
Secure Set Intersection with Untrusted

Hardware Tokens

Marc Fischlin1, Benny Pinkas2, Ahmad-Reza Sadeghi1,3,
Thomas Schneider3, and Ivan Visconti4

1 Darmstadt University of Technology, Germany
marc.fischlin@gmail.com

2 Bar Ilan University, Ramat Gan, Israel
benny@pinkas.net

3 Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de

4 University of Salerno, Italy
visconti@dia.unisa.it

Abstract. Secure set intersection protocols are the core building block
for a manifold of privacy-preserving applications.

In a recent work, Hazay and Lindell (ACM CCS 2008) introduced the
idea of using trusted hardware tokens for the set intersection problem,
devising protocols which improve over previous (in the standard model
of two-party computation) protocols in terms of efficiency and secure
composition. Their protocol uses only a linear number of symmetric-
key computations and the amount of data stored in the token does not
depend on the sizes of the sets. The security proof of the protocol is in
the universal composability model and is based on the strong assumption
that the token is trusted by both parties.

In this paper we revisit the idea and model of hardware-based secure
set intersection, and in particular consider a setting where tokens are not
necessarily trusted by both participants to additionally cover threats like
side channel attacks, firmware trapdoors and malicious hardware. Our
protocols are very efficient and achieve the same level of security as
those by Hazay and Lindell for trusted tokens. For untrusted tokens, our
protocols ensure privacy against malicious adversaries, and correctness
facing covert adversaries.

Keywords: cryptographicprotocols, set intersection,untrustedhardware.

1 Introduction

A variety of applications with sophisticated privacy requirements can be based on
secure set operations, in particular secure set intersection. Examples are versatile
and range from government agencies comparing their databases of suspects on
a national and international basis, to competing enterprises evaluating their
performance on various aspects (items, deployed processes), to dating services.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 M. Fischlin et al.

The underlying protocols typically involve two mistrusting parties who com-
pute an intersection of their respective sets (or some function of them). As we
elaborate in §1.1 on related work, cryptographic research has proposed several
solutions to this problem, each having its own strengths and weaknesses; in par-
ticular, the efficiency aspect is crucial for deployment in real-life scenarios: While
software-based solutions use expensive public-key operations, it is also possible
to incorporate a tamper-proof hardware token into the protocol, yielding more
efficient schemes and/or avoiding impossibility results. However, this hardware-
based model requires a strong trust model, i.e., a token trusted by all parties.

Background. In this paper we will focus on a recent proposal by Hazay and
Lindell [1] that aims to design truly practical and secure set intersection protocols
by introducing a new party, a (tamper-proof) hardware token T . Here, one party,
called the issuer A, programs a key into the token T which protects this key from
being accessible by the other party B. At the same time, the manufacturer of
the token ensures that the token correctly computes the intended function, i.e.,
A can only choose the secret key but cannot interfere with the token’s program.
The protocol is very efficient and requires the involved parties and the token
to perform a few pseudorandom permutation evaluations, thus disposing of any
public-key operations and/or random oracles as in previous efforts (cf. §1.1).

The use of the token in [1] is justified when trusted hardware manufacturers
are available (e.g., manufacturers which produce high-end smartcards that have
FIPS 140-2, level 3 or 4 certification). The security of the scheme is proven in
the Universal Composability (UC) model [2], guaranteeing security even when
composed with other protocols. It is important to note that today’s high-end
smartcards may have a sufficient amount of resources for executing the entire
ideal functionality in a relatively simple use-case such as set intersection, al-
though probably not on relatively large inputs. However, doing so would require
to program the smartcard to implement this specific functionality. The protocols
of [1] as well as the protocols we propose, on the other hand, can be run in prac-
tice by using cheap smartcards: they assume limited computation capabilities
(only symmetric-key operations) and constant storage (see also [1]).

Motivation. The security proof of the scheme of [1] considers the universal
composability framework inherently relying on the trustworthiness of the token,
since it is assumed that both parties fully trust the token. This assumption,
though, is critical with regard to several aspects regarding to what level tokens
can be trusted in practice.

