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Abstract. The cortical surface of the human brain is composed of folds
that are juxtaposed alongside one another. Several methods have been
proposed to study the shape of these folds, e.g., by first segmenting
them on the cortical surface or by analysis via a continuous deformation
of a common template. A major disadvantage of these methods is that,
while they can localize shape differences, they cannot easily identify the
directions in which they occur. The type of deformation that causes a fold
to change in length is quite different from that which causes it to change
in width. Furthermore, these two deformations may have a completely
different biological interpretation. In this article we propose a method to
analyze such deformations using directional filters locally adapted to the
geometry of the folding pattern. Motivated by the texture flow literature
in computer vision we recover flow fields that maintain a fixed angle with
the orientation of folds, over a significant spatial extent. We then trace
the flow fields to determine which correspond to the shape changes that
are the most salient. Using the OASIS database, we demonstrate that
in addition to known regions of atrophy, our method can find subtle but
statistically significant shape deformations.

1 Introduction

The human cortical surface is composed of a set of folds that run alongside one
another to form an undulating pattern of crests and troughs. The shape of this
folding pattern evolves during the normal cycle of human brain development un-
der the effect of aging or the presence of diseases or cognitive deficits. A popular
method to capture shape differences is to view brain development as a continuous
deformation of a common template [1-3]. The continuous deformation between
the common template and individual cortical surfaces is typically constrained
to be a diffeomorphism and is obtained using surface registration techniques.
Deformation statistics are then used to find regions of significant tissue growth
or atrophy. Such statistics can determine, for example, if the overall area of a
particular region is larger in one group compared with another.
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In addition to diffeomorphism based statistics, which capture local changes
in shape, regularization filters such as the isotropic diffusion kernel on surfaces
[4,5], can yield a more global measure of shape differences. However, anatom-
ical structures in the human brain are typically not isotropic and nor are the
changes they induce on the cortical surface as they deform. As an example Fig.
1 illustrates two distinct deformations of a folding pattern, represented by a set
of parallel curves. In the context of cortical shape analysis it is therefore bene-
ficial to analyze differences using filters that are tuned to specific orientations.
A neuroscientist can then examine whether an observed shape difference in a
group follows a particular direction relative to fold orientation.
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(a) (b)
Fig. 1. Fig. 1(b) shows two deformations of the folding pattern in Fig. 1(a). On
Fig. 1(b), a deformation parallel to a fold increases its length, and perpendicular
to folds decreases the spacing between folds.

In this paper we abstract the shape of cortical folds as a collection of juxta-
posed curves that locally have similar orientations. We then design shape filters
which maintain a constant angle with neighboring folds. For example, a partic-
ular shape filter can be designed to be sensitive to a deformation parallel to fold
orientation (an angle of 0 degrees), while another can be sensitive to a deforma-
tion that is perpendicular. This permits an analysis which is relative to cortical
fold orientation. The challenge here is the estimation of the curvature to apply
so that each filter maintains this constant angle.

To illustrate the computation of curvature consider the fingerprint example
of Fig. 2(a), which is a pattern formed of juxtaposed intensity ridges similar
to the folds of the cerebral cortex. The output of a directional ridge detector
applied to the slice in blue is shown in Fig. 2(b), as an intensity function of
angle (#) versus position z;. It is evident that this output aggregates along a
a continuous curve (or submanifold), dubbled a texture flow in the work of [6].
When the exact location of the submanifold of maximum intensity in Fig. 2(b)
is known the submanifold can be characterized as a function of orientation in
space O(x1, z3). Here © gives the orientation of neighboring curves at a location
(z1,z2) of Fig. 2(a). The curvature of neighboring curves is expressed as the
gradient of @ as VO. On the other hand, the slope of the aggregated intensity
curve in Fig. 2(b) is also given by VO. Our aim in this paper is to determine the
slope of the texture flow, and then generate directional filters using the curvature
implied by this slope.

Inspired by the work of [6] we achieve a globally optimal assignment of cur-
vatures to the cortical surface by using a dictionary of smooth flow fields on the
surface. Each smooth flow field provides a hypothesis for the slope of the texture
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Fig. 2. A texture manifold depicts change in orientation of the neighboring
curves in space

flow on the cerebral cortex. We measure the goodness of fit between each flow
field and the actual texture manifold by using anisotropic filters. We then use re-
laxation labeling to achieve a globally optimum assignment of smooth flow fields
that match the cortical folds on the surface. Directional filters are then generated
by launching streamlines whose curvature is provided by this assignment.

