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Abstract

In order to improve the design of Li ion batteries the complex interplay of various physical phe-
nomena in the active particles of the electrodes and in the electrolyte has to be balanced. The separate
transport phenomena in the electrolyte and in the active particle as well as their coupling due to the
electrochemical reactions at the interfaces between the electrode particles and the electrolyte will
influence the performance and the lifetime of a battery. Any modeling of the complex phenomena
during the usage of a battery has therefore to be based on sound physical and chemical principles
in order to allow for reliable predictions for the response of the battery to changing load conditions.
We will present a modeling approach for the transport processes in the electrolyte and the electrodes
based on non-equilibrium thermodynamics and transport theory. The assumption of local charge
neutrality, which is known to be valid in concentrated electrolytes, is explicitly used to identify the
independent thermodynamic variables and fluxes. The theory guarantees strictly positive entropy
production. Differences to other theories will be discussed.

1 Introduction

Mathematical modeling of Li-ion batteries on cell level was pioneered by the work of Newman and his
coworkers [1, 2, 3] and extended and refined by many other authors [4, 5, 6]. The modeling approach is
based on transport equations for Li ions and charges in the electrolyte as well as in the active particles of
cathode and anode (for an illustration of the Lithium Ion battery see Fig. 1). Originally the electrodes
were considered as porous media [1] made of a porous active particle skeleton filled with electrolyte. Later
the porous model was derived with the help of volume averaging techniques for some set of equations
for the different transport mechanisms in electrolyte and in the solid active particles [7]. The transport
of charges and species between the electrolyte and the active particles was described with the help of
a Butler - Volmer reaction model [2] and some assumptions about continuity conditions for charge and
species flux. So far approaches where the active particles are resolved and the transport in particles
and electrolytes are treated separately are rare [8, 9]. But whether one starts directly with the porous
electrode model or with a model resolving the fine structure of the electrode, it is in both cases important
to base the battery model on thermodynamically consistent concepts, especially if at some point also the
local heat production is to be simulated.
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Figure 1: Illustration of a Lithium ion battery. The spheres are the active particles of the porous
electrodes in which Lithium Ions (green dots) can be stored. The voids between particles and between
the electrodes are filled with an electrolyte in which Lithium ions diffuse and migrate. Electrons, on the
other hand, have to move through the external circuit.

Charge transport mechanisms in active particles and in electrolyte are completely different on the
microscopic (atomic) scale. In active particles, charge is transported mainly by pure electronic conduction.
The contribution of the ion diffusion in the active particles to the electric current can be neglected due
to the large mobility of the electrons compared to the ions. Charge transport in the electrolyte, on the
other side, is exclusively due to ionic transport. In fact, the transfer of electrons into the electrolyte
would result in the reduction of Li ions in the electrolyte to metallic Lithium, and is considered to be
one of the many degradation mechanisms in Li ion batteries [10]. Due to the large mobility of electrons
local charge neutrality is easily maintained in the active particles. The charge of an inserted Li Tons
is instantaneously shielded by local rearrangements of electronic charges and the transport of electrons
into the active particles over the current collectors. In the electrolyte the transport of species (ions)
and charge is strongly coupled. Both, charge and species fluxes are caused by gradients in the chemical
potential as well as by gradients in the electrical potentials. The constitutive relations for the charge and
species fluxes describing these relations are well known for dilute electrolytes [2]. In batteries we have
to deal with highly concentrated electrolytes. Some relations for these electrolytes are also derived in [2]
combining multicomponent diffusion theory and considerations for chemical equilibria between reacting
species in the electrolyte. As it will be shown below, the result is at variance with the general form
of constitutive relations in ionic liquids, usually obtained in non equilibrium thermodynamics [11, 12].
A main contribution of our paper is therefore the careful rederivation of the constitutive relations for
ion and charge flux in a mixture of a fully dissociated binary salt in a neutral solvent, using the well
known concepts of nonequilibrium thermodynamics [11, 12]. As it is known that local charge neutrality
is preserved in concentrated electrolytes except for the diffuse part of the double layer around active
particles [2], we make explicit use of this property in our derivation of the constitutive relations. Due to
the limited space for this article, details of the more general derivation, including thermal fluctuations
will be given elsewhere [13]. With these equations the transition to the effective porous medium theory
for cathode and anode can be obtained with standard techniques as e.g. volume averaging [7].



2 Model

The starting point for a continuum model of charge and species transport in a Li—ion battery are the con-
servation equation for Li-ion concentration ¢ and charges q. The continuity equation for the concentration

of Li Ions c is given by
Jc .