First, even extensive testing of the token cannot provide protection against
errors and backdoors, introduced accidentally or deliberately in the underlying
hardware and software stack running on it. A well-known example is the “Pen-
tium bug” which caused the floating point division unit of the Intel PentiumTM

processor to compute slightly wrong results for specific inputs [3]. Such flaws in
the hardware can be exploited in so called “bug attacks” [4] to break the se-
curity of the underlying protocol. Moreover, although appropriate certification

Secure Set Intersection with Untrusted Hardware Tokens 3

might help to ensure, to some degree, that at least the design of the token is
backdoor-free, it is still unclear how to protect against hardware Trojans being
maliciously introduced into the hardware during the manufacturing process, par-
ticularly because chip production is increasingly outsourced to other countries
which are potentially untrusted or have their own evaluation standards.

Another threat concerns hardware and side-channel attacks allowing to break
hardware protection mechanisms. Modern commercial smartcards have been
equipped with a variety of measures to counter standard side-channel attacks.
However, the severeness of attacks depends of course on the effort (see, e.g., the
recently reported hardware attack on the Trusted Platform Module (TPM) [5]).

Our Contribution and Outline. After summarizing related works on set
intersection and token-based protocols in §1.1, we introduce our setting and the
employed primitives in §2, and review the basic protocol of [1] in §3. Afterwards,
we present the following contributions.

We revisit the model of a fully trusted hardware token and provide several
protocols for secure set intersection that make use of untrusted hardware tokens
and fulfill different security targets. In our protocols only one party A trusts
(some of) the hardware token(s) but the other party B does not. More concretely,
we present a stepwise design of token-based set intersection protocols:

1. Guaranteeing the privacy of B’s inputs in the malicious adversary model,
using a single token trusted only by the issuer A (§4).

2. Additionally guaranteeing the correctness of B’s outputs in the covert ad-
versary model, using a single token trusted only by the issuer (§5).

3. Additionally preserving the privacy of A’s inputs in the malicious adversary
model, using multiple tokens of which at least one is trusted by issuer A (§6).

Moreover, our protocols have the “fall-back” security guarantees to the protocol
of [1]: in case both parties fully trust the token, our protocols still provide the
same security properties as [1]. While the original protocol of [1] does not provide
any security guarantees in the case of untrusted token, our protocols achieve
input privacy for malicious adversaries and output correctness for a covert token,
i.e., any cheating attempt of the token may breach correctness (but not privacy)
and is detectable with high probability.

1.1 Related Work

Set Intersection without Hardware Tokens. Several protocols for two-
party set intersection secure in the semi-honest model have been proposed
[6, 7, 8, 9, 10]. Protocols with security against malicious adversaries are given
in [6,7,11,12,8,13,14,15,16,17]. A detailed summary and performance compar-
ison of most of these protocols is given in [9]. Protocols with covert security are
given in [12, 16]. All these protocols that do not employ hardware tokens need
a non-negligible number of computationally expensive public-key operations [6].
In contrast, the protocols of [1] and our protocols perform a linear number of
fast symmetric-key operations only.

4 M. Fischlin et al.

Set Intersection with Hardware Tokens Trusted by Both Parties. HW
tokens with limited capabilities that are trusted by both parties have been
used to construct more efficient protocols for verifiable encryption and fair ex-
change [18], and secure function evaluation [19, 20]. Additionally, government-
issued signature cards have been proposed as setup assumption for UC [21].
Further, semi-honest tamper-proof hardware tokens can serve as basis for non-
interactive oblivious transfer and hence non-interactive secure two-party com-
putation, called one-time programs [22, 23]. Our tokens need not to be trusted
by both parties. In the rest of the paper we will extend the token-based set
intersection model and protocol proposed recently in [1] which we summarize
in §3.

Set Intersection with Hardware Tokens Trusted by the Issuer Only. HW
tokens trusted by their issuer only were used as setup assumption for construct-
ing UC commitments [24,25,26,27], and information-theoretic one-time programs
[28]. These protocols use HW tokens merely to overcome known impossibility re-
sults, but do not claim to yield efficient protocols for practical applications.

To improve the performance of practical two-party secure function evalua-
tion protocols, garbled circuits can be generated efficiently using a HW token
trusted by its issuer only [29]. Furthermore, truly efficient oblivious transfer pro-
tocols with security against covert adversaries were proposed in [30]. We adapt
techniques of [30] for constructing our protocols for secure set intersection.

2 Preliminaries

We denote the security parameter for symmetric schemes by t. A pseudorandom
permutation (PRP) F is an algorithm which takes as input a key k ∈ {0, 1}t and
describes a “random-looking” permutation Fk(·) over D = {0, 1}t. If we drop the
requirement on F being a permutation, then we have a pseudorandom function
(PRF) instead. If it also holds that it is hard to distinguish permutation Fk from
a random permutation given access to both the permutation and its inverse,
then F is called a strong pseudorandom permutation (SPRP). Note that AES,
for example, is believed to be a strong PRP.

