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Abstract. Ileo-Cecal Valve (ICV) is an important small soft organ which
appears in human abdomen CT scans and connects colon and small intes-
tine. Automated detection of ICV is of great clinical value for removing
false positive (FP) findings in computer aided diagnosis (CAD) of colon
cancers using CT colongraphy (CTC) [1-3]. However full 3D object de-
tection, especially for small objects with large shape and pose variations
as ICV, is very challenging. The final spatial detection accuracy often
trades for robustness to find instances under variable conditions [4].

In this paper, we describe two significant post-parsing processes after
the normal procedure of object (e.g., ICV) detection [4], to probabilis-
tically interpret multiple hypotheses detections. It achieves nearly 300%
performance improvement on (polyp detection) FP removal rate of [4],
with about 1% extra computional overhead. First, a new multiple de-
tection spatial-fusion method utilizes the initial single detection as an
anchor identity and iteratively integrates other “trustful” detections by
maximizing their spatial gains (if included) in a linkage. The ICV de-
tection output is thus a set of NV spatially connected boxes instead of a
single box as top candidate, which shows to correct 3D detection mis-
alignment inaccuracy. Next, we infer the spatial relationship between
CAD generated polyp candidates and the detected ICV bounding boxes
in 3D volume, and convert as a set of continuous valued, ICV-association
features per candidate which allows further statistical analysis and clas-
sification for more rigorous false positive deduction in colon CAD.

Based on our annotated 116 training cases, the spatial coverage ratio
between the new N-box ICV detection and annotation is improved by
13.0% (N=2) and 19.6% (N=3) respectively. An evaluation on large scale
datasets of total ~ 1400 CTC volumes, with different tagging prepa-
rations, reports average 5.1 FP candidates are removed at Candidate-
Generation stage per scan; and the final CAD system mean FP rate
drops from 2.2 to 1.82 per volume, without affecting the sensitivity.

1 Introduction

Colorectal cancer is the second leading, death-causing cancer for western popula-
tion. Many computer aided diagnosis (CAD) systems [1-3, 5] have been proposed
to tackle the colonic polyp detection problem, with better accuracy and sensi-
tivity than radiologist alone. The most critical affecting factor for radiologists



to accept the daily usage and adding value of a CAD system is its False Positive
(FP) rate per scan or patient, while keep high detection sensitivity. This is also
the major difference from a good (helpful) to bad (misleading) CAD system [5].
Out of all FP types, Ileo-Cecal Valve has many bumpy polyp-like substructures
which can confuse CAD algorithms and result as one of the most “difficult-to-
remove” FP subgroup. As reported in the most recent study [6], 18.8% FPs are
contributed by ICV structures, for a CAD system operating at 4.7 FPs per scan
with reasonable sensitivity rate.

Detecting and segmenting small, soft and deformable human anatomic struc-
tures (e.g., Ileo-Cecal Valve) in a large 3D image volume (often > 500 slices) is a
very challenging task. Ileo-Cecal Valve is highly deformable in shape and location
by nature (without rigid attachment as connecting colon and small intestine),
which leads to large intra-class shape, appearance and pose variations. In [4], we
propose a generic object detection method to localize and segment an anatomic
structure, such as Ileo-cecal Valve in abdominal CT volumes, through an incre-
mental parameter learning and registration procedure by sequentially aligning a
bounding box with full 3D spatial configuration (i.e., 3D translation, 3D scaling
and 3D orientation) towards the real structure. ICV has to be detected at the
correct spatial scale range to understand its full context, and disambiguate from
local, polyp-like subcomponents. The system diagram of ICV detection is shown
in Fig. 1. For robustness, all steps of this detection pipeline leverage and keep
multiple hypotheses (as a set of 3D boxes) for the next level until the last stage,
which is in the same spirit of robust object tracking using multiple hypotheses
[7], sequential Monte Carlo or particle filtering [8].

