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Vagueness as Probabilistic Linguistic Knowledge

Daniel Lassiter

New York University

To appear in R. Nouwen, U. Sauerland, H.-C. Schmitz and R. van Rooij eds.,
Vagueness in Communication, Springer.

Abstract. Consideration of the metalinguistic effects of utterances involv-
ing vague terms has led Barker [1] to treat vagueness using a modified Stal-
nakerian model of assertion. I present a sorites-like puzzle for factual beliefs
in the standard Stalnakerian model [28] and show that it can be resolved
by enriching the model to make use of probabilistic belief spaces. An anal-
ogous problem arises for metalinguistic information in Barker’s model, and
I suggest that a similar enrichment is needed here as well. The result is
a probabilistic theory of linguistic representation that retains a classical
metalanguage but avoids the undesirable divorce between meaning and use
inherent in the epistemic theory [34]. I also show that the probabilistic ap-
proach provides a plausible account of the sorites paradox and higher-order
vagueness and that it fares well empirically and conceptually in comparison
to leading competitors.

Keywords: Vagueness, probability, lexical representation, higher-order vague-
ness

1 Introduction

One grain of sand is clearly not a heap. It seems plausible that, if you have something
that is not a heap and you add one grain of sand to it, you still do not have a heap.
But from these two premises it follows that no amount of sand can constitute a
heap. That is, the following is a valid argument:

(1) Sorites Paradox
a. One grain of sand is not a heap.
b. If you add one grain of sand to something that is not a heap, then

you still will not have a heap.
c. ∴ No pile of sand, no matter how large, is a heap.

Slightly more formally, taking Sn to mean “an aggregation of n grains of sand”:

(2) a. ¬(heap(S1 ))
b. ∀n[¬heap(Sn)→ ¬heap(Sn+1 )]
c. ∴ ∀n[¬heap(Sn)]

In classical logic, the inductive premise (2b) is equivalent to a denial that there is
any number n such that n grains of sand do not constitute a heap, but n+ 1 grains
do. That is,

(3) ¬∃n[¬heap(Sn) ∧ heap(Sn+1 )]

The problem of the sorites is that both variants of the inductive premise, (2b)
and (3), are intuitively plausible, but the conclusion is not. We know that the first
premise is true (one grain is not a heap), and that the conclusion is false (heaps of
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sand do exist). It follows that the inductive premise is false. But it is very difficult
to determine precisely where the inductive premise goes wrong.

In addition to the problem of the sorites, the existence of vagueness presents a
serious challenge to the foundations of formal semantics. One way to identify this
problem is in Grim’s [8] claim that a precise theory of vague terms is impossible:

Any successful account of vagueness will have to incorporate vagueness in
one way or another; at the core of the Supervaluational approach, for exam-
ple, lies the vagueness of ‘acceptable precisifications’. Any hope for a fully
precise account of vagueness is doomed.

A basic assumption of formal semantics is that natural language meaning and in-
ference can be modeled in a mathematically precise fashion. This assumption is
embodied directly in the principle of compositionality: the meaning of an ex-
pression is built up from the meaning of its parts and the way that they are put
together. But if if the basic objects of computation are not themselves precise, the
idea that we can compute the meaning of a sentence (or even a discourse) from
the meanings of words is problematic from the start. Since many, perhaps most,
expressions of natural language are vague, formal semantics is in deep trouble if
Grim is right.

The best-known theory of vagueness that is capable of avoiding Grim’s prob-
lem is the epistemic theory [34]. According to this theory, meanings are precise,
and the phenomena of vagueness are the result of humans’ imperfect knowledge of
the meanings of words. If this is right, formal semantics can carry along merrily.
However, a common objection to the epistemic theory is that it requires an im-
plausible divorce between meaning and humans’ knowledge and use of language. In
Williamson’s own words, “[a]lthough meaning may supervene on use, there is no al-
gorithm for calculating the former from the latter”; again, “meaning may supervene
on use in an unsurveyably chaotic way” [35, pp.206,209] . That is, there is no hint
in the epistemic theory as to where meanings do come from. To those who view the
study of language as part of (or at least closely connected to) the study of human
psychology and sociology, this consequence of epistemicism tends to come across as
a reductio ad absurdum of the theory.

Despite these criticisms, I think that the epistemic theory contains a crucial in-
sight by treating vagueness as a result of imprecise knowledge of language.
That is, epistemicists locate vagueness not in the semantic theory proper, but in
the relation between language users and the semantic theory. Further, since (as
Williamson [34] emphasizes) uncertainty is a very general fact of the human condi-
tion, the epistemic theory has the advantage of parsimony: it allows us to reduce
vagueness in language to independently motivated features of human knowledge and
belief.

The theory of vagueness presented in this paper incorporates this aspect of the
epistemic theory while also allowing for a close connection between meaning and
use. It can be seen as a development of David Lewis’ suggestion that “languages
themselves are free of vagueness but ... the linguistic conventions of a population, or
the linguistic habits of a person, select not a point but a fuzzy region in the space
of precise languages” [20]. On this approach, like the epistemic theory, vagueness
resides in the relation between humans and precise languages. However, it is not
necessary to endorse the epistemicist’s claim that there is a single precise language
that is being spoken – “English” or “Swahili”, say, or some ultra-precise variant of
these. Rather, there is always a range of languages that are contenders for being the
language of conversation, and the epistemic problem is to use prior knowledge and
context to select the most plausible candidates for being the language of conversa-
tion (see also [19, 3]). This approach does not in itself rule out the epistemic theory;
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but, I will suggest, it makes it possible to claim the advantages of epistemicism
without also taking on its less palatable consequences.

The theory developed here, like Lewis’ and Williamson’s theories, holds that
vagueness is not a special semantic phenomenon, but a consequence of the nature
of linguistic knowledge and general principles of language use. The precise devel-
opment of this claim, however, will not be in terms of “fuzzy” regions but, like
Edgington [4], in terms of probabilistic linguistic representations. There is inde-
pendent reason to believe that human knowledge is represented probabilistically. I
argue that this perspective leads naturally to a model of interpretation as an inter-
preter mapping words and other utterance-types to a probability distribution over
precise resolutions. This approach allows us to extend existing models of probabilis-
tic knowledge representation and reasoning to the interpretation and representation
of vague terms. In this way, we can explain how formal semantics is possible, and
show not only why the conclusion of the sorites paradox is false, but also why the
premises seem so compelling.

The essay is structured as follows. Section 2 describes the set-theoretic model
of assertion and belief update and arguments from Stalnaker [28] and Barker [1]
that this model also encompasses beliefs and assertions about language, including
vague language. Section 3 argues that a probabilistic enrichment of this model is
needed to account for partial belief and to avoid a sorites-like paradox for factual
beliefs involving continuous sample spaces. A similar argument suggests that lin-
guistic representations are also probabilistic. I explicate this by offering a possible-
languages model of linguistic knowledge akin to the familiar possible-worlds model,
and show how this leads naturally to a picture of lexical representations as probabil-
ity distributions over model-theoretic objects. Section 4 shows how the probabilistic
approach resolves the sorites paradox, focusing on the differences between model-
theoretic and probabilistic variants of the inductive premise and why they come
apart. Section 5 points out some important features of the model relating to assert-
ibility, negation, borderline cases, and common ground. In section 6 I argue compare
the theory to alternative accounts, showing that it is preferable in terms of empiri-
cal coverage and the intuitive correctness of its predictions, and I answer objections
from Stephen Schiffer and Nicholas Smith, who have claimed that partial beliefs
about the applicability of vague terms do not behave like subjective probabilities.
Finally, section 7 is a brief treatment of higher-order vagueness, showing that this
perspective can make sense the dual role of definitely as an epistemic modal and a
metalinguistic modifier.