2.1 The Setting for Token-Based Set Intersection Protocols

The general setting for the set intersection protocols we consider is as follows:
Two parties, A and B would like to compute the intersection F∩(X, Y) = X ∩Y
on their input sets X = {x1, . . . , xnA} and Y = {y1, . . . , ynB} such that only B
obtains the output (while A learns nothing). Note that we assume that the set
sizes are known to both parties. We further assume that elements from X and
Y are from a domain D = {0, 1}t, i.e., X, Y ⊆ D. If needed, larger input data
can be hashed to shorter strings with a collision-resistant hash function.

Our protocols have the following general structure: party A issues, i.e., buys,
one or more hardware tokens T1, . . . , Tn, where Ti is manufactured by the hard-
ware manufacturer Mi. It initializes the tokens Ti, and sends them to B. In the

Secure Set Intersection with Untrusted Hardware Tokens 5

case of protocols with a single token we simply call the token T and its manufac-
turer M. In our model, any of the participating parties may be dishonest (where
a dishonest token T refers to a maliciously produced token), and all malicious
parties are controlled by a single adversary. We say that a party trusts T iff the
other party cannot collude with M to produce a dishonest or breakable token.
We consider static corruptions only.

To model hardware-based access we assume that, once a token is in posses-
sion of B, A cannot communicate with the token anymore. In particular, the
adversary may construct a malicious token, but may not interact with the token
anymore, once it is sent to B. The adversary can only communicate with the
token through messages sent to and received from B. Analogously, two tokens
cannot communicate directly.

2.2 Security Models

While we denote by A,B, and T respectively the first (left) player, the second
(right) player and the token, we will denote by AI and BI the players of the ideal
world where parties just send their inputs to a set intersection functionality that
then sends the intersection of the received inputs to BI .

We use different security notions. First, we consider unconditional privacy of
the input of a player, i.e., regardless of the actions of the other malicious player,
the input of an honest player will remain private in the sense that anything that
can be computed about it can also be computed in the ideal world.

When we can carry a real-world attack mounted by an adversary during
a protocol run into an ideal world attack, we achieve simulation-based secu-
rity. If simulation cannot be achieved, we will instead downgrade to the weaker
indistinguishability-based security notion. This last notion means that a malicious
player cannot guess which input the other player has used during a protocol run,
even when the honest player uses one of two inputs determined by the adversary.

The traditional notion of security through realizing an ideal functionality
requires the simulation of any real-world attack into an ideal-world attack, and
that the outputs of honest players do not deviate in the two worlds. We then say
that the protocol securely computes (or evaluates) the functionality F∩(X, Y),
and often specify the adversary’s capabilities further, e.g., that the token is
trusted or that it cannot be compromised by B. This classical notion implicitly
includes a correctness requirement: the output of a honest player depends only
on its input and the implicit input used by the adversary in the protocol run.

When our protocols cannot achieve the correctness and simulation require-
ments simultaneously, we will downgrade the standard security notion to covert
security [31], which means that the adversarial behavior can be detected by the
honest player with some non-negligible probability ε, called the deterrence fac-
tor.1 In all applications where the reputation of a player is more important than

1 In addition the protocol must be detection accurate in the sense that in real-world ex-
ecutions no honest party accuses another honest party of cheating. All our protocols
obey this property, albeit we do not mention this explicitly.

6 M. Fischlin et al.

the output correctness of another player (e.g., where established enterprises of-
fering services to citizens), this notion of covert security suffices, since there is a
deterrence factor that discourages malicious actions.

We note that our protocols provide stronger security guarantees than security
against the strongest notion of covert adversaries defined in [31], as no informa-
tion about honest players’ inputs is leaked, independently of whether cheating
was detected or not. That is, in our case the ideal-world adversary can issue a
cheat command (in case he wants to cheat) and this is announced to the parties
with probability ε – but unlike in [31] the ideal-world adversary here does not
get to learn the honest parties’ inputs in case no cheat is announced. Still, in
such a case we provide no correctness guarantee whatsoever.

3 Both Parties Trust Token [1]

We now review the model and protocol of [1]. Our models and protocols presented
later extend on these to cope with untrusted hardware.