Exhaustive search of the 9-dimensional parameter space for the global opti-
mal ICV bounding box is not only computationally infeasible, but also can not
be trained due to the exponential-complexity negative class sampling issue in
high dimensional parameter space. Though a high detection rate is achieved in
[4], the spatial coverage ratios between computer detections and the annotated
or desirable ICV bounding boxes are in need for improvement (probably inferior
to face detection overlapping accuracy in 2D images due to higher dimensional
parameter space of 9 versus 4). Especially for FP removal purpose in a CAD sys-
tem, more spatially accurate detection of ICV leads to better reasoning of the
spatial association between polyp, and ICV detections, which permits to remove
more ICV false positives! [5, 6].

In this paper, we present a sequence of significant post-parsing processes
of [4], by spatially fusing the multiple ICV detection hypotheses in an “anchor-
linking” fashion, constructing statistical features (e.g., distance, spatial-decaying
detection probabilities) continuously describing the underlying “candidate-ICV”

! For example, in our CAD system, overall ~ 0.76% FP candidates survive after the
final classification, while as a specific FP category, the survival rate of ICV candidates
is significantly higher as 7.83%. From the other viewpoint, ICV candidates form
< 1% of the overall polyp candidates at CG level, but more than 10 ~ 15% of the
final system output FPs are composed of ICV (causing) FPs, if no explicite ICV
candidates/FPs removal module is applied.



associations, and building a discriminative classifier using new ICV features to
remove false positives, while keeping the overall polyp detection sensitivity un-
changed. The “anchor-linking” multiple detection fusion is related to component
based object detection methods [9,10], but different in maximizing the trustful
object region recovery by linking a few spatially correlated, “strong” detection
candidates, while [9,10] aggregate multiple part-based detections to form the
whole-object identification. The feature extraction and classification treatment
from detection, enables more rigorous statistical analysis and removes about 90%
more ICV type (polyp) FPs (0.38 versus 0.2 per volume, due to ICV existence)
than improved N-box detection (n=3). Compared with [4], FP removal rate is
nearly 300% (i.e., 0.38 versus 0.13 per scan). The computational overhead of
post-parsing is neglectable compared with the ICV detection process [4].

2 Materials and Methods

In this section, we will first review the two-staged workflow of ICV detection
by prior learning and incremental parameter learning [4]. Then a multiple de-
tection fusion method, to improve the spatial coverage between the detected
ICV area (a union of bounding boxes) and the true ICV occupying area, is
described. Finally we map the spatial association between polyp detection can-
didates and the updated ICV detection output, to a set of four features including
{Indicator;cv, Probjcv, Disticv, ProbDecayrcy } or {Indicator, Prob, Dist,
ProbDecay}, by incorporating both localization (geometry) and detection (prob-
ability) information, and feed them into statistical analysis and classification for
ICV-type FP reduction.

2.1 Progressive Ileo-cecal Valve Detection in 3D

ICV detection is very challenging due to ICV’s large variations in terms of its in-
ternal shape/appearance and external spatial configurations: (X,Y, Z; S, Sy, Sz;
U, d,w), or (27;2g; 2r). To address these difficulties, we develop a two-staged
approach that contains the prior learning to prune ICV’s spatial configurations
in position and orientation, followed by the position, size and orientation esti-
mation of incremental parameter learning. The prior learning is inspired by the
fact that, if likely hypotheses ICV’s orifice can be found, its position in {27 can
be constrained, then no explicitly exhaustive searching of position is needed.
The ICV orifice has an informative, but not uniquely distinctive, surface profile
that can possibly indicates ICV locations. It is also known that ICV orifice only
lies on the colon surface that is computed using a 3D version of Canny edge
detection. Thus we can prune all voxel locations inside the tissue or in the air
for even faster scanning. Then given detected ICV orifice position from prior
learning, we can further use this to constrain ICV itself’s location for efficient
scanning, as described in [4].