2 Metalinguistic Assertion and Linguistic Knowledge

2.1 Assertion and Metalinguistic Assertion

In Stalnaker’s model, the role of an assertion is to eliminate certain possibilities
from the common ground, which is construed as a set of worlds considered by
the conversational participants as live possibilities for how the actual world might
be [28]. Suppose you don’t know whether it is raining outside. If a reliable source
tells you, “It is raining”, you will normally update your beliefs so that you no longer
consider worlds in which it is not raining to be candidates for being the actual world.
Taking propositions and common grounds to be sets of worlds, Stalnaker suggests
treating the update operation as intersection: that is, to update the common ground
with the information that p, simply intersect the current common ground with the
p-worlds. Private belief update is treated similarly: if a person comes to believe
that p, then their new belief state is simply the old belief state intersected with the
proposition that p.
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Stalnaker [28] also notes that assertions do not only convey information about
the non-linguistic world (states of weather and the like). Rather, utterances may
give information about how other utterances are to be interpreted. For example,
suppose someone asks you, “What is an optometrist?” In this context, the reply
“An optometrist is an eye doctor” serves to inform the linguistically uncertain
interlocutor that, in the current language of conversation, the sequence of sounds
“optometrist” is not an appropriate way to communicate any concept other than
eye doctor. Importantly, “An optometrist is an eye doctor” gives no information
about the non-linguistic world, but rather functions as an instruction to interpret
a particular sequence of sounds in a certain way.

We might think that ignorance about technical vocabulary is a special case,
though: perhaps, in the general case, there is a single clear-cut “current language
of conversation”. Barker [1] and Stalnaker [31] argue that there is not: rather, there
are typically many languages which are viable candidates for being the language of
conversation, just as there are typically many worlds that are viable candidates for
being the actual world. Barker’s discussion focuses on vague adjectives like “tall”.
In Barker’s example, imagine that you arrive in a new town and you have no idea
about the typical heights of local inhabitants. You ask a local: “What counts as ‘tall’
around here?”, and the local responds: “See John over there? John is tall.” Even
if we have quite precise information about John’s height – say, we know that he is
5′11.4′′ – this utterance can be informative because it has the metalinguistic effect
of narrowing down the range of possible interpretations of “tall”. If this utterance
is true, then the local meaning of “tall” must be such that John counts as tall; so
we can eliminate languages where John does not count as “tall” as candidates for
being the current language of conversation.

Barker’s technical implementation of this effect is very close to the original Stal-
nakerian model (especially [30]). He assumes that in each world in the common
ground there is a unique precise language that is the current language of conversa-
tion. Metalinguistic effects are modeled by the same update procedure as ordinary
assertions (in Barker’s implementation, using the apparatus of Dynamic Seman-
tics). So, for example, before the local’s utterance, there were worlds in the common
ground where the standard for counting as “tall” in the current conversation was
6′0′′, so that people who are 5′11.4′′ do not count as “tall”. After this utterance,
these worlds are eliminated.

2.2 A Model for Metalinguistic Belief and Assertion

Barker’s model of metalinguistic assertion has one feature worth flagging here. Since
each world is associated with a unique precise current language of conversation, the
model effectively assumes an epistemic theory of vagueness: if we were able to discern
precisely what world we are in, we would also be able to fix the precise interpre-
tation of all vague terms. I have already indicated my discomfort with this idea: I
think it extremely implausible that human linguistic practices are somehow able to
determine (and without speakers’ knowledge) a single precise language that is being
spoken in a given conversation. But it is not difficult to construct an alternative
version of Barker’s model that does not have this commitment.

Suppose that there is a domain of worlds W and a domain of possible languages
L, where each l ∈ L is a partial function from utterance-types to model-theoretic
objects. Each conversational participant x ∈ X has a belief-set Bx ⊆W ×L – that
is, beliefs are sets of world-language pairs. For any x, x’s factual belief-set is

{w | ∃l ∈ L : (w, l) ∈ Bx},

and her metalinguistic belief-set is given by

{l | ∃w ∈W : (w, l) ∈ Bx}.
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Define the factual common ground, more or less standardly, as the intersection of
the conversational participants’ factual beliefs (and so the union of their belief-sets):⋃

x∈X

{w | ∃l ∈ L : (w, l) ∈ Bx}

The linguistic common ground will then be the intersection of the conversational
participants’ metalinguistic beliefs.⋃

x∈X

{l | ∃w ∈W : (w, l) ∈ Bx} .

The reason for separating the two components of Bx is that they serve very
different roles in conversation. The goal of inquiry is to exchange information in an
effort to narrow down the domain of possible worlds [29]. The purpose of gaining
metalinguistic knowledge, I take it, is to enable people to conduct inquiry more
efficiently: the more we know about each others’ linguistic habits, the smaller the
linguistic common ground, and the more effectively non-metalinguistic assertions
will be able to narrow down the factual common ground. On this model there is
no “fact of the matter” about which language is being spoken that goes beyond
the attempt to coordinate on a set of languages as small as possible, in order for
conversational participants to exchange information as efficiently as possible. In
other worlds, the current languages of conversation are just the languages in the
linguistic common ground. There is no need for reference to some extrinsically given
set of facts about which language is being spoken: choosing a (set of) common
language(s) in a given conversation is a coordination game in the sense of Schelling
[25] and Lewis [19].

Within this model we can treat the various types of information gain as follows.
Call the informational effect of an assertion (or other event) purely factual if the
same languages are considered possible in the prior state S and the posterior state
S′: that is, if the factual common ground in S′ is a proper subset of the factual
common ground in S, but the linguistic common grounds at S and S′ are equal.
The effect of an assertion is purely metalinguistic if the linguistic common ground in
S′ is a proper subset of the linguistic common ground in S, but the factual common
grounds are equal. The effect of an assertion is mixed if it is neither purely factual
nor purely metalinguistic, i.e. if both worlds and languages are eliminated from the
common ground.1

I should add that there is no reason in principle why the proposal I will develop
could not be treated as an implementation of the epistemic theory of vagueness. To
construct such a variant, simply ignore the contents of this subsection and treat the
set-theoretic model as Barker gives it as the base of the probabilistic enrichment
I will develop. However, it should be clear that the apparent connection with the
epistemic theory is not a deep commitment of the model developed here, but simply
one possible interpretation.