Model of [1]. In the model of [1], the hardware token T is assumed to hon-
estly compute the intended functionality. The authors of [1] argue that this
assumption is justified if highly trusted hardware manufacturers are available,
e.g., manufacturers which produce high-end smartcards that have FIPS 140-2,
level 3 or 4 certification. The token T is as reliable as its manufacturer M and,
as only T is involved in the protocol but not M, this security assumption is
weaker than using M as a trusted third party.2

Set Intersection Protocol of [1]. The set intersection protocol of [1], depicted
in Fig. 1, works as follows: In the setup phase, A initializes the HW token T
with a random key k, a random message OK, and an upper bound on the size of
B’s input set nB; A sends T to B. In the online phase, B can query the token to
evaluate Fk (where F is a SPRP as defined in §2) on each of its inputs. If T has
been queried nB times, it invalidates k (e.g., by deleting it)3 and outputs OK to
B who forwards it to A. If OK is correct, A sends the evaluation of Fk on each
of his inputs to B. Finally, B computes the intersection by comparing the values
obtained from T with those from A. (Note that at that point B cannot query T
anymore, i.e., all queries to T were independent of A’s inputs.)

Security. According to Theorem 3 of [1], the above protocol UC-securely real-
izes the set intersection functionality when T is honest.

2 This model is somewhat related to the common reference string (CRS) model in
which a party trusted by all players generates a string according to a given distri-
bution. The string is later used in the protocol. While a CRS is a static information
generated before protocol executions, the trusted token will offer a trusted function-
ality during the execution of a protocol.

3 This ensures that B gains no advantage when querying T in an invalid way.

Secure Set Intersection with Untrusted Hardware Tokens 7

T

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

Setup Phase:
k,OK ∈R D
init T : k,OK, nB
Online Phase: ∀yj ∈ Y :

ȳj = Fk(yj)

invalidate k
OK′ = OK

T
yj

OK′′

ȳj

OK′′
OK′′ ?

= OK
X̄ = {Fk(x)}x∈X X̄ X ∩ Y = {yj |ȳj ∈ X̄}

done

OK′′ = OK′

Fig. 1. Set Intersection Protocol of [1]: token T is trusted by both parties

Efficiency. T performs nB evaluations of F . The communication in the online
phase contains the OK message from B to A, and a message containing nAt bits
from A to B. The overall online communication complexity is therefore O(nAt).

4 Only Issuer Trusts Token: Privacy of B’s Input

The protocol of [1] assumes that T is fully trusted by both parties. Obviously,
when one of the parties can break into T (e.g., by physical attacks or by colluding
with its manufacturer M), they can break the correctness or the privacy of the
protocol. In the following we extend the protocol of [1] to make it non-interactive
and guarantee privacy of B’s inputs even if A and T are malicious.

Model. We consider the trust model where B does not trust T to behave
correctly, i.e., A can collude with the hardware manufacturer M to produce a
bad token T . This model seems justified, as B is required to use a hardware
token which is provided by A, whom B might not trust.

Problem 1 (A colludes with M to break privacy of B’s inputs). In the protocol
of Fig. 1, the only message in which information about B’s inputs can be leaked
to A is the OK message. A corrupt player A can construct a corrupt token T
that changes the OK message based on the inputs that B feeds to T (i.e., OK is
used as covert channel), or T aborts the protocol (e.g., refuses to output OK).

Protocol. Problem 1 arises in the protocol of [1], as B first provides his input
Y to T , T answers B and finally B sends a message to A which depends on T ’s
answer (OK). We eliminate this source of leakage from T to A in the protocol
as shown in Fig. 2, by making the protocol non-interactive: First, A sends the
permutations X̄ of its inputs (as before). Afterwards, B obtains its permuted
inputs Ȳ from T by sending its inputs Y to T . In contrast to the original
protocol, T cannot reveal the permuted inputs ȳj directly to B as otherwise
B, who already knows X̄ now, could already compute parts of the intersection
X ∩ {y1, . . . , yj} and adaptively change his input depending on this. Instead, T
encrypts each ȳj by XORing it with a pseudo-random pad pj which is derived

8 M. Fischlin et al.

by computing a pseudo-random function fs(j) keyed with a fixed secret key s.
After having queried for all elements in Y , B has an encrypted copy of Ȳ . Now,
T releases the pseudo-random pads pj with which Ȳ is encrypted to B, who can
finally recover Ȳ and compute X ∩ Y as before.

