− α̃)c(OptP ).

Proof. The first and the last inequality hold, similar to Lemma 2, since c(HP ) = α̃c(OptP) = α̃′p
and p ≤ c(OptP).

For the second inequality, note that any Hamiltonian path from s to t can be made a Hamilto-
nian cycle by adding the edge {s, t}. Therefore, c(OptC) ≤ c(OptP )+ c({s, t}) and thus, applying
Lemma 2, (2α̃′ − 2)p ≤ c(OptP ) + c({s, t}), which implies the second inequality.

The third inequality c({s, t}) ≤ c(Pst) trivially holds due to the triangle inequality.
For the fourth inequality, we first have to analyze Algorithm 2. The algorithm is correct

because in T +(T −Pst), all vertices but s and t have an even degree, which ensures the existence
of EulP . Due to the triangle inequality, c(HP ) ≤ c(EulP ). Therefore, c(HP ) ≤ c(T + (T − Pst)).

By the definitions of α̃′ and p, we have α̃′p ≤ 2c(T ) − c(Pst) and thus the fifth inequality
follows:

c(Pst) ≤ 2c(T )− α̃′p ≤ 2p− α̃′p.
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Theorem 3 reveals several properties of hard input instances. For instance, by setting α̃ to
5/3 in Theorem 3, we conclude that in each worst-case instance for ∆HPP2, c(Pst) = c({s, t}) =
c(OptP)/3 holds. This means that according to Theorem 1, adding the edge {s, t} to an optimal
Hamiltonian path from s to t yields an optimal Hamiltonian tour in the same graph.

Furthermore, since Pst is a part of T , we can take into account the number of edges in Pst.
Let γ be the value such that c(Pst) = γc(OptP). In other words γ is the fraction of c(OptP) that
is formed by Pst.

Theorem 4. Suppose that there are k or fewer edges in Pst. Then there exists an algorithm that
achieves an approximation ratio of

(3 − α̃)

(

1

α̃− 1
−

1

2

)

+

(

1−
2

k

)

γ

for ∆HPP2.

Proof. Let e = {u, v} be the edge of maximal cost in Pst such that the four vertices are in the
order s, u, v, t within Pst. Given the Eulerian cycle EulC from Algorithm 1, we remove e from
EulC and add the two edges {s, u} and {v, t}. The resulting graph has an Eulerian path from s
to t. Let H ′

p be that tour shortened to a Hamiltonian path. Then the cost of H ′

P is at most

c(T ) + c(MC)− c(e) + (c(Pst)− c(e)).

Since there are at most k edges in Pst, c(e) ≥ c(Pst)/k. The value of β is based on the cost
of HC , which is c(T ) + c(MC). Therefore, Theorem 1 implicitly states that c(T ) + c(MC) ≤
(1/(α̃− 1)− 1/2)c(OptC) holds and we can bound the cost of H ′

P from above by

c(H ′

P ) ≤

(

1

α̃− 1
− 1/2

)

c(OptC) +

(

1−
2

k

)

c(Pst)

≤

(

1

α̃− 1
− 1/2

)

(3− α̃)c(OptP) +

(

1−
2

k

)

γc(OptP).

The last inequality holds because of Lemma 2. Dividing this value by c(OptP) yields the claimed
approximation ratio.

Note that in the special case that α̃ = 5/3, Theorem 4 together with Theorem 3 implies that
the cost of the computed Hamiltonian path is at most

(

5

3
−

2

3k

)

· c(OptP ).

5 Combined Hard Input Instances

In this section, we show that the analysis of Theorem 1 is tight. To this end, we construct a class
of graphs that can be adapted to any choice of 1.5 < α̂ < 5/3, where α̂ is the aimed-for lower

bound on the approximation ratio achieved for ∆HPP2. We define β̂ := max{1.5, 1/(α̂−1)−1/2},
the guaranteed upper bound for ∆TSP according to Theorem 1. Hence, we aim for a lower bound
β̂ on the achieved approximation ratio for ∆TSP.

The basic building blocks of the graphs are the well known hard input instances for Christofides’
algorithm from [10] (also described, e. g., in the textbook [17]) and for Hoogeveen’s algorithm from
[16].

Let i ≥ 4 be an even number. Then we construct the graph Hi,ρ = (Vi, Ei,ρ), where Vi =
{v1, v2, . . . , vi} and ρ is a value that depends on the specific pair of bounds that we aim for.
We specify Ei,ρ by determining the edges of cost ρ/i. All remaining edges have the cost of the
shortest path between the corresponding vertices. We say that two vertices are connected, if they
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yj zj

tj

v2v3

v4v5

vi−3

vi−2vi−1

vi

Figure 2: The graph Gα̂,i,k. The bold lines form a part of the spanning tree T .

are connected by an edge of cost ρ/i. For any j ∈ [i− 1], vj and vj+1 are connected. Furthermore,
for any j ∈ [i− 2], vj and vj+2 are connected.

Now, for k ∈ N, we construct a graph Gα̂,i,k with n = 1 + (i + 2)k vertices (k copies of Hi,ρ

and 2k + 1 additional vertices) as depicted in Figure 2.
For each j = 1, 2, . . . , k, we create a cycle sjyjzjtjsj such that each edge of the cycle has cost 1.

The remaining two edges between these vertices are of cost 2. To each vertex tj , we attach a copy
of Hi,ρ with ρ = 5−3α̂

α̂−3/2 such that tj = v1. Now we join all k components such that for j ∈ [k− 1],

tj = sj+1. Again, all remaining edges of the resulting graph cost as much as the shortest path
between the corresponding vertices. The end vertices are s = s1 and t = tj .