1 An example of a mixed assertion is if someone says “John is tall” in a context in which
we are unsure both about John’s height and about the interpretation of “tall”. Then,
for any height h such that we are sure that John is at least as tall as h, we can eliminate
languages from the common ground where the standard for “tall” is greater than h.
Likewise, if we are sure that the standard is at least h′, then we can eliminate worlds in
which John’s height is less than h′. In the probabilistic model to be developed, Bayesian
update for mixed assertions is defined in similar fashion. This aspect is important be-
cause beliefs about the world and beliefs about language obviously do interact: we would
not want a theory that separates them completely. See section 5.1 for the probabilistic
version.
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3 Probabilistic Semantic Representation

3.1 Toward a Probabilistic Model: Factual Information

The trouble with the model we have just outlined – both in the Stalnaker-Barker
form and in the modified form just presented – is that it is not sufficiently rich to deal
with cases where information change does not involve eliminating possibilities. You
think you saw rain just now, but you consider it possible that you were mistaken.
You may then increase your degree of belief in the proposition that it is raining
without eliminating any worlds from the set of worlds considered possible. But
if (factual) belief update is intersective, this option is excluded: you must either
eliminate the worlds where it is not raining or leave them in. Intersection is not an
appropriate model for this change in information, then.

Similarly, the effect of assertions is not always intersective. Consider the tes-
timony of a witness of unknown reliability, who tells you “It is raining”. (I am
supposing that the meaning of this utterance is sufficiently clear that we do not
need to worry about metalinguistic effects for the moment.) You might wish to in-
crease your degree of belief in the proposition that it is raining, without eliminating
the possibility that it is not – i.e., the possibility that the witness is misinformed or
lying. Again, the simple intersective model of belief update is inadequate, both to
model the update and to deal with degrees of belief.

An obvious way to deal with problems of this type is to represent partial belief
using an enriched model such as subjective probability. On this approach, after
looking out the window you should update your beliefs about the likelihood of
rain using Bayes’ rule, according to the estimated likelihood that the evidence of
your senses really did indicate rain (and not, say, a sprinkler outside the window).
Similarly, in the case of the unreliable witness, your belief in rain after the witness’
assertion “It is raining” will depend on your estimate of the probability that the
witness is a truth-teller.

A second problem with the set-theoretic model of belief is an analogue of the
sorites paradox with beliefs involving continuous sample spaces. There is a real
number r such that the top of the Eiffel Tower is r kilometers away from the top of
Big Ben. I know for sure that r is not less than 100, and that it is not more than 1000,
but I certainly do not know what r is with any precision. However, my knowledge is
even more imprecise than this characterization may suggest. Intuitively, (4) holds:

(4) There is no real number r′ such that my belief state allows for the possibility
that Big Ben and the Eiffel Tower are r′ kilometers apart, but excludes the
possibility that they are r′ ± ε kilometers apart for sufficiently small ε.

Going through a forced march – “Are Big Ben and the Eiffel Tower 400 kilome-
ters apart? Are they 400.01 kilometers apart?” etc. – there is no point at which I
would be comfortable switching from “maybe” to “no” in a single increment of 0.01
kilometers.

In the set-theoretic model, (4) entails that there is no sharp cut-off in which
worlds are considered possible: for any r′, if there are r′-worlds in the belief-set,
then there are r′′-worlds in the belief-set for any r′′ ∈ [r′ − ε, r′ + ε]. It follows
that my belief-set contains worlds where r is any number you like, including, e.g.,
1 kilometer and 1,000,000 kilometers. This contradicts the assumption that I know
that r is not less than 100 or more than 1000. The paradox, in effect, is that imprecise
knowledge is no knowledge at all.

Again, an obvious approach to this problem – though not the only one, to be
sure – is to treat factual beliefs as probability distributions over (appropriate subsets
of) W . The reason that (4) holds, on this model, is that r′ is a continuous random
variable, so that there is are no sharp cut-offs in the likelihood that r = r′. Suppose,
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for example, that prob(r = r′) is normally distributed with µ = 400, σ = 100. Then
it is much more likely that r is in [390, 400] than that it is in [190, 200], which is
in turn much more likely than that r is in [10, 20]. Incidentally, since the latter
has an extremely small but non-zero probability, this example technically requires a
semantics for the adjective “possible” that does not equate possibility with non-zero
probability. For relevant discussion see [32, 37, 38, 18].

3.2 Toward a Probabilistic Model: Metalinguistic Information

Factual beliefs involving continuous sample spaces create problems for the set-
theoretic model of belief that are uncannily similar to the sorites paradox. This
is not, I will suggest, accidental: standard examples of vagueness involve predicates
ranging over sample spaces that are either continuous (e.g. “tall”) or involve very
small increments (e.g. “heap”). I will suggest that the solution to the problem of
vagueness is effectively the same as the solution to the problem in (4) suggested in
the previous section.

For an example of metalinguistic belief involving a continuous sample space, we
can stick with our stock example “tall”. Consider Barker’s scenario again. We know
exactly how tall John is – he is 5′11.4′′ – and we know that he counts as “tall”
in the local community. Barker’s approach to metalinguistic update encounters a
problem similar to (4), given in (5):

(5) In the context just described, there is no real number r′ such that my belief
state allows for the possibility that “tall” means “having height at least r′

inches”, but excludes the possibility that “tall” means “having height at
least r′ − ε inches” for sufficiently small ε.

(We use r′ − ε rather than r′ ± ε here because there clearly is an r′ in the linguistic
common ground such that we can be sure that “tall” does not mean “having height
greater than r′ + ε inches”: just set r′ = 5′11.4′′.)

(5) is of course a variant of the inductive premise of the sorites paradox, tailored
to the set-theoretic model of metalinguistic belief. It strikes me as highly plausible:
surely there is no point, as we move from 5′11.4′′ down to 1′′ at 0.01-inch increments,
where I could comfortably agree that some precise interpretation of “tall” is possible,
but the next interpretation is totally impossible. Add a few plausible premises and
we have a full-blown sorites paradox:

(6) a. My belief state entails that someone who is 6′9′′ tall counts as “tall” in
any language in the common ground.

b. My belief state entails that someone who is 1 foot tall does not count
as “tall” in any language in the common ground.

(6a) and (6b) are mutually incompatible with (5). In other words, if (5) is correct,
then my belief state must admit interpretations of “tall” where the standard is
below 5′11.4′′, even ones where “tall” means “having a height of 1 inch or more”.

This consequence is surely unpalatable: I am quite confident, for example, that
someone who is one foot tall does not count as “tall” in any English-speaking
community. Within this approach, our options are to reject (5) or to reject (6b).
Rejecting (6b) seems to be out; but rejecting (5) would mean that there is a sharp
cut-off in my metalinguistic beliefs regarding “tall” which I am unaware of (and
presumably have no introspective access to). This response is no more plausible, I
think, than it would be in the case of factual uncertainty.

The solution in this case should be, I think, just as in the factual case: enrich
the belief space using probability measures or something with an equivalent effect.
Let a probabilistic belief space be a triple 〈W,L, µ〉, where W is a set of possible
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worlds, L a set of possible languages, and µ : (W × L) → [0, 1] a function from
world-language pairs to probabilities obeying the usual axioms. If we like, we can
define separate probability measures for languages and worlds:

µW (w′) =
def

∑
l∈L

[µ(w′, l)]

– the total probability of a world w is just the sum probability of all world-language
pairs in which w occurs – and likewise

µL(l′) =
def

∑
w∈W

[µ(w, l′)]

– the probability simpliciter of a language l is the sum probability of all world-
language pairs in which l occurs.