T

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

Setup Phase:
k, s ∈R D
init T : k, s, nB
Online Phase:

pj = fs(j)
ȳ′j = Fk(yj)⊕ pj

T

yj

pj

ȳ′j
X̄ = {Fk(x)}x∈X

X̄ ∀j ∈ {1, .., nB}:

done invalidate k
pj = fs(j)

ȳj = ȳ′j ⊕ pj
X ∩ Y = {yj |ȳj ∈ X̄}

afterwards

Fig. 2. Set Intersection Protocol with Privacy of B’s Inputs (Problem 1) w.r.t. malicious
adversaries: token T is not trusted by B

Theorem 1. If F is a SPRP and f is a PRF, then the protocol depicted in Fig. 2:

1. securely evaluates F∩(X, Y) w.r.t. a malicious B that cannot break into T ;
2. keeps B’s input unconditionally private in the indistinguishability sense w.r.t.

a malicious A;
3. securely evaluates F∩(X, Y) when both parties trust the token.

Proof. To prove Theorem 1 we treat each corruption case separately.

A is corrupted and T is trusted by A and B. As noted above, non-interactivity
implies that B’s input is protected unconditionally from a malicious A. Here
however, we can even prove unconditional security in a simulation-based sense,
constructing an ideal-world adversary AI that simulates in the ideal world the
attack carried out by A in the real world. The difference here that allows us to
achieve such a stronger security notion is that since the token is trusted, it has
not been produced by A, and therefore A has only black-box access to it. Thus,
given a real-world adversary A, we can construct an ideal-world adversary AI

that includes A and is able to read and write on its communication channels,
including the ones that are supposed to be used for the communication with the
token. Notice that since the token is trusted, from the fact that it answers to
B’s queries, it must be the case that A uploads to T both k and s – otherwise
T would be in an inconsistent state and would not play with B (that therefore
would just abort). Thus, AI will obtain k and s from the initialization of the
token performed by A. Then, AI reads the vector of messages X̄ and inverts each
x̄j ∈ X̄ obtaining the original vector X that corresponds to the set that A would
play in the real world. Then, AI plays X in the ideal world. As a consequence,

Secure Set Intersection with Untrusted Hardware Tokens 9

the ideal-world honest player BI will obtain the same input obtained by a real-
world honest player B, that plays the protocol with a trusted token. Finally AI

outputs whatever A outputs. As the joint distribution of the view of A and the
output of B in real and ideal world are clearly identical, property 1 holds.

A is corrupted and T is trusted by A but not B. Since the protocol is non-
interactive, A does not get any message from B and therefore B’s privacy is
protected unconditionally. However, we cannot construct and ideal-world adver-
sary AI since we cannot extract A’s input. Therefore we obtain unconditional
indistinguishability of B’s private input, and property 2 holds.

B is corrupted. To prove that A’s input remains private in a simulation-based
sense against a real-world malicious B we construct an ideal-world adversary BI

that internally simulates a protocol run to B, extracts its input and plays the
extracted input in the ideal world. BI has control over the communication chan-
nels used by B to communicate with T , and thus reads all queries yj performed
by B, sending as answer random values ȳ′

j . Moreover, BI sends to B a random
vector X̄ therefore simulating the message of the honest real-world A. As soon
as all elements of B have been sent to the (simulated) token, BI groups all the
elements in a set Y that is sent to the ideal functionality. BI then obtains from
the ideal functionality the intersection of Y with AI ’s input, where AI is the
honest player of the ideal model. Let Z be the output of BI in the ideal world. BI

now aims at giving Z to B in the internal execution of the real-world protocol.
To do so, it performs the last nB steps of the protocol sending values p1, . . . , pnB

as follows: if yj is in Z then set pj = y′
j ⊕ ȳj, else set pj equal to a random string.

Then BI outputs whatever B outputs.
Notice that the only difference in the view of B between the real-world and

the simulated executions is that the former uses the SPRP F and the PRF f ,
while the latter uses random bits. We now show that any distinguisher between
the two views, can be used to build either an adversary for F or an adversary f .

Consider the hybrid experiment G in which the real-world execution is played
but F is replaced by random strings, still keeping consistency so that on the same
input F produces the same output. Clearly G can be run in polynomial time and
is computationally indistinguishable from the real-world execution, otherwise we
have immediately a forgery for the SPRP F .

Consider now the next hybrid game G′ in which all evaluations of f are
replaced by random bits, still keeping consistency as above. Again, any distin-
guisher between G and G′ would immediately produce a forgery for the PRF f .