Using the OASIS database [7] we test our framework to determine how the
shape of cortical folds in patients with cognitive impairment is affected. We
are able to identify folds that undergo significant deformation in the temporal
lobe, and also a stretch in length of the Cingulate gyrus below the Praecuneus
area and below the sup frontal cortex in the left hemisphere. These results are
also partially revealed by a statistical analysis based on surface area (see Fig. 5).
However, our results clearly indicate that the increase in surface area comes from
a stretch in sulcal length (see Fig. 6(b)). Whether this stretch in length is due to
structural connectivity loss in the white matter remains to be investigated, but
our findings are corroborated by a visual inspection of shape differences between
the two groups.

2 Estimating the Texture Manifold from Folds

We give a brief technical overview of the algorithm before detailing each step.
We refer again to Figure 2 to illustrate the method. Suppose that the output
of the ridge detection in Figure 2(a) can be expressed as an intensity function
I(x1,22,0) — R*. We formulate different hypotheses H; about the slope of the
texture flow. Suppose, for example, that one such hypothesis H; states that the
texture flow has a slope of (v1,v2). This means that if we resample I as

Ii(fl,iﬂz,@) :I($1,$2,9+’01$1 +’U2$2)a (1)

then, if this hypothesis is good, the intensity function should aggregates along
an “horizontal” plane (as shown in Fig. 2(c)). A simple way to measure if a
particular hypothesis is a good explanation for the observed texture flow is to
measure how horizontal it is using an anisotropic filter. Suppose that g, is
a Gaussian kernel where a expresses the width of the kernel along the spatial
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dimensions (z1,x2) and b expresses the width of the kernel along the orientation
dimension 6 as

(2)
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A good measure to determine if H; is a good hypothesis is

9 2
fi(z1,22,0) = (8911‘ * ga,b> (3)

where * is a convolution. The best hypothesis H; is the one that locally max-
imizes Equation 3. However, an optimal hypothesis should be a good fit for
several curves in a large neighborhood. We therefore use each hypothesis H; as
labels in the space formed by (x1, z2, ). We achieve a globally optimum labeling
H*(x1,x2,0) by selecting, at each point, the label which is both a good fit to
the intensity function I and is the most similar to the neighboring labels.

The ridge detector for surfaces is presented in Section 2.1, the algorithm to
generate flow hypotheses H; on surfaces is explained in Section 2.2 and the relax-
ation labeling approach to find an optimal assignment is explained in Section 2.3.
Once an optimal assignment is reached, it is possible to generate streamlines
that follow the geometry of the folding pattern, which can then be used to de-
tect shape changes. The algorithm to generate streamlines and use them to test
statistics on surfaces is explained in Section 2.4.

2.1 A Ridge Detector on Surfaces

In this paper, we used the principal curvature of the surface to detect ridges and
generate an intensity function I that describes the texture manifold. We present
the intensity function I that gave the best result, however the algorithm applies
for other choices of ridge detectors as well.

Let S be a smooth genus 0 surface and let k1, ka2, |k1] > |k2| be the principal
curvatures of & and uy,uy their associated vector directions. We associate a
fold with a line of low curvature in one direction with high curvature in the
perpendicular direction. Let S be the unit circle and let vy € S. We define the
probability to observe a fold at a given location u € S for a given orientation
using a symmetric Von Mises distribution as

I(a,0) = n(|r1(w)] = [ (w)])~ el (I=Ima Dl (4)

where n(]k1(u)| —|r2(u)]) is the normalization factor such that [, I(u,0)df = 1.
Equation 4 can be seen as the equivalent of a Gaussian distribution for angles,
with a maximum at up = +u; and where |x1]| — |k2| determines the spread
around the maximums.
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2.2 A Dictionary of Smooth Vector Fields to Model the Texture
Manifold

Unlike in images, it is not possible to hypothesize that the texture flow has a
slope given by v1,v2 and then resample the image using these slope parameters
as done in Equation 1. Instead, we use a base flow field h;. Let h;(u) be the
angle of the base flow field at a point u € §. We can use h; to resample I as

I;(u,0) = I(u,0 4+ h;(u)) . (5)

Then, we can apply a ridge detection to determine if h; is a good hypothesis
locally of the texture manifold.