I will make use of these abbreviations in what follows, but it is important to
keep in mind that languages and worlds do not, in general, vary independently:
facts about the world impose serious constraints on what languages are plausible
candidates for receiving significant probability mass. To pick an obvious case, if
we are talking about cats, no world-language pair (w′, l′) will receive significant
probability if l′ does not yield a value for the sequence of sounds “cat”, or if it
assigns “cat” some value that is totally unrelated to cats. So the choice of language
is obviously constrained by facts about the world, in this case facts about what
noises are being made in the current conversation.

Less trivially, if someone says “Mary is tall” in a context where we are uncertain
both about Mary’s height and about the interpretation of “tall”, the probabilities of
worlds and languages will certainly not be affected independently by this utterance.
In particular, if we are certain (i.e., probability 1) that Mary counts as “tall” in the
local context and that Mary is at least h inches tall, then we can assign probability
0 to any world-language pair (w, l) in which the interpretation of “tall” in l does
not include people of height h. If the probability is small but non-zero that Mary
is at least h′ inches tall, then we should adjust our probability for languages where
“tall” receives a value of at most h′ inches to some appropriately small value. (I
don’t want to get involved in spelling out the complete update procedure here, but
it is a straightforward application of Bayes’ rule.) In any case, the idea is that the
choice of world will constrain, but not fully determine, the probabilities that can
appropriately be assigned to world-language pairs.

The explanation of the modified sorites paradox for metalinguistic belief (5)
within this approach will be essentially the same as the explanation of (4) given
above: the value of tall is a continuous random variable. This interpretation of (5)
says that there is no point at which the probability that “tall” means “having height
at least r inches” is substantially greater than the probability that “tall” means
“having height at least r − ε inches” for small ε. Nevertheless, the probability that
“tall” means “having height of at least r′ inches” approaches zero as r′ gets smaller.
The probability that “tall” applies to people who are 1 foot tall, for example, is
effectively zero.

3.3 Lexical Probabilities

The notion of a possible language, though useful for our purposes, suffers from
much the same psychological implausibility as the notion of a possible world: just
as people do not reason about factual issues using an infinite set of discrete possi-
bilities, they surely do not reason metalinguistically using an infinite set of discrete
languages. The solution, in the factual case, is to think of beliefs as probability dis-
tributions over propositions. Probabilities of factual events can of course be defined
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equivalently in either way. Similarly, we can simplify our agents’ task by treating
metalinguistic belief in terms of probability distributions over precise resolutions of
individual words, and relate to an equivalent formulation in terms of the probability
function µ (and its derivative µL).

An agent’s belief-set determines the representation of a word or utterance-type
in the following way. As usual, De is the set of possible objects whose members are
o1 ,o2 , .... For simplicity’s sake we will restrict attention to model-theoretic objects
of type e and 〈e, t〉, although the definition could easily be expanded to account for
objects of arbitrary type.2

Define the lexical probability function LP u,A of a word u according to an agent
A as a function fA : De → [0, 1], subject to the condition in (7):

(7) fA(u(om)) =
∑
l∈L

[µL(l) : l(u)(om) = True]

(µL should of course be understood as relativized to A’s belief state here. Note also
that (7) is only appropriate for finite L; the infinite case is not significantly different
except that a bit of calculus is needed.)

In words, (7) says that the probability according to A that the word u ap-
plies to the object om is equal to the sum probability of all possible languages
such that the value of u in that language, applied to om , yields the value True.
Since no ambiguity arises, I will use “prob” as a probability function for both
languages and words/utterance-types from now on. The reader should understand
“probA(u(om)) = d” as meaning

fA(u(om)) = d

or, equivalently, as ∑
l∈L

[µL(l) : l(u)(om) = True] = d

As an example, suppose that the lexical representation of tall, LRtall,A, for
a particular speaker A has the following form. A considers possible these reso-
lutions of tall : 5′6′′, 5′7′′, ... 6′5′′ (spaced at 1′′ to simplify the model; the ex-
tension to continuous probability spaces is straightforward). Letting italics repre-
sent utterance-types as above and boldface indicate model-theoretic objects, we’ll
call these tall1 , tall2 , ...tall12 . Each resolution of tall denotes (the characteristic
function of) a set of individuals who satisfy certain conditions. So, for example,
Jtall1 K = λx.x’s height ≥ 5′6′′; Jtall2 K = λx.x’s height ≥ 5′7′′; and so forth. The
probability distribution in the bottom row of Table 1 assigns a probability in the
range [0, 1] to each resolution of tall. For example, the third column of Table 1
should be read: “The probability that the denotation of tall is ‘λx.x’s height≥ 5′8′′’
is 0.03”.
2 I am supposing that gradable adjectives have semantic type 〈e, t〉 (cf. [17, 1]), though

nothing hinges crucially on this assumption. If gradable adjectives turn out to be of
type 〈d, et〉 [33, 10] or type 〈e, d〉 [14–16], they will need special treatment. For example,
von Stechow [33] and Kennedy [15] convert gradable adjectives in the positive form into
properties of individuals using a silent degree morpheme. The value of this silent mor-
pheme is given by a contextual parameter or something with equivalent effect, and is
generally quite underdetermined. All of the arguments given here for the probabilistic
model apply equally to the contextual determination of a value for the silent positive
morpheme, I think, and we could easily extend the current approach to include prob-
ability distribution over contexts – something that is probably needed anyway. And,
however gradable adjectives are best handled, the model described here is needed for
vague terms like heap and Mount Everest that are not gradable adjectives, and do not
show any sign of reference to degrees in their semantics.
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Name tall1 tall2 tall3 tall4 tall5 tall6 tall7 tall8 tall9 tall10 tall11 tall12

Threshold 5′6′′ 5′7′′ 5′8′′ 5′9′′ 5′10′′ 5′11′′ 6′0′′ 6′1′′ 6′2′′ 6′3′′ 6′4′′ 6′5′′

probA

(tall = talln) 0 .01 .03 .09 .14 .23 .23 .14 .09 .03 .01 0

Table 1. Sample lexical probability function for tall.

As in (7), for any word u all of whose interpretations denote sets of individuals,
the probability that x is u is the sum of the probabilities of all interpretations of u of
which x is an element. In the case of scalar adjectives like tall it is a straightforward
matter to calculate the probability that an individual x is u, because all of the
available interpretations of tall in Table 1 are upward monotonic. That is, if an
individual x is a member of the set denoted by talln, and the height of an individual
y is greater than that of x, then y is also in the set denoted by talln.

Thus, for any height, the probability that an individual of that height will count
as tall is simply the sum probability of all thresholds of height less than or equal
to that height, i.e. the cumulative probability. To illustrate, consider 12 individu-
als in this height range, spaced at 1 inch, called x1 , x2 , ...x12 . Using Table 1, we
can calculate for each individual xn the probability that xn is tall as follows. For
example,

probA(tall(x5 )) =
5∑

i=1

prob(tall = talli) = 0 + .01 + .03 + .09 + .14 = .27.

Table 2 gives the values of tall(xn) according to (7) and the probability distribution
in Table 1 for a representative sample of individuals of various heights.