Finally, consider the simulated execution of the real-world protocol. Both the
message sent over the communication channel (i.e., X̄) and the first bunch of
answers of T (i.e., ȳ′

j) have the uniform distribution and are therefore identically
distributed in both G′ and in the simulated game. The final answers pj received
by B correspond in both the simulated game and in G′ to random messages,
with the only exception of the elements that appear in the intersection. In this
last case the received messages pj correspond precisely to the unique values that
allow B to compute the values in the intersection. This holds both in G′ and in
the simulated execution. This allows us to conclude the proof of property 3. ��

10 M. Fischlin et al.

Efficiency and Token Reusability. While the round complexity of our proto-
col is optimal, compared to the 3 rounds of [1], its computational complexity is
only by a factor of approximately 3 worse. Overall, the computational and stor-
age requirements for T are the same in both protocols, namely symmetric-key
operations (SPRP and PRF), and a small constant amount of secure storage.

Our protocols can be extended to reuse the same token for multiple protocol
runs. For this, all information shared between A and T (i.e., the value k and
s) is derived pseudo-randomly from a master-key known by A and T and some
session identifier. The token T keeps track of the next session id using a strictly
monotonic tamper-proof hardware counter which is available in most smartcards
today. Also updating the usage counter nB inside the token is possible via secure
messaging as described in [1].

5 Only Issuer Trusts Token: Correctness of B’s Output

In this section we extend the protocol of §4 to guarantee privacy and correctness
when B does not trust the token. This is formalized by the following problem.

Problem 2 (A colludes with M to break correctness of B’s output). In the pro-
tocols of Fig. 1 and Fig. 2, a corrupt A can enforce B to obtain in the protocol
wrong outputs, i.e., different from X ∩ Y : This can be done by creating a mali-
cious token T that does not compute the permutation F correctly, but computes
another function F ′ which maps multiple values to the same value or even de-
pends on the history of values seen from B.

Although Problem 2 does not affect the privacy of B’s input, the correctness of
B’s output is no longer guaranteed. In many application scenarios this is not a
problem, as a malicious A could also provide wrong inputs to the computation.
However, a malicious token T could also compute a completely different function
which does not correspond to set intersection at all: For example, a malicious T
could output random values once it has obtained a value yi = 0. In this case,
the protocol computes some set Z � X ∩ Y if 0 ∈ Y , and X ∩ Y otherwise.

Protocol. We extend the protocol of Fig. 2 and adapt the oblivious transfer
protocol of [30] to the set intersection scenario. We will therefore obtain both
input privacy against malicious A and correctness against a covert A in the
covert sense: A can actually succeed in violating the correctness of B’s output
with non-negligible probability but at the same time B can detect the cheating
behavior of A with probability 1/2. The update of the protocol goes as follows:
The basic idea is to let T compute two answers (using two different keys K, KT),
where B can verify the correctness of one answer (B obtains one key KT from
A) without T knowing which one is verified. For this, B randomly chooses and
sends to A a test value rT and a distinct value r. Then, B obtains the test key
KT = Fk(rT) from A, whereas the other key K = Fk(r) remains unknown to
B (to ensure this, A checks that rT �= r). Afterwards, B sends (r, rT) to T in
random order such that T can derive K, KT without knowing which of them

Secure Set Intersection with Untrusted Hardware Tokens 11

Setup Phase:

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

k, s, sT ∈R D
init T : k, s, sT , nB T

∀j ∈ {1, .., nB} : pj = fs(j)
ȳ′j = FK(yj)⊕ pj
pTj = fsT (j)

ȳ′Tj = FKT (yj)⊕ pTj

yj

(ȳ′j , ȳ
′T
j)

Online Phase:

r
?

�= rT

KT = Fk(r
T)

K = Fk(r)
X̄ = {FK(x)}x∈X

T

X̄,KT

r, rT ∈R D, r �= rTr, rT

b ∈R {0, 1}
if b = 1: flip order of (r, rT) (r, rT)

K = Fk(r)
KT = Fk(r

T)

if b = 1: flip order of (ȳ′j , ȳ
′T
j)

done invalidate k
pj = fs(j)
pTj = fsT (j)

if b = 1: flip order of (pj , p
T
j)

ȳTj = ȳ′Tj ⊕ pTj
?
= FKT (yj)

ȳj = ȳ′j ⊕ pj
X ∩ Y = {yj |ȳj ∈ X̄}

afterwards

(pj , p
T
j)