Fig. 1 shows the diagram of our full detection system of two stages and five
individual steps. Each step of encoding process is formulated as a general bi-
nary classification problem, and is specifically implemented using probabilistic
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Fig. 1. System diagram of Ileo-Cecal Valve detection, with prior learning (upper block)
and incremental parameter learning (lower block).

boosting tree algorithm (PBT) [11]. To learn the object (e.g., ICV) appearance
model, we employ 3D steerable features [12] which are composed by a number
of sampling grids/points where 71 local intensity, gradient and curvature based
features are computed at each grid. The whole sampling pattern models semi-
local context. In contrast to popular 3D HAAR features [13], only the sampling
grid-pattern of steerable features need to be translated, rotated and re-scaled
instead of data volumes. It allows fast 3D data evaluation and has shown to be
effective for object detection tasks [12]. The separation of sampling grid pattern
and local 71 gradient/curvature features allows the flexibility of different geo-
metric structure designs of grid-pattern as spatial assembles of unchanged local
features. Particularly, an axis-based pattern is proposed for detecting ICV’s ori-
fice at step 1, and a box-based pattern for parsing the ICV orientation, scale
and size at following steps, with total 5751 or 52185 local features for boosting
respectively.

If there is only one existing object per volume (such as ICV) and the training
function can be perfectly learned by a classifier at each step, setting only one
detection candidate (e.g., M = 1) per step is sufficient to achieve the correct
detection. In practice, we set M = 50 ~ 100 for all intermediate detection steps
to improve robustness. It means that we maintain multiple detection hypotheses
until the final result. For the description of how training parameters are obtained
in this multi-stage detection hierarchy, refer to [4] for details.

Improvements: ICV contains many polyp-like local structures which often
survive through colon CAD systems. By localizing a spatially accurate bound-
ing box of ICV, this type of ambiguous false positives as generated by an initial
candidate-generation (CG) process (within the above detected bounding box),
can be removed. For this task, 1), we further enhanced the ICV orifice detection
stage (as the first step in Fig. 1) by adding all labeled polyp surface voxels into



its negative training dataset, which results a propose-specific and more dis-
criminative training against losing polyps or reducing sensitivity. Other stages
are consequentially retained in the same way. 2), Non-Maximum suppres-
sion is also performed after the prior learning by only keeping the top ICV box
candidate at each different location. This further increases the spatial sampling
and computational efficiency, as more spatial regions will be exploited by later
training and classification stages with the same computational budget, or the
number of kept samples. Some positive ICV detections are illustrated in Fig.
2. The processing time varies from 4 ~ 10 seconds per volume on a P4 3.2G
machine with 2GB memory.

(8) (h)

Fig. 2. (a,b) An example of ICV detection result from two viewpoints. The red box is
the annotation; the green box is the detection. (c,d,e,f,g,h) Examples of ICV detection
results from unseen clean colon CT volumes (c,d,e) and unseen solid (f) or liquid
tagged (g,h) colon CT volumes.The red box is the final detection result where no
annotation available. Note that only a CT subvolume surrounding the detected ICV
box is visualized for clarity. This picture is better visualized in color.

2.2 Contextual N-Box ICV Detection by Spatial Fusion

To obtain a more precise 3D ICV region from detection, a contextual N-box
model is employed. 1), We use the single ICV detection box B; as an anchor
to explore other reliable expansions. The trust or reliability is guaranteed by
maintaining other boxes with both posterior probabilities above a high threshold
and good overlaps with the anchor box. For all other hypotheses {B’Z} (except
Bj;) returned in the last step of detection, we first apply a prefilter and only
retain “trustful” candidates satisfying 'y(Bl,BZ—) > v, and p(Bl) > p1 where
~(e, ®) computes the spatial overlap ratio between two boxes and p(B;) returns
the posterior detection probability of B; from above [4]. The two constraints



guarantee that By is spatially correlated with By (71 = 0.5) and is a high quality
ICV detection by itself p; = 0.8. 2), Then we sort them according to their spatial
gains Vol (BZ — B ﬂBl) and the box that gives the largest gain is selected as
the second box Bs. Our boxes are fully mathematically parameterized which
allows fast evaluation of voxel overlapping. 3), By taking B; and By as a union
Boxg = By |J Ba, it is straightforward to expand the model for N-box ICV model
with N > 2, by maximizing Vol(B; — Boxq(B;). The union Boxg grows by
adding one new winning box per iteration. Let Box, be the annotated bounding
box of the ileo-cecal valve and Boxg be the detected N-Box. The spatial overlap
ratio between Box, and Boxg is defined as
Vol(Boxz, () Boxzq)