Individual x1 x2 x3 x4 x5 x6 x7 x8 x29 x10 x11 x12

Height 5′6′′ 5′7′′ 5′8′′ 5′9′′ 5′10′′ 5′11′′ 6′0′′ 6′1′′ 6′2′′ 6′3′′ 6′4′′ 6′5′′

probA(tall(xn)) 0 .01 .04 .13 .27 .5 .73 .87 .96 .99 1 1

Table 2. Cumulative probability distribution corresponding to Table (1).

As Table 2 suggests, the upward monotonicity of all resolutions of tall in Table 1
explains the intuitive fact that the probability of an individual xn being tall increases
gradually the greater xn ’s height is. Graphically, Table 2 yields the cumulative
distribution:

Since we are looking at increments of 1′′, this graph only approximates a smooth
curve. We can increase the resolution of Tables 1 and 2 by considering more inter-
mediate cases while maintaining the shape of the curve. The representation of tall
(for our agent A) is a function which yields the values considered here at intervals
of 1′′. In the limiting case in which we consider a dense scale of heights, the curve
will be smooth. Essentially, I am suggesting that the distinguishing characteris-
tic of vague predicates like tall is that their lexical representations are described
by continuous probability functions. Non-vague terms, then, will be those
whose representations are (in the relevant regions) given by discontinuous probabil-
ity functions.
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4 The Sorites Paradox

The original motivation for our discussion was the sorites paradox, which is restated,
substituting tall for heap, in (8). As above, x1 is 5′6′′, and x12 is 6′5′′. Again,
boldface indicates model-theoretic objects while italics indicate utterance-types.
The use of boldface tall in (8) makes explicit the implicit assumption in the original
statement of the sorites paradox that the words in question denote unique model-
theoretic objects.

(8) a. ¬tall(x1 )
b. ∀n[¬tall(xn)→ ¬tall(xn+1 )]
c. ∴ ∀n[¬tall(xn)]

Intuitively, premise (8a) is clearly true – someone who is 5′6′′ is not tall. But the
conclusion that no one is tall is clearly false. Our only hope is to deny (8b); but this
is strange, since this premise is intuitively very plausible.

Within the probabilistic theory of linguistic representation that I have sketched,
the paradox in (8) could be restated in two ways. Suppose first that we consider the
intended interpretation of tall as a model-theoretic object. Tall in itself does not
represent any object in the theory proposed here: a subscript is needed to indicate
which possible language talln is intended to belong to. So, if tall is assigned a value
in l34 , then l34 (tall) is written tall34. The paradox now appears as in (9):

(9) a. ¬tall34 (x1 )
b. ∀n[¬tall34 (xn)→ ¬tall34 (xn+1 )]
c. ∴ ∀n[¬tall34 (xn)]

But since possible languages are perfectly precise, the inductive premise is plainly
false: whatever l34 is, there must be some sharp boundary between the extension
of tall34 and that of ¬(tall34 ), and so the conclusion does not follow.

Suppose now we rewrite the paradox using words in place of model-theoretic
objects. Tall is a word, and it is interpreted by some possible language ln as a
semantic object talln . Crucially, tall is not in itself a model-theoretic object. If we
attempt to restate the paradox using tall in place of tall, we get (10).

(10) a. ¬tall(x1 )
b. ∀n[¬tall(xn)→ ¬tall(xn+1 )]
c. ∴ ∀n[¬tall(xn)]

None of the clauses in (10) are well-formed within the theory I have introduced. I
have occasionally spoken of “the probability that u applies to o (according to A)”,
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but this was explicitly introduced as an abbreviatory convention. The bare claim
that xn is tall is meaningless: we can only say that tall applies to xn with some
probability d.

Suppose we rewrite the paradox using probabilities, as the present approach
demands. It is plausible within a probabilistic theory (though not quite right, as we
will see) to suppose that “xn is not tall” is expressed as “probA(tall(xn)) = 0”. If
we accept this, the restatement of the sorites paradox is:

(11) a. probA(tall(x1 )) = 0
b. ∀n[probA(tall(xn)) = 0→ probA(tall(xn+1 )) = 0]
c. ∴ ∀n[probA(tall(xn)) = 0]

(11) is logically valid, but premise (11b) is much less compelling than the original
inductive premise (8b) seemed to be. There is simply no reason to assume that, if
the probability that something is tall is 0, the probability that an adjacent item is
tall must also be 0 (rather than some small but non-zero amount).3

Much more plausible is the probabilistic version of the existential variant of the
inductive premise, “¬∃n[¬tall(xn) ∧ tall(xn+1 )]”. A reasonable translation is:

(12) ¬∃n[probA(tall(xn)) = 0 ∧ probA(tall(xn+1 )) = 1]

But (12) is not equivalent to (11b) in the current theory: denying that there is a
point at which the probability function jumps from 0 to 1 is not the same as denying
that it ever increases from 0. (12) is true of tall and, suitably modified, any other
vague predicate, but this creates no problem: it is, if anything, just a necessary
condition for a predicate’s being vague.

Delia Graff Fara has claimed that a convincing theory of the sorites, if it denies
the validity of the inductive premise, must answer three separate questions (slightly
modified from [5]).

1. The Semantic Question: If the inductive premise is not true, then must the
classical equivalent of its negation, the “sharp boundaries” claim, be true?

The “sharp boundaries” claim: ∃n[¬tall(xn) ∧ tall(xn+1 )]

(a) If the sharp boundaries claim is true, how is its truth compatible with the
fact that vague predicates have borderline cases? For the sharp boundaries
claim seems to deny just that.

(b) If the sharp boundaries claim is not true, then given that a classical equiv-
alent of its negation is not true either, what revision of classical logic and
semantics must be made to accommodate that fact?

3 An influential objection to supervaluational treatments of vagueness is that, even though
there is no sharp boundary between the positive extension and the negative extension
of a vague predicate, the sentence “There is a sharp boundary between the positive
extension and the negative extension of φ” is supertrue for all predicates φ, whether
or not they contain vague terms. Eytan Zweig points out that one could construct an
analogue to the supervaluationist’s problem for my theory: the sentence “there is an n
such that probA(u(xn)) = 0 and probA(u(xn+1 )) 6= 0” has probability 1 whenever, for
all ln such that µL(ln) 6= 0, ln(u) is defined. One possible approach is simply to say
that people do not have reliable intuitions about infinitesimal differences in probability,
so that the validity of this statement is not problematic. An alternative would be to
deny that probabilities every really reach 0 or 1 except for logical contradictions and
validities, respectively: so, for example, the probability that a 2-foot-tall person counts
as tall is infinitesimal, but not zero, and the probability that a nine-foot-tall person
is tall is extremely close, but not quite equal, to 1. See the following section for more
discussion of the second approach.
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2. The Epistemological Question: If “∀n[¬tall(xn) → ¬tall(xn+1 )]” is not
true, why are we unable to say which one (or more) of its instances is not true
– even when all the heights of the possible values of “xn” are known?

3. The Psychological Question: If the universal variant of the inductive premise
is not true, why were we so inclined to accept it in the first place? In other words,
what is it about vague predicates that makes them seem tolerant, and hence
boundaryless to us?

Let’s address these questions in turn.