Fig. 3. Set Intersection Protocol with Privacy of B’s Input and (Covert) Correctness
of B’s Output when T is not trusted by B, and Privacy of A’s input when A trusts T

is known to B. Then, for each element yj ∈ Y , B obtains ȳj = FK(yj) and
ȳT

j = FKT (yj) from T (after removing the pads pj and pT
j as in the protocol of

Fig. 2). As B knows the test key KT it can test the correctness of ȳT
j , whereas T

can only guess whether to cheat on ȳj or ȳT
j . Finally, B computes the intersection

from X̄ and Ȳ as before.
The overall protocol shown in Fig. 3 provides A with input privacy against

a malicious B, which cannot break into the token, and provides B with input
privacy (Problem 1) against a malicious A and T and output correctness against
a covert A and T (Problem 2).

Theorem 2. If F is a SPRP and f is a PRF, then the protocol depicted in Fig. 3:

1. securely evaluates F∩(X, Y) w.r.t. a malicious B that cannot break into T ;
2. securely evaluates F∩(X, Y) w.r.t. a covert A with deterrence factor ε = 1/2;
3. securely evaluates F∩(X, Y) when both parties trust the token.

B’s input is still (unconditionally) private even w.r.t. malicious A, as in Prop-
erty 2 of Theorem 1.

Proof (Sketch). To prove Theorem 2 we consider each property individually.

Malicious B that cannot break into T . We show an ideal world adversary BI .
This adversary BI internally runs B simulating also T ’s answers. BI sends to B

12 M. Fischlin et al.

a random vector of messages X̄ and a random key KT . When simulating T ’s
answers before done, BI plays honestly when test queries are performed (i.e.,
using KT for the test queries along with the pseudorandom function indexed
by sT) and sending random messages otherwise, as already done in the proof of
Theorem 1. When message done has been received, BI plays in the ideal world
the input extracted from the queries received by T and gets back the inter-
section Z. Here BI proceeds by computing values pT

j honestly, but adaptively
computing all final pj values so that the view of B will still be computationally
indistinguishable, precisely as in the proof of Theorem 1.

Note that, since A checks that r �= rT , the pseudorandom keys K and KT are
computationally independent, and can be essentially replaced by independent
random keys. A straightforward hybrid game shows that by the pseudorandom-
ness of F this does not change B’s success probability significantly.

Covert A. Informally, the privacy of B’s input is preserved as A does not obtain
any message from B besides the random values r, rT . The same argument which
has been applied already in the proof of Theorem 1 about protecting B’s input
from a malicious sender, applies here as well. The more interesting difference
however consists now in proving correctness of B’s output in the covert sense:
showing that a success of A in violating the correctness of B’s output can be
detected by B with probability ε = 1/2, and this is achieved through the cut-
and-choose construction of [30].

To formally prove the correctness of B’s output we build a simulator Sim
which plays as an honest B against adversaries AdvA and AdvT who control A
and T , respectively. As the token is not necessarily honest and hence a cheating
AdvA does not need to initialize T at all, Sim cannot learn the token’s keys
k, s, sT from the initialization message sent from AdvA to AdvT . Instead, Sim
determines whether the adversary cheats in the protocol as follows: Sim obtains
both opening keys KT and K from AdvA, by rewinding AdvA and swapping the
order of (r, rT). Afterwards, Sim can verify whether both values ȳj , ȳ

T
j received

from AdvT are correct. If AdvT tried to cheat (e.g., if the check of ȳT
j failed), Sim

catches T in doing so and issues the cheat instruction. Sim aborts in this case
(losing any correctness guarantee in case the cheat is not announced). Otherwise,
Sim continues to play as honest B and extracts A’s inputs from X̄ using K. Note
that Sim simulates the ideal view of a covert A with deterrence factor ε = 1/2,
because for any run in which Sim does not receive both keys, B would detect
cheating with probability 1/2 in the actual protocol, in which case it too aborts.