The point of the algorithm is to generate several flow field h;, each with a
different curvature. Each flow field h; is generated by placing a source and a sink
on S and then generating a smooth (singularity-free) completion between them.
Specifically, let s; = (s;,1,8;,2) be a source and a sink, respectively. A vector field
is then completed on S/s; by finding the minimum of the following functional:

h; = argming- / curl(h*)? + div(h*)%dS. (6)
S/si

We note that h; is a unit vector field defined on S. An example for a h; is
given in Figure 3(a). On this figure, the vector field fans in the vicinity of the
singularity. To generate a full set of hypothesis h;,i = 1,..., N, we distribute
sources and sinks uniformly on the cortical surface such that every location is
offered a possibility to “fan” . An interesting property of our formulation in
Equation 5 is that h; can be seen as a baseline. The function I;(u,0) measures
the likelihood that folds fans away from the singularity used to generate h;, as
shown in Fig. 3(a), while the function I;(u,7/2) measures the likelihood that
folds rotate around the same singularities, as shown in Fig. 3(b).

The streamline tracing algorithm works as follows. Once it is determined
that h; is a locally optimal hypothesis an initial streamline is launched with an
angle of o with h; (for example o = 7/2). We then follow the flow given by the
function h; + « over the entire region for which h; is the optimal hypothesis.
Examples of streamlines generated by this process are shown in Figure 3(c).

2.3 Relaxation Labeling of Tangential and Normal Curvature

Till now we have described an algorithm to generate flow fields h; on a surface
S. In this section, we describe how to select, from h;, an optimal assignment that
best matches the flow field oberved on a surface. Let H*(u,0) € {hy,...,h,}.
We use relaxation labeling [8] to determine which of the possible flows h; offers
the best local fit to the fold lines of the cortical surface. Relaxation labeling is a
framework to find the statistical mode of a distribution given general constraints
to be satisfied. Let p;(S,6) be the probability that hypothesis h;(S, 8) has the
highest support at any given location. Here, we interpret h;(S,6) has the hy-
pothesis given by h; with a flow field with initial angle 6. The p;(S,0) forms a
probability space, such that p;(S,6) > 0 and Zivzl pi(S,0) =1 everywhere.
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Relaxation labeling updates the p; in order to maximize the local fit while
making sure that each label is well supported by its neighbors. In our case,
the optimal solution should (1) maximize the function f in Eq. 3 and (2) find
solutions that are supported over a large spatial region.

To determine the solutions that have a large support on the manifold, we
minimize the gradient of p; along both S and 6 as follows. Let p} be the resampled
value of p; along h; as

p;(u,0) = p;(u,0 +h;) . (7)

Then, we regularize the assignment p; by minimizing the spatial and orientation
gradient of p} as

Ureg(pi) = (IVspill*) o bt + M| Vopi* (8)

where oh; ! is used as a short-hand to mean that we should resample (||Vsp||?)
along the original 6 orientation.

A relaxation labeling framework is then used to maximize the following func-
tional

p* = argmazp 3 / Uney(pi) + Nopifs + NsllpilZAS A dE (9)
i SXS

where the ||p;||? term is added to make the relaxation labeling scheme converge
to an unambiguous labeling, i.e., p; = {0, 1}, as explained in [8].
Finally, there exist multiple methods to maximize Equation 9. One of the

simplest is to use gradient ascent [8], which for any p; gives

Ipi _
ot

(Aspl) ohy — A Agpi — Xo||V £y || + Aspi - (10)

2.4 Statistical Tests over Curve Length

We now estimate how curve length is affected by the presence of external factors.
First, we launch streamline flows in multiple directions at every location on
the surface. In practice we are not given trajectories, but rather an optimal
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assignment H* given by the probabilities p;. Let v(I) be a curve parametrized
by arc-length and t the tangent of ~(l). The curvature of v(I) (and hence its
trajectory) is determined from the assignment p; as

%t = zi:Pi(%t) [glhz] : (11)

In practice, we use a first order Euler method to trace streamlines on surfaces.
We take a small step in a given direction, then we compute the change in angle
that is prescribed by Equation 11 given the current position and the given angle.
Curve length is then measured explicitly as

_ 51
o= [ I (12)

Let L(y(u, #)) be the length of the curve started at u € S at a given orientation 6.
The reader may realize that we have previously defined ||t|| = 1 and thus L() =
2T. However, Equation 12 becomes useful when we use a shape diffeomorphism
onto a template space. Assume that there are n surfaces S;,1 = 1,...,n with a
set of diffeomorphisms that map these surfaces onto a template average S:

d)l : Sl — S (13)

Then, a random field can be defined by measuring the length of the curve v when
mapped using ¢; onto S; as L(¢;(v(u,d))). We then assume that the logarithm
of curve length follows a Gaussian distribution, thus allowing us to define a
Gaussian random field on S x S. Some regularization and random field theory is
then used to correct for multiple comparisons (see [9]).