1. The Semantic Question.
(a) If we replace tall in Fara’s formulation of the “sharp boundaries” claim by

a model-theoretic object acceptable in our system such as talln, the claim
is true. This is not problematic because our original intuition that the sharp
boundaries claim is false, and that the universal sorites premise is true, was
not an intuition about some model-theoretic object talln but an intuition
about the meaning of the word (utterance-type) tall.

(b) If we replace tall in Fara’s formulation of the “sharp boundaries” claim by
a word such as tall, making appropriate adjustments, the “sharp bound-
aries” claim is false. However, no revision of classical logic and semantics is
required to explain these facts; rather, the falsity of the sharp boundaries
claim follows from the fact that the word tall does not denote a unique ob-
ject, but denotes various objects with differing probabilities. The semantic
metalanguage is nevertheless classical.

2. The epistemological question. “∃n[¬tall(xn) ∧ tall(xn+1 )]” is not well-
formed in the present theory. If we substitute tallm , as in “∃n[¬tallm(xn) ∧
tallm(xn+1 )]” we can identify which n satisfies this formula given a complete
specification of the language ln or of the extension of tallm . If we consider
the sharp boundaries claim substituting the word tall, our language does not
permit us to ask which n makes “∃n[¬tall(xn) ∧ tall(xn+1 )]” true, because
this sentence is not well-formed. But the probabilistic version of this formula –
∃n[prob(tall(xn)) = 0 ∧ prob(tall(xn+1 )) = 1] – is plainly false, an intuitively
correct result.

3. The psychological question. I suggest that we are inclined to accept the
inductive premise because we interpret it as a claim about words/utterances
rather than about model-theoretic objects (which are probably not accessible
to introspection anyway, like most grammatical objects). Speakers know that,
given a pair of very similar objects, vague words like tall will not apply to
one with probability 0 and to the other with probability 1. So it is almost
always safe to assume that if an individual counts as tall in some context then
an adjacent individual will also count as tall in the same context. However,
informal deductions involving vague terms of natural language are not reliably
truth-preserving because the terms are not associated with a unique model-
theoretic interpretation.

5 Some Loose Ends

5.1 Assertibility, Joint Distributions, and Borderline Cases

When is the sentence “x is tall” assertible? In the previous subsection we supposed
that it is when prob(“x is tall”) = 1. But this cannot be quite right: if the meaning of
“tall” is a continuous random variable, then the cumulative probability approaches
1 in the limit as height goes to infinity, but never reaches 1 at finite height.

With respect to factual beliefs, it is commonly supposed that the norm of as-
sertion is knowledge [36]. If this is correct, then we should expect, as a descriptive
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matter, that a cooperative speaker A will typically assert things that she thinks she
knows. On standard assumptions, A’s subjective probability for a proposition p will
rarely if ever reach 1; but p may have high enough probability that A thinks that
she may profitably make an assertion calculated to communicate the information
that p. How high is judged “high enough” will depend on various features of the
context, such as the conversational stakes and perhaps even aspects of the speaker’s
personality. I will use α as a placeholder for the threshold of assertibility, however
this is determined in particular contexts. Cooperative speakers will assert a propo-
sition p only if the probability of p is greater than α, and the information that p is
deemed relevant, useful, etc.

The extension to vague terms is straightforward: in cases where the height of an
individual x is known, and a speaker wants to decide whether to describe him as
“tall”, she can simply compute whether or not prob(tall(x)) > α; if so, “x is tall”
is assertible. We have already seen how this would be done in cases in which the
individual’s height is known with precision. In cases where there is both linguistic
and factual uncertainty, the speaker can compute the joint probability distribution
for the two random variables in question – x’s height h, and the probability that
someone of height h counts as “tall”. In the finite case, this is just the average of the
probability that x counts as “tall” in various worlds, weighted by the probability
that these worlds are the actual world.

prob(“x is tall”) =
∑
l∈L

∑
w∈W

[[µL(l) : l(tall)(x)(w) = True]× [µW (w)]]

That is, using the abbreviatory convention defined above,

prob(“x is tall”) =
∑

w∈W

[prob(tall(x)(w))× µW (w)]]

(Again, the infinite case is an straightforward extension.) So “x is tall’ is assertible
just in case its probability is greater than α, taking into account both linguistic and
factual uncertainty.

Since our metalanguage is classical, prob(“x is not tall”) = 1−prob(“x is tall”).
Since “x is not tall” is assertible just in case prob(“x is not tall”) > α, it follows that
“x is not tall’ is assertible just in case prob(“x is tall”) < 1−α. A characterization of
borderline cases – those for which neither “x is tall” nor “x is not tall” is assertible
– follows immediately:

A borderline case of F is an individual x for which 1− α < prob(“x is F”) < α.

5.2 Common Ground

Since introducing the probabilistic model, we have dealt exclusively with subjective
probabilities, avoiding the issue of common ground. But of course a probabilistic
theory of assertion, interpretation, and shared belief is needed at some point. To
give a fully explicit model of this type would be a major undertaking, but a few
preliminary comments may be useful.

The probabilistic model seems to require a weaker notion of common ground
than Stalnaker’s: in particular, common knowledge seems unattainable. We can,
however, use a metric of shared belief: x and y share factual beliefs to the extent
that their probability distributions over W overlap. If the ultimate goal of inquiry
is to find out how the world is [29], then the ultimate goal in our model ought to
be to assign probability 1 to the actual world. Of course this goal is unattainable,
but we can approach it by gaining more and more information about the world,
reducing uncertainty as much as possible.
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In the case of linguistic beliefs, there is no “way the world is” to be discovered;
however, each participant in a conversation has a belief set including a probability
distribution over a set of possible languages, and they wish to share linguistic forms
so that they can exchange information. One goal of metalinguistic inquiry is to make
your personal µL overlap as much as possible with your interlocutors’ personal µL.
However, this is not enough – after all, one way to achieve total overlap would be for
all interlocutors to have a uniform distribution over L, but this distribution would
be useless for communication. Another goal of metalinguistic inquiry, then, must
be to assign most of the probability mass to a relatively small set of languages –
i.e., to minimize linguistic uncertainty so that the comprehension process produces
a manageable set of candidate interpretations. A general theory of how language
users balance these needs would be useful, but is beyond the scope of the present
paper. Decision-theoretic and game-theoretic models of language use and evolution
seem to me to provide a promising starting point, though [19, 21, 22, 2, 23, 11].

6 Comparison with Alternatives

6.1 Supervaluationism, Interest-Relativity, and their Kin

As discussed in section 1, the theory of vagueness outlined here treats vagueness
in terms of the relation between language(s) and language users. Other theories
that share this feature are, for example, Fara [5] and Barker [1]. These approaches
share with the present theory the fact that the interpretation of vague terms is
influenced by the discourse context, whether in Stalnakerian fashion (Barker) or by
the interests of the conversational participants (Fara). However, such approaches
to vagueness – and that of Kennedy [15] – have two related drawbacks. First, they
treat vagueness as a special property either of particular predicates (Barker) or of
the positive form (Fara and Kennedy), rather than deriving it from more general
principles. Second, these theories only offer an account of vague scalar adjectives.
But vagueness extends far beyond scalar adjectives; indeed, it is surprisingly hard
to find examples of natural language expressions which are not vague. The present
theory, unlike these alternatives, predicts that vagueness, not precision, should be
the norm in natural language.