A and B trust the token. We now prove that when the token T is trusted,
the protocol actually realizes the set intersection functionality (i.e., both input
privacy in the simulation-based sense and output correctness are achieved). The
proof follows closely the one of Theorem 1, indeed since T is honest, both A’s
and B’s input can be extracted by receiving the queries to T , moreover there is
no issue of correctness since T never deviates from the protocol. The only issue to
mention is that a malicious A could play a wrong third message, sending a wrong
KT . Therefore, the ideal world simulator AI will first check that A’s message is

Secure Set Intersection with Untrusted Hardware Tokens 13

well formed playing as honest B, and only in case honest B would have obtained
the output, AI forwards the extracted input to the ideal functionality. ��

Efficiency and Amplifying Deterrence Factor. Overall, the protocol in
Fig. 3 approximately doubles the computation performed by T and the commu-
nication between B and T compared to the protocol in Fig. 2. The hardware
requirements for the token are the same.

In analogy to [30], the deterrence factor ε can be increased by using n test
elements rT

i for which B obtains the corresponding test keys KT
i from A. Now, T

can only successfully guess the key on which to cheat with probability p = 1
n+1

s.t. ε = 1−p is polynomially close to 1 in n. Obviously this is a tradeoff between
deterrence factor and efficiency.

6 Only One Token Trusted: Privacy of A’s Input

Model. In this section we extend the model of §4 so that not only B does not
trust the tokens issued by A, but also B is allowed to collude with all but one
hardware manufacturer without A knowing which one. We show how to detect
cheating in this model.

Problem 3 (B breaks into T to break privacy of A’s inputs). In the protocols
so far, a malicious B who can break into T (e.g., by a successful attack or by
colluding with M who builds a trapdoor for B into T) can obtain k and invert
F to recover A’s inputs from X̄ .

Protocol. To address Problem 3, we extend the protocol of Fig. 3 to multiple
tokens as shown in Fig. 4: Instead of using one token, A uses two hardware tokens
T1 and T2 manufactured by M1 and M2, respectively. Then, A embeds into
each token Ti a different random key and runs the protocol using the sequential
composition FK′ = FK2 ◦ FK1 instead of FK , i.e., B communicates first with T1

and afterwards with T2. As long as at least one token is resistant against B’s
attacks, B cannot invert FK′ and hence cannot recover A’s inputs.

Theorem 3. If F is a SPRP and f is a PRF, then the protocol depicted in Fig. 4:
1. securely evaluates F∩(X, Y) w.r.t. a malicious B that cannot break into all

but one token Ti;
2. securely evaluates F∩(X, Y) w.r.t. a covert A with deterrence factor ε = 1/2;
3. securely evaluates F∩(X, Y) when both parties can trust all tokens.

Proof (Sketch). The proof of Theorem 3 follows similarly to that of Theorem 2,
but using multiple tokens where B can break into all but one.

Malicious B that can break into all but one token Ti. Assume that B corrupts
token T1 and thus learns k1, s1, and sT

1 . Then security for A follows as in the
proof of Theorem 2 from the trustworthiness of T2, only that we consider the
injectively transformed inputs through Fk1(·). Analogously, if B corrupts T2 then
security follows as before, because the outer function is easy to simulate.

14 M. Fischlin et al.

X ∩ Y = {yj |ȳ2,j ∈ X̄}

r
?

�= rT

KT
i = Fki

(rT)
Ki = Fki(r)
X̄ = {FK2(FK1(x))}x∈X

Online Phase:

Ti

r, rT ∈R D, r �= rTr, rT

X̄,KT
1 ,K

T
2
b ∈R {0, 1}
if b = 1: flip order of (r, rT)
for i ∈ {1, 2}: (r, rT)

Ki = Fki(r)
KT

i = Fki(r
T)

Setup Phase:

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

for i ∈ {1, 2}:
ki, si, s

T
i ∈R D

init Ti: ki, si, sTi , nB T1, T2

∀j ∈ {1, .., nB} :

pi,j = fsi(j)
ȳ′i,j = FKi(yi,j)⊕ pi,j
pTi,j = fsTi (j)

ȳ′Ti,j = FKT
i
(yi,j)⊕ pTi,j

yi,j

(ȳ′i,j , ȳ
′T
i,j)if b = 1: flip order of (ȳ′i,j , ȳ

′T
i,j)

yi,j =

{
yj if i = 1

ȳi−1,j else

afterwards done invalidate ki
pi,j = fsi(j)
pTi,j = fsTi (j)

(pi,j , p
T
i,j)if b = 1: flip order of (pi,j , p

T
i,j)

ȳTi,j = ȳ′Ti,j ⊕ pTi,j
?
= FKT

i
(yi,j)

ȳi,j = ȳ′i,j ⊕ pi,j

Fig. 4. Set Intersection Protocol with Privacy of B’s Inputs, (Covert) Correctness of
B