vy(Box,, Boxg) = Vol(Boz,)|JVol(Boxg) W

where Vol() is the box-volume function (eg. the voxel number inside a box). The

spatial coverage ratio of Boxy and Bozx, is defined as

Vol(Box, () Bozxa)
Vol(Box,)

a(Boxz,, Boxg) = (2)
which describes the percentage of the annotated ICV area covered by the detec-
tion Boxg. In practice, the number N of boxes in Boxy can be determined by
cross-validation, by maximizing a(Boz,, Box,) under the constraint of main-
taining y(Box,, Boxg) at high level. a(Box,, Boxy) is the direct performance
measure, as the percentage of the true ICV volumetric region Box, recovered by
Bozxg4, which impacts on the ratio of ICV causing FPs in Bozx, that can be re-
moved by Box instead. High overlap ratio v(Box,, Boxg) as Jaccard similarity,
keeps detection Boxg highly confident against ground truth Bozx,. A balance be-
tween a(Box,, Boxy) and y(Box,, Boxry) needs to be achieved. A few illustrative
examples of multi-box ICV Detection are shown in Fig. 3.

2.3 Features and ICV False Positive Classification

Given the ICV detection output Boxg = {B;}i=1,2,.. v and the spatial locations
{L;} of a set of polyp candidates (in the order of hundreds per volume), we first
compute the Euclidean distances (Geodesic distance is more desirable but with
higher computational cost; Euclidean is a close approximation in low distance
range) for each of polyp candidate against Bozx, as

Dist(L;, Boxq) = min Dist(L;, B;) (3)

Then, the generic “point-to-box” distance in 3D is converted as a standard
“point-to-triangle” distance because the box is a spatially convex set includ-
ing all voxels inside. The triangle is found by selecting the set of three box
vertices B; .,k = 1,2,3 with the smallest “point-to-point” Euclidean distances
|| Bix—L; || according to L;. Thus B; s, k = 1,2, 3 may vary against different L.
Finally the “point-to-triangle” distance is calculated using the standard geomet-
ric algorithm [14] and we denote Dist(Lj, Boxq) as Dist}y, for any jth polyp



Fig. 3. Multi-box ICV Detection results (N=3) with clean preparation (a,b,c) and
tagged preparation (d,e,f). Note that rugged surface is more visible in (d,e,f) under
tagged preparation which potentially causes more challenges for ICV detection or de-
grading on localization accuracy. Notice that the spatial coverage of ICV detection
boxes against the true ICV area improves as N increases from 1 to 2, 3. The first, sec-
ond, and third detection box is color-coded as red, green, and blue respectively. This
picture is better visualized in color.



candidate. Note that if L; is determined inside any box C Boxg, Dist! = 0 will
be automatically set, without any distance calculations. Furthermore, a binary
indicator {Indicator]. } is also derived from Dist] .,

True, ifDist? = 0;
False, otherwise.

Indicator? = { (4)

The confidence of ICV detection procedure can also be explored as Probrcy
volumewise, regardless of different CG candidates. Lastly, by combining the in-
formation of the overall detection probability Probrcy per volume (only one
ICV per abdominal scan) and {Dist] . } per candidate, a new hybrid feature
ProbDecay{CV is computed as

ProbDecay’ = Prob x exp(—Dist’ /o) (5)

It simulates the spatially decaying effect of ICV detection probability Prob;cy
propagating from Box, to the location L; where o controls the decaying speed
factor and is determined by cross-validation, or multiple ¢ can be employed for
decaying with respect to different spatial scales. ProbDecay’ integrates the cues
of distance Dist?, detection posterior probability Prob and the spatial scale o,
where o can be set by optimizing ProbDecay?’s classification performance (e.g.,
Fisher score [15]). As seen later, this feature demonstrates the best effectiveness
on modeling the relationship or association between polyp candidates and the
detected ICV, and removing ICV type FPs via classification, out of four features.
Using Geodesic distance to replace Dist/ is probably more sensible and accurate
for modeling the confidence propagation over surface, because all anatomical
structures (e.g., ICV, polyp) interested in CTC lies on colonic surface, and sur-
face geodesic coordinates normally serves as their spatial locations. This is left
for future work.