Theorem 5. For each 3/2 < α̂ < 5/3 and each ε > 0, there are integers i and k such the combined
result of Algorithm 1, Algorithm 2, and Theorem 4 is not (α̂ − ε)-approximative for ∆HPP2 and

not (β̂ − ε)-approximative for ∆TSP for the input Gα̂,i,k.

Proof. We first determine an upper bound on the cost of an optimal Hamiltonian path and tour
in Gα̂,i,k.

In each copy of Hρ,i, consider the tour C that consists of all edges {vj, vj+2} for j ∈ [k − 2],
{v1, v2}, and {vi−1, vi}. Then obviously c(C) = ρ. Now it is easy to see that there is an Eulerian
path from s to t in Gα̂,i,k that contains all edges {sj, yj}, {yj, zj}, {zj, tj}, and the tour C of each
copy of Hρ,i. The overall cost of the path shortened to a Hamiltonian path is at most k(ρ + 3).
It is not hard to check that the cost of any optimal Hamiltonian path is also at least k(ρ + 3).
Analogously, there is a Hamiltonian tour in Gα̂,i,k of cost k(ρ + 4). It is formed similar to the
Hamiltonian path, but the Eulerian tour from which the Hamiltonian tour is formed additionally
includes the edges {sj, tj}.

For the lower bounds of the computed solutions, let us consider the spanning tree T in Gα̂,i,k

that contains all edges {vj , vj+1} of all copies of Hρ,i and all edges {sj , tj}, {sj , yj}, and {yj, zj}.
It is easy to see that T is a minimum-cost spanning tree and c(T ) = k(3+ρ(i−1)/i). We consider
T to be the tree that is used in each of the algorithms. The odd vertices of T are all copies of vi
and all zj . Connecting each zj with vi of the graph connected to tj yields a minimum-cost perfect
matching MC of the odd vertices of T . Let us assume that the algorithms use this matching,
which has a cost of k(1+ (ρ/2)). For computing a Hamiltonian path, both vertices s and t have to
be in the matching. It is not hard to see that adding {s, t} to MC yields a minimum-cost perfect
matching MP and c(MP ) = k(2 + (ρ/2)).
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We first analyze α and β, the approximation ratios achieved by Algorithm 1.
The approximation ratio achieved for ∆HPP2 is

α =
c(T ) + c(MP )

c(OptP)
=

k(3 + ρ(i− 1)/i) + k(2 + (ρ/2))

k(ρ+ 3)
=

5 + 3ρ
2 − ρ

i

ρ+ 3
(4)

and the approximation ratio for ∆TSP is

β =
c(T ) + c(MC)

c(OptC)
=

k(3 + ρ(i − 1)/i) + k(1 + (ρ/2))

k(ρ+ 4)
=

4 + 3ρ
2 − ρ

i

ρ+ 4
. (5)

Similarly, the approximation for ∆HPP2 achieved by Algorithm 2 is

2c(T )− c(Pst)

c(OptP)
=

2k(3 + ρ(i− 1)/i)− k

k(ρ+ 3)
=

5 + 2ρ(i− 1)/i

ρ+ 3
.

It is easy to see that, since i ≥ 4, for the given input Algorithm 1 always yields a smaller approx-
imation ratio than Algorithm 2.

Due to the definition of ρ,

α̂ =
5 + 3ρ

2

ρ+ 3
.

Since for the considered range of values α̂ we have β̂ = 1/(α̂− 1)− 1/2,

β̂ =
4 + 3ρ

2

ρ+ 4
.

Therefore, applying (4) and (5) we get

α = α̂−
ρ

i(ρ+ 3)
and β = β̂ −

ρ

i(ρ+ 4)
.

If ρ
i(ρ+3) < ε, our analysis for the first two algorithms is finished. We need, however, some slack

for dealing with Theorem 4. Therefore, we determine i such that ρ/i
ρ+3 < ε/2. Simple arithmetic

shows that

i =









2

ε ·
(

1 + 6α̂−9
10−6α̂

)









+ 1

is a valid choice.
To finish the proof, we have to find a k such that Theorem 4 does not provide an (α̂ − ε)-

approximation. Thus, we have to ensure that

(3− α)

(

1

α− 1
−

1

2

)

+

(

1−
2

k

)

γ > α̂− ε.

Here, γ = k/(k(ρ+3)) = 1/
(

5−3α̂
α̂−3/2 + 3

)

. By replacing the variables appropriately using α̂−ε/2 <

α ≤ α̂, it is enough to find a k such that

3− α̂+ ε/2

α̂− ε/2− 1
−

3− α̂

2
+

(

1− 2
k

)

(

5−3α̂
α̂−3/2 + 3

) > α̂− ε.

resolving this expression to k yields a valid k for every ε > 0.
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6 Conclusion

We have shown a tight bound of the combined approximation ratio of Hoogeveen’s algorithm and
Christofides’ algorithm and for any input, we provided a pair of approximation ratios that is guar-
anteed to be achieved. We revealed a strong relation between the two problems and characterized
properties of hard instances. These properties might be helpful in order to find an improved al-
gorithm for ∆HPP2 or ∆TSP. Since the described properties of hard input instances are very
specific, the results of this paper show that for most of the practical input instances, we can
guarantee better approximation ratios than in the worst-case.
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