3 Results

To present result, we first illustrate the algorithm by generating curves using
a flow field h;. We use a template surface and then generate a full estimate of
the curvature of the texture manifold using Equation 11. Several streamlines are
launched in the direction of sulcal lines, as shown in Fig. 4. Observe that these
streamlines bend and fan to follow the folds, qualitatively demonstrating the
accuracy of the recovered curvature field.

We used the OASIS database [7] to determine if our method could find
curves whose length is significantly correlated with the presence of mild cog-
nitive impairment in Alzheimer’s disease (AD). The OASIS database consists of
97 healthy subjects and 92 subjects (aged 60 and above) affected with mild and
very-mild dementia. We used the extraction pipeline of [3], which produces one
mid-surface representation of the gray-matter cortical sheet, and obtained map-
pings ¢; for each surface onto a common template average. Once this mapping
was found, we computed the average surface of the entire population and used
this average surface to compute curvature estimates using Equation 11.
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Fig. 4. Examples of streamlines of length 8 cm launched in directions that are
tangent to sulcal lines. The streamlines bend and fan to follow the fold patterns.
There are multiple gyrii fanning away in the vicinity of the blue lines.

The lengths of the computed curves were then tested to see if any signifi-
cant correlations could be found with the presence of mild cognitive impairment
in the OASIS database. The results are shown in Figure 6. The white stream-
lines indicate a significant dilation while the green streamlines show a significant
contraction. These results show that the main shape differences are both per-
pendicular and parallel to the fold direction. The contraction is in the temporal
lobe, which is known to be affected with the presence of Alzheimer’s disease. The
dilation in the temporal lobe is probably due to atrophy of the hippocampus.

The most significant result is that our method is able to identify a stretching
in length of the Cingulate gyrus below Praecuneus area and the area below the
sup frontal cortex in the left hemisphere. We also performed a statistical test
on the surface area [10] and these results are shown in Fig. 5. Whereas this test
detects the same region (below the Cingulate gyrus) it does not reveal if the
larger area comes from a wider or a longer sulcus.

Another interesting aspect of our method is that it integrates deformation
along a very narrow streamline, permitting the use of an anisotropic kernel for
regularization. Thus, the results using surface area were not significant in the
region below the Cingulate cortex after correction for multiple comparison using
Random Field correction [9]. However, the use of anisotropic filters produced
significant results in both the temporal lobe and the Cingulate cortex, as shown
in Fig. 6. The threshold for significance are [t| > 4.25 using Random Field
Theory and |t| > 4.31 using a permutation test with 50000 permutations. The
peak values of the three regions shown in Fig. 6 were above the permutation
test threshold and the p values reported in the caption of Figure 6 are computed
using Random Field correction [9].

Overall these results show that it is possible using directional filters to gain
an insight into the process that leads to brain deformations. Thus, wether the
stretch in length is due to structural connectivity loss in the white matter still
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Fig. 5. Comparisons of the surface area of patients with mild cognitive impair-
ment (MCI) and healthy subjects. A statistical t-Test (indicated by the colorbar)
shows that the region below the Cingulate cortex has a larger surface area in the
group with MCI. However, the t-Map does not reveal whether the larger area
comes from a wider or a longer sulcus.

(a) Saggital cut of the left hemisphere. The (b) Bottom view
t-Test shows that the larger area in Fig. 5

is due to a longer Cingulate gyrus in the

group with MCIL.

Fig. 6. Positive values shows significant dilation in the AD group. White stream-
lines show a significant dilation of the curve length (p < 0.0015 on top of the
hyppocampal gyrus and p < 0.01 on the cingulate gyrus) and green streamlines
in the temporal lobe show a significant contraction (p < 0.0007). Color indicates
the maximum in absolute value of the ¢-test over all possible orientations.



10

Maxime Boucher, Alan Evans, and Kaleem Siddiqi

needs to be investigated, but our findings are corroborated by a visual inspection
of shape differences.

4

Conclusion

We have described a method to perform a dense statistical analysis of the cere-
bral cortex using curve-based morphometry. Our method departs from other
statistical methods, e.g., those based on shape diffeomorphisms. We define a
manifold of curves on the cerebral cortex and then use statistics on curve length
to examine shape changes. We obtain novel results concerning the nature of
changes in cortical fold patterns in subjects with mild cognitive impairment.
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