In summary, we obtain a set of four features {Indicator?, Prob, Dist/,
ProbDecay’} for any jth polyp candidate, and these features can be used to train
a classifier to report whether a candidate is truly associated with ICV rather
than a polyp. Of course, these four features are not statistically independent,
but in section 3, their joint discriminative capability is shown to be higher than
each individual, and thus is finally used for the best classification performance
on filtering out ICV type FPs, using Quadratic/Linear Discriminant Analysis
classifiers [15].

Previous Work: The closest previous work are by Summer et al. [16, 3]
which however is drastically different from ours in two aspects. (1) For localiza-
tion of ICV, [3] relies on a radiologist to interactively identify the ICV by clicking
on a voxel inside (approximately in the center of ) the ICV, as a requisite, manual
initialization step, followed by classification process. (2) For classification, some
human designed heuristic rules based on ICV volume and attenuation thresholds
are utilized. Refer to [16, 3] for details. Their overall sensitivity of ICV detection
is 49% and 50% based on the testing (70 ICVs) and training datasets (34 ICVs)
[3], respectively.



3 Experimental Results

Detection Performance: Our ICV detection process is trained with an anno-
tation dataset of 116 volumes under clean-prep, where each ICV per volume is
precisely bounded using a 3D box with nine degrees of freedom (3D location,
orientation and scale) by two experts, as shown in Fig. 1. 1), Our initial experi-
mental assessment in training show that 2-box model improves the mean cover-
age ratio a(Boz,, Boxy) from 75.6% to 88.6%. When N = 3, the a(Box,, Bozg)
reaches 95.2%. v(Box,, Boxg) are 72.7%, 85.2%, 86.1% for N = 1, 2,3 and starts
to decrease slightly for N > 3. Finally, N is chosen to be 3. 2), For testing cases
where there are no annotation of ICV bounding boxes available, hence we eval-
uate the ICV detection rates by inspecting each “anchor” box returned by our
ICV detector, and labeling it as true or false, using two unseen testing datasets
of 526 volumes (clean-prep) and 689 volumes (fecal tagging-prep including both
iodine and barium preparations) respectively. Siemens, GE and Philips scanners
are used for image acquisition, under different imaging protocals, from 10+ med-
ical sites in Asia, Europe and USA. The detection rates are 91.3% and 93.2%
for clean and tagged datasets.

False Positive Detection: FP deduction is also tested on our clean and
tagged training/testing datasets. There is no significant statistical performance
difference among different datasets, and the detailed analysis and results on
tagged testing dataset are reported below. The ICV detection can be imple-
mented as both pre-filter and post-filter for our existing CTC CAD system. In
post-processing, only those candidates that are labeled as “Polyp” in the final
classification phase are used for screening; while as pre-filter, all candidates out-
put by an initial Candidate-Generation (CG) scheme are employed. With N-box
ICV detection improvement, the final number of false positives drops from 2.2
fp/volume to 2.0 fp/volume (removing FPs with Dist! = 0 or Indicator? = true,
90% improvement), without reducing the overall sensitivity of the CAD system.
For N = 1, the detection based removal [4] in average rejects 0.13 (or 5.91%)
FPs per volume. When used as ICV pre-filter, the average FP removal is 3.1 per
volume. Compared with N = 1 in [4], multiple-box (N = 3) ICV FP classifica-
tion process removes 62.5% more CG candidates for this dataset. FP histogram
of the tagged testing dataset of 412 volumes, before and after ICV post-filter,
demonstrates the advantageous performance impact of using multi-detection fu-
sion, as shown in Fig. 4. The lower histogram has more mass moving towards
the left (as smaller FP numbers).