The theory outlined is here is to some extent an elaboration of Lewis’ sugges-
tion in [20] that vagueness is a question of language choice, rather than an issue
of semantics proper. In her discussion of Lewis’ idea and Burns’ [3] defense of this
approach, Keefe [13] argues that Lewis’ “pragmatic” theory is, for all practical pur-
poses, just a restatement of the supervaluationist approach advocated by Keefe
herself and by Kamp [12] and Fine [6]. It is undeniable that Lewis’ suggestion, and
the elaboration I have offered, look similar in broad outline to supervaluationism.
However, there are important conceptual and empirical differences. First, the theory
makes no appeal to specialized semantic concepts such as “supertruth”. (Perhaps
a rational agent is obliged to assign probability 1 to certain sentences, but such
sentences have no special semantic status.) Second, supervaluation theory (in the
relevant form) is essentially an ad hoc theory designed specially to account for vague
terms. The approach advocated here has a conceptual advantage over supervalu-
ation theory in that it does not rely on any special semantic mechanisms, either
enrichments of the semantic metalanguage or otherwise unmotivated stipulations
about the lexical properties of particular words. Instead, the formal treatment of
linguistic representations is maximally similar to the treatment of factual beliefs,
and inherits independently motivated properties of this theory.

The current theory is also preferable to supervaluationism in at least one empir-
ical respect: supervaluation theory founders on the issue of higher-order vagueness.
That is, the theory predicts that John is tall is vague, but John is definitely tall is
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not vague. This is clearly incorrect: it is just as easy to construct a sorites series for
definitely tall as it is for tall. Keefe [13] responds to this criticism by appealing to
a vague metalanguage, so that the vagueness of definitely tall resides in the vague-
ness of the notion of an “acceptable precisification”. But as Williamson [34] notes,
pushing vagueness back from the object-language to the meta-language is not a
satisfactory solution to the problem. I will show in section 7 that the present theory
can deal with higher-order vagueness without resorting to a vague metalanguage.

6.2 Fuzzy Logic

As noted above, a natural interpretation of the probabilistic apparatus argued for
here is in terms of degrees of belief, usually treated in terms of subjective prob-
abilities when factual beliefs are at stake. However, Schiffer [26] and Smith [27]
have argued in various ways that, although we are correct to treat borderline sta-
tus as involving an intermediate degree of belief that a term applies to an object,
vagueness-related degrees of belief do not behave like subjective probabilities but
like degrees of truth in fuzzy logic.

Schiffer’s argument is this: if the probability of p is 0.5, the probability of q is
0.5, and p and q are independent, then the probability of p ∧ q is necessarily 0.25.
However, Schiffer [26, p.225] claims that

when Sally believes to degree .5 that Tom is bald, thereby making him a
paradigm borderline case of baldness for her, she also believes to degree
.5 that he is thin, making him also for her a paradigm borderline case of
thinness ... Can we expect eminently rational Sally to believe to degree .25
that Tom is bald and thin? I submit not. I submit that she’ll believe the
conjunction to degree .5.

If Schiffer is correct, then the present theory is indeed on the wrong track, and fuzzy
logic does better (since in fuzzy logic the degree of truth of a conjunction is the
minimum of the degrees of truth of the conjuncts: min(0.5,0.5) = 0.5).

Clashes of intuition probably will not take us far, but for what it is worth, I do
not share Schiffer’s intuition about this scenario. Whatever the status of Schiffer’s
claim, though, his proposal has a consequence that is much more counter-intuitive
than the problem it is meant to solve. If we embrace fuzzy logic for vague terms we
predict that the degree to which Tom is bald and thin is min(0.5,0.5) = 0.5, the
same as the degree to which he is either bald or thin (max(0.5,0.5) = 0.5). This
is strange: surely it is more likely that he is one or the other than that he is both.
In contrast, the probabilistic theory predicts, I believe correctly, that prob(Tom is
bald and thin) ≤ prob(Tom is bald) ≤ prob(Tom is bald or thin).

Smith [27] gives another argument against a probabilistic theory based on a story
along the following lines. Suppose your long-lost brother is coming to visit, and you
know that he is either very tall or very short, but you do not know which. This
situation is qualitatively different from one in which you know that your brother is
a borderline case of tall, and yet the probabilistic theory seems to collapse the two: in
both cases your subjective probability that he is tall should be roughly 0.5. Thus,
Smith concludes, a theory which treats linguistic and non-linguistic uncertainty
using separate machinery is preferable.

The argument is interesting, but if it is interpreted as Smith wishes, it proves too
much. Using similar reasoning we could show, without bringing in issues relating
to vagueness, that many partial beliefs about factual issues do not behave like
subjective probabilities either. For example, suppose in a contest I will win $1 million
if I pick the winning team in a sports contest between teams A and B. Consider
two cases. In the first case, I know nothing about the teams and have no basis for
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choosing. In the second case I have seen these teams play each other hundreds of
times and I know that they are evenly matched: each team has won precisely 50%
of the games I have watched. In both cases, according to the standard theory, it is
rational for me to assign probability 0.5 to the proposition that Team A will win
and 0.5 to the proposition that Team B will win. However, it is clear that these two
situations are qualitatively different. So, the argument would go, a theory which
treats uncertainty due to ignorance and uncertainty due to statistical knowledge
using completely different theoretical machinery is preferable. (Presumably fuzzy
logic would not be a candidate in this case.)

I actually agree with Smith’s claim that linguistic and factual uncertainty should
be treated differently, at least in part: this is why we separated world and language
components of belief-sets. But the problem that Smith brings up is a very general
issue for the representation of uncertainty. There are numerous proposals for how
to enrich probabilistic representations to deal with examples like the one just given,
e.g. ranges of probabilities or upper and lower probabilities; see Halpern [9, ch.2]
for an overview. However this issue is best dealt with technically, the undeniable
fact that there is a qualitative difference between the two types of uncertainty in
Smith’s example does not show that metalinguistic uncertainty cannot be modeled
using subjective probability. At most it shows that, in an enriched probabilistic
model using probability ranges or the like, metalinguistic uncertainty about bor-
derline cases will be more similar to factual uncertainty stemming from high-quality
statistical information than to uncertainty stemming from having several distinct
and very different options.

Another argument which favors the probabilistic approach over fuzzy logic is
noted by Edgington [4, p.305]. Imagining that d and e are two objects that are both
borderline cases of being red (R),

[L]et val(Re) = 0.5 and val(Rd) be a little less than 0.5, say 0.4. What is
val(Rd & Re)? Here [fuzzy logic] gives a plausible answer: 0.4, the minimum
of the two. But note: val(¬Re) is also 0.5 ... [and so] val(Rd & ¬Re) is also
0.4. This is immensely implausible. e is redder than d. How could it be other
than completely wrong, in any circumstance, to say “d is red and e is not”?
val(Rd & ¬Re) should be zero.