Er + (1)
Here ]\7+ is the flux of Li ions. The equation for the charge concentration is given by
dq =
—=-Vj 2
Bt J (2)

where 3 is the electrical current. The approximation of charge neutrality requires not only that the time
derivative in (2) is identical zero, but that the local charge g vanishes i.e. ¢ = 0. The main challenge
for a constitutive theory is to derive a thermodynamically consistent relation for the fluxes ]\7+ and the
electrical current ; Also, the influence of solvent molecules and negative ions to the transport properties
has to be clarified.

2.1 Charge and species transport in a concentrated electrolyte

To obtain a thermodynamically consistent model for charge and ion fluxes in the electrolyte we apply the
well known formalism of non-equilibrium thermodynamics [11, 12] to a mixture of fully dissociated binary
salt and a solvent. The concentrations of positive and negative ions with charge z; and z_ are ¢4 and c_,
respectively. The concentration of the solvent is ¢g. Instead of motivating our theory with considerations
from dilute electrolyte theory, we are considering the opposite limit of concentrated electrolytes. In this
limit the Debye length Ap is so small, that local charge fluctuations are restricted to scales well below
about 100 nm [2]. We therefore impose local charge neutrality zycy +z_c_ = 0 in our derivation exactly.
This will allow us to identify the relevant measurable transport coefficients for the electrolytes used in Li
ion batteries. For example, the strong Coulomb interaction between the ions prevent independent motion
of ions to occur on the scale of battery cell dimensions. The main diffusion process will be correlated
interdiffusion with a uniquely defined interdiffusion coefficient for positive and negative ions. Independent
self diffusion of the different ions with different self diffusion coefficient leading to slow charge separation
is excluded in a strictly charge neutral system.

Under normal operation conditions for a Li ion battery we may safely assume that convection can be
excluded as transport mechanism. This assumption allows to eliminate the concentration of the neutral
solvent as independent variable. With My, M, M_ being the molar masses of solvent and positive and
negative ions respectively we get in the absence of convection the relations

Modeo + Mydey + M_de— =0 (3)

for the changes in the respective concentrations. Charge neutrality is then used to eliminate the concen-
tration of the negative ions using the relation

Zycp +2z_c_ =0 4)

It is therefore sufficient to determine the transport equations for the concentration ¢ = ¢4 = —i—;c_.

Using the constraints between changes in energy density u, entropy density s, concentration ¢ and charge



density ¢, and denoting as usually the temperature by 7', the thermodynamic relation for the electrolyte
in an external field ® can be written as

du = T'ds + pdc + ®dg (5)

Due to the imposed charge neutrality the changes in the charge are zero i.e. dq = 0. The energy
density also contains the contribution from the electric fields [14]. The effective chemical potential p is a
combination of the chemical potentials py, i and pg of the ions and the solvent.
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Formally, the chemical potential u is the work to be performed for injecting 1mol of Li ions from infinity
in the electrolyte including the work to rearrange the negative ions and neutral solvent molecules such
that charge neutrality and momentum are conserved. The entropy production ¢ in the system fulfills the
relation [12, 13]
Tdo = —J,NT — NyVjiy — N_.Vji_ — jV® (9)
The electric current is given by
j=2N.+2z_N_ (10)

Using this relation to eliminate the flux of negative ions ]\7,, we obtain

Tdo = —ﬁﬁT-MW—ﬁ(@Jr:—‘F) (11)
where F is the Faraday number. Note that the form of the entropy production determines the set of
independent thermodynamic forces and thus the correct form of the Onsager relations in the constitutive
equations for the fluxes [12]. In the following we neglect for simplicity thermal fluctuations e.g. dT = 0.

Having identified the independent thermodynamic variables and forces, it is possible to formulate
the constitutive relations for the fluxes. Under the necessary requirement of strictly positive entropy
production they have the general form

N, = —LiVjg —L,Vd (12)
j = —L216ﬁ+ —_ LQQﬁ&) (13)
where & = & + Z;F ® may be interpreted as the renormalized effective potential due to the partial

shielding of the external potential by the negative ions. The Onsager matrix L;; has to be symmetric
positive definite i.e. Ljs = Lg;. A simple rearrangement of (12), (13) and introduction of standard
notation leads to
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The transport coefficients D.,t,, k are the ion collective interdiffusion coefficient of the fully interacting
system at zero electric current, the transference number and the ion conductivity, respectively. They are
given by

K = L22 (16)
ty = ZpLiaF (17)
K
- t%r 8/1+ - detL 8ﬁ+
De - (Lll HFQZ_%_) ( de - L22 de (18)

The constitutive relation for the negative ion flux is a consequence of the definition of the current (10)
and charge neutrality .