False Positive Classification: We first evaluate Fisher Discriminant Scores
(FD) of any continuous valued feature f € {Dist!, ProbDecay’} over CG can-
didates, defined as

J(f): (f+_f_)2
o?(ft)+a2(f7)

where f* and f~ denote the mean; o2(f*) and o2(f~) represent the covariance

of f distribution on positive { fT} (polyp) and negative {f~} (non-polyp) classes.

(6)
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Fig. 4. Volume-FP count histograms of tagging testing dataset, before (UPPER) and
after (LOWER) N-box ICV post-filter processing.

ProbDecay’ (o = 10mm) returns higher FD score? of 0.0909 than Dist/. The
feature’s Kernel Density Estimate plots are drawn in Fig. 5. This means that the
hybrid feature ProbDecayrcy can describe underlying soft “candidate-ICV affil-
iations” more precisely and is probably more effective on removing more ICV re-
lated FPs, via inferring both spatial and detection probability information. Next,
we train a Linear Discriminant Classifieron { Prob, Dist’, { ProbDecay) _s 19 1520} }
of all candidates using tagged training dataset and obtain the projection {¢’} as
anew “summarization” feature, which indeed has a better FD score of 0.171 and
o = 5,10,15,20 simulates the multiscale effect of ProbDecay’. {¢} is further
thresholded for recognizing ICV type FPs from polyp candidates. Based on this,
we report an average of 5.1 false positives removed per volume at CG stage; and
the final CAD system FP rate also decreases from 2.2 to 1.82 per volume (or,
17.2% of all FPs), for tagged testing dataset. The sensitivities remain the same
at both stages. Compared with the results of binary decision Dist! = 0 with
N = 3, the performance improvements of leveraging the continuous feature ¢7,
are 64.5% and 90.6% at CG or final system level, respectively. In [6], 18.8% of
4.7 FPs is caused by ICV which is 0.87 per volume. The numerical results of FP
histograms in tagged testing dataset, without and with the classification ICV
post-filter using {¢’}, are given in Table 1. This improves our previous result of
False Positive Detection as in Fig. 4. It is clearly noticeable more volumes have
even lower (per-volume) FP rates. From our further evaluation, this improve-
ment also generalizes well to clean training and testing datasets, with similar

2 Since the majorities of both positive and negative distributions are out of the realm
of ICV spatial occupations, the absolute FD scores are not very high generally.
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Fig. 5. Kernel Density Estimate plots of the spatial-probability feature ProbDecay for
positive (polyp) and negative (non-polyp) classes, with the fisher score 0.0909.

observation obtained. As a post-processing, the additional computation expense
over [4] is approximately 1%.

[False Positive Histogram|Without ICV Filter[With ICV Filter|

0 62 [15.05%] 90 [21.84 %]
1 113 [27.43%] 129 [31.31 %]
2 102 [24.76%] 92 [22.33 %)
3 54 [13.11%] 40 [9.71 %)
1 33 [8.01%] 22 [5.34 %)
5 22 [5.34%] 17 [4.13 %)
6 9 [2.18%] 11 [2.67%]
7 10 [2.43%] 8 [1.94%)]

8 30.73%] 1[0.24%]

9 2 [0.49%] 2 [0.49%]

> 10 2 [0.49%)] 1[0.24%]

Table 1. Volume-FP count histograms of tagging testing dataset, without and with
enhenced ICV post-filter on {¢’}.

4 Discussion

In this paper, we propose a sequential “anchor-linking” approach on multiple
detection hypotheses, to improve the alignment accuracy of automatic 3D de-
tection for Ileo-cecal Valve. The final ICV detection output is a set of spatially
connected N-boxes where our method is generic and applicable to other 3D/2D
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multi-hypothesis detection problems [9, 10, 7, 8], without restricting to [4]. Then
we derive continuous valued features (e.g., { Dist/, ProbDecay’}) more precisely
describing the underlying “candidate-ICV” associations, which permits further
statistical analysis and classification, converting from binary detections. Signif-
icant performance improvement is demonstrated on ICV-relevant false positive
reduction rates in CT Colonography, compared with previous work [4,16, 3],
without sacrificing polyp detection sensitivity.
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