This is indeed implausible. The probabilistic theory gets this case right, however:
because of the upward monotonicity of gradable adjectives, any resolution of red
which makes “d is red” true will make “e is red” true as well, and so the probability
that d is red and e is not is 0. This is, as Edgington also concludes, a strong argument
for the probabilistic approach over a theory based on fuzzy logic.

Finally, we can note that, as section 7 will explore in more detail, English (like
many other languages) uses the same modal adverbs to express a high degree of
certainty in the truth of non-vague propositions and a high degree of certainty
that a vague predicate applies to an object. We can explicate pairs like John will
clearly/definitely leave tomorrow and John is clearly/definitely tall without treating
these operators as ambiguous if we simply assume that they place conditions on the
probability of the expressions they modify. However, if linguistic and non-linguistic
uncertainty are as fundamentally different as Schiffer and Smith argue, then we must
treat these operators as ambiguous, and the fact that they occur in both contexts
as a semantic accident.

7 Higher-Order Vagueness and Metalinguistic Modality

The brief discussion of higher-order vagueness above points to an important fact:
definitely is vague, no less than tall. I suggest treating definitely as we did tall
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above, using a probability distribution over possible precise resolutions. However,
definitely is different in that it is a modal operator. This is clear from its double life
as an epistemic modal: John is definitely coming does not tell us about the meaning
of “coming”, but about the likelihood of John doing so. In epistemic logic John is
definitely coming is usually taken to mean something like the following: In all of the
worlds which the speaker considers live options for being the actual world, John is
coming. Since the model we have adopted treats linguistic and non-linguistic beliefs
similarly, we might think to define an epistemic metalinguistic modal in similar
terms: John is definitely tall means that, in each of the languages that the speaker
considers live options for being the language of conversation, John is in the extension
of the interpretation of tall in that language.

However, since definitely is vague, we cannot treat it as a universal quantifier
over accessible worlds. The universal quantifier is not vague, and indeed the as-
sumption that definitely corresponds to a strong modal in Kripke semantics was
the source of the problem of higher-order vagueness in the first place. For a stan-
dard use of epistemic definitely we can try instead: John is definitely coming is true
iff the probability that John is coming exceeds some high threshold. I suggest a
unified treatment of epistemic and metalinguistic definitely : definitely u establishes
a minimum threshold for the probability of u, cashed out either as the probability
of applicability of u to an individual (if u is resolved as a type 〈e, t〉 expression) or
the utterance’s truth (if u is resolved as an expression of type t).

Definitely takes a constituent as an argument and returns a function which
quantifies over the meaning of that constituent in all relevant possible languages.
Since definitely is vague, there will be a range of resolutions available with different
thresholds, just as there were for tall. One possible resolution of definitely tall – call
it definitely6 tall6 – is given in (13):

(13) [definitely6 tall6 ](x) is true iff probA(tall(xn)) ≥ 0.97

Definitely tall as interpreted by a language l7 is true of x iff the sum of the prob-
abilities of all languages that make tall true of x is greater than some threshold,
here 97%.

On this interpretation, definitely is effectively a special type of epistemic modal.
(Note that, just as the actual world determines the truth-value of an epistemic modal
only indirectly, so the resolution of tall in ln plays no privileged role in calculating
the meaning of definitely tall in ln .) We may suppose that the metalinguistic use of
definitely is equivalent to the ordinary epistemic use, except that in the latter case
the linguistic facts are held constant while the non-linguistic facts vary, while in the
metalinguistic case the non-linguistic facts are held constant while the linguistic
facts vary. Thus, the simplest extension of the theory proposed here predicts that
definitely should be vague. It does seem that definitely is at least gradable, in
that John will very definitely come is acceptable, while very is unacceptable with
non-gradable adjectives and adverbs like geological [15]. A detailed comparison of
metalinguistic and epistemic definitely will have to wait for future work; but see
Sauerland & Stateva [24] for a detailed consideration of some closely related issues.

Imagine that the common ground contains seven resolutions of definitely with
the probability distribution in Table 3. Applying (13) (with appropriate replace-
ments) and the probabilities in Table 3 to the probability distribution for tall in
Table 1 we get Table 4.

In general, definitely u will always have probability less than or equal to the
probability of u alone, which is the correct result. Note also that iterated definitely
is also unproblematic, and simply lowers the probability further as compared to u
alone.4
4 A reviewer asks: Can this approach account for the possibility that x is neither definitely

definitely tall nor definitely not definitely tall? It can. Let α = .8 and definitely and
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Name def1 def2 def3 def4 def5 def6 def7

Threshold ≥ 0.82 ≥ 0.85 ≥ 0.88 ≥ 0.91 ≥ 0.94 ≥ 0.97 = 1

probA(definitely
= definitelyn) 0 .05 .1 .15 .2 .3 .2

Table 3. Sample probability distribution for definitely.

Individual x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Height 5′6′′ 5′7′′ 5′8′′ 5′9′′ 5′10′′ 5′11′′ 6′0′′ 6′1′′ 6′2′′ 6′3′′ 6′4′′ 6′5′′

probA(tall(xn)) 0 .01 .04 .13 .27 .5 .73 .87 .96 .99 .1 1

probA

([definitely tall ](xn)) 0 0 0 0 0 0 0 .05 .5 .8 1 1

Table 4. Cumulative probability distribution for definitely tall.

To sum up, the theory advocated here offers the promise of an explanation
of higher-order vagueness with only a slight modification of existing theories of
modality. This is a considerable advantage over supervaluationist treatments, which
must assume that the semantic metalanguage itself is vague (as in Keefe 2000). Note
also that, if this approach is viable, it constitutes a counter-example to Grim’s [8]
claim, quoted above, that vague terms cannot not be modeled accurately in a precise
metalanguage.

8 Conclusion

The theory of vagueness described here has an important advantage over many
competitors: it stipulates no special semantic apparatus for vague terms, as does
supervaluation theory. Nor does it rely crucially on the claim that the meanings of
words float free of speakers’ knowledge of language, as does epistemicism. Rather,
the probabilistic account relies on general and independently motivated properties of
language use and human cognition. This account also yields an account of the sorites
paradox which is explanatory with respect to Fara’s three questions. Empirical
advantages of the present approach over competing theories include its ability to
account for vagueness outside of the realm of gradable adjectives, intuitively correct
results with conjunctions and disjunctions of sentences containing vague terms, and
avoidance of problems with higher-order vagueness.5

tall be resolved as in the text. x11 and x12 count as definitely tall because tall applies
to them with probability greater than α. By reapplying Table 3 to the third line of
Table 4 we see that x12 counts as definitely definitely tall, but x11 does not. x9 (and
all shorter individuals) count as not definitely tall, since prob(not definitely tall(x9 )) =
1 − prob(definitely tall(x9 )) = 1 − .05 = .95. However, x9 does not count as definitely
not definitely tall (prob = 0.5); only x8 and shorter enjoy this privilege. So x9 is neither
definitely definitely tall nor definitely not definitely tall.

5 Thanks to Chris Barker, Philippe Schlenker, Gregory Guy, Chris Potts, Paul Egré,
Stephanie Holt, and a reviewer for the current volume for helpful comments and dis-
cussion. Thanks also to Joey Frazee and David Beaver, whose very interesting paper [7]
reached me too late to affect the content, but has important overlap with the current
work.
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