N_=-D.,Ve_ + 75 ) (19)
Here t_ = 1—t is the transference number of negative ions. The interdiffusion coefficient for the density
of negative ions is the same as the one for the positive ion density due to the imposed charge neutrality.
This result is consistent with fundamental Green Kubo relation for the interdiffusion coefficient in a
binary systems [15]. For comparison with experiments it is important to realize that it is the interdiffusion
coefficient, and not the self diffusion coefficients, which has to be determined in order to simulate the
behavior of Li ion batteries. In general the two self diffusion coefficients and the interdiffusion coefficient
are mutually different from each other [15, 16].

It is also important to note that the relation (15) is different from the one derived in [2]. The
constitutive relation for the electrical current in [2] depends on the type of chemical reactions in the
electrolyte and is not just a property of the local gradients in the independent field variables. This
ansatz causes an asymmetry in the relations for the ion flux and the electrical current, which violates
the fundamental Onsager relation necessary for strictly positive entropy production. In the case of a
simple ion insertion reaction at the electrodes the factor ¢4 in the relation for the current in (15), in [2] is
replaced by —(1 —t,). Le. the absolute value and the sign in front of the Ve term are different compared
to our theory. The isothermal entropy production for the two models are

_ o = \2 52 o 560
Ton =D, <8C)T (Ve)* + - o), F (20)
in the theory of [2] and
_ o SV 52
Torz = D, (8C)T (VC) + - (21)

in our case. Since the thermodynamic derivative (%)T and the interdiffusion coefficient D, are always

positive the model presented here leads as expected to the strictly positive entropy production in Eq.
(21). The last term in Eq. (20) does not have a definite sign and therefore allows in principal for negative
entropy production.

Since the relation used in [2] is used as starting point for many battery modeling approaches [17, 3, 8],
differences to our approach may be expected (cf Ref. [18]).



2.2 Transport in active particles

For the transport in the active particles, the diffusion and the conduction are essentially decoupled, since
the mobility of the ions is much smaller than the one of the electrons and therefore the electric conduction
is nearly completely carried by the electrons. The ions in the active particles are transported by diffusion
only. The constitutive relations for ion flux and electrical current are given by

N, = -D,V¢ (22)

j —o VP (23)

where o5 and D are the electronic conductivity and the ion diffusion coefficient respectively. As long as
the binder and the additives in the electrodes are not treated as different phases the electronic conductivity
is an effective conductivity of active particles and additives.

2.3 Intercalation modeling and interface conditions

For the coupling of the transport in the active particles and in the solid electrolyte, interface condi-
tions have to be formulated. The interface conditions describe the intercalation reaction and the de—
intercalation reaction respectively on the mesoscopic scale (i.e beyond the scale of the diffuse layer [2]).
It is assumed that the transport of ions across the interface is completely described by the Butler Volmer
expression i, for the intercalation reaction [2].

alF —a.F
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a4 and a¢ with ag +ac = 1 are weighting the anodic and the cathodic contribution of the overpotential

1s to the overall reaction. The overpotential is defined by

ns 1= By — B, — Up. (25)

Here Uy is the half cell open circuit potential of the respective electrode.
The amplitude iy is given by

[P
io = k () (c5)* (1 B ) (26)
Cs,max
k is a reaction rate. csmqq i the maximum concentration which can be stored in the active particle.
We assume that Li ions are not stored in the double layer (i.e. all Li ions are intercalated in the active
particle or released into the electrolyte). There should also be no flux of negative charges across the
double layer. Neither enter electrons the electrolyte nor intercalate negative ions from the electrolyte
in the active particles under ideal conditions. This especially means that the total current across the
electrolyte—particle interface is due to the transport of positive ions only. If the particle is completely filled
i.e. ¢ = Csmaz, it has to be made sure by the interface conditions that no electrical current ; is carried
by negative charge carriers across the interface. These conditions can be formulated mathematically in



the following way with the normal 7 pointing from the solid into the electrolyte

Ji = it (27)
FR (28)
Nyoii = Ny.it (29)
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To solve the model for the battery problem additional boundary conditions have to be provided for the
potential and the current at the current collectors in contact with the active particles. These conditions
are determined by the operating conditions of the battery. In addition the ion fluxes have to be set to
zero at all external boundaries.

3 Conclusions

We derived a thermodynamically consistent model for transport of charges in a battery cell, consisting of
active particles and electrolyte in cathode and anode. The modeling of the separator was not addressed,
but it is straightforward using effective diffusion coefficients and ionic conductivities in the electrolyte
theory, if the separator itself is a porous structure [1].To test the model, a 1-D porous electrode version
of the model was implemented in the commercial software package Comsol and compared with the model
used in [1]. Detailed results will be presented in [18]. Numerical algorithm for the introduced here model,
as well as its numerical study for 3D geometry, are presented in [19]
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