Skip to main content

Motion Artifact Reduction in 4D Helical CT: Graph-Based Structure Alignment

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6533))

Abstract

Four dimensional CT (4D CT) provides a way to reduce positional uncertainties caused by respiratory motion. Due to the inconsistencies of patient’s breathing, images from different respiratory periods may be misaligned, thus the acquired 3D data may not accurately represent the anatomy. In this paper, we propose a method based on graph algorithms to reduce the magnitude of artifacts present in helical 4D CT images. The method strives to reduce the magnitude of artifacts directly from the reconstructed images. The experiments on simulated data showed that the proposed method reduced the landmarks distance errors from 2.7 mm to 1.5 mm, outperforming the registration methods by about 42%. For clinical 4D CT image data, the image quality was evaluated by the three medical experts and both of who identified much fewer artifacts from the resulting images by our method than from those by the commercial 4D CT software.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Low, D., Nystrom, M., Kalinin, E., et al.: A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Medical Physics 30, 1254–1263 (2003)

    Article  Google Scholar 

  2. Rietzel, E., Pan, T., Chen, G.: Four-dimensional computed tomography: Image formation and clinical protocol. Medical Physics 32, 974–989 (2005)

    Article  Google Scholar 

  3. Yamamoto, T., Langner, U., Loo, B.W., et al.: Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients. International Journal of Radiation Oncology 72, 1250–1258 (2008)

    Article  Google Scholar 

  4. Han, D., Byouth, J., Wu, X., et al.: Characterization and identification of spatial artifacts during 4D CT imaging. In: AAPM 2010 (2010)

    Google Scholar 

  5. Kwatra, V., Schödl, A., Essa, I., et al.: Graphcut textures: image and video synthesis using graph cuts. ACM Transactions on Graphics 22, 277–286 (2003)

    Article  Google Scholar 

  6. Jia, J., Tang, C.K.: Image stitching using structure deformation. PAMI 30, 617–631 (2008)

    Article  Google Scholar 

  7. Ehrhardt, J., Werner, R., Frenzel, T., Lu, W., Low, D., Handels, H.: Analysis of free breathing motion using artifact reduced 4D CT image data (2007)

    Google Scholar 

  8. McClelland, J., Blackall, J., Tarte, S., Chandler, A., Hughes, S., Ahmad, S., Landau, D., Hawkes, D.: A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy. Medical Physics 33, 3348 (2006)

    Article  Google Scholar 

  9. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images-a graph-theoretic approach. PAMI 28, 119–134 (2006)

    Article  Google Scholar 

  10. Song, Q., Wu, X., Liu, Y., Smith, M., Buatti, J., Sonka, M.: Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 827–835. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Han, D., Sonka, M., Bayouth, J., Wu, X.: Optimal multiple-seams search for image resizing with smoothness and shape prior. The Visual Computer 26, 749–759 (2010)

    Article  Google Scholar 

  12. Han, D., Wu, X., Sonka, M.: Optimal multiple surfaces searching for video/image resizing-a graph-theoretic approach. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1026–1033 (2009)

    Google Scholar 

  13. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23, 1222–1239 (2001)

    Article  Google Scholar 

  14. Pritch, Y., Kav-Venaki, E., Peleg, S.: Shift-map image editing. In: ICCV 2009, Kyoto (2009)

    Google Scholar 

  15. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Transactions on Graphics 22, 313–318 (2003)

    Article  Google Scholar 

  16. Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging 29 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, D., Bayouth, J., Bhatia, S., Sonka, M., Wu, X. (2011). Motion Artifact Reduction in 4D Helical CT: Graph-Based Structure Alignment. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2010. Lecture Notes in Computer Science, vol 6533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18421-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18421-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18420-8

  • Online ISBN: 978-3-642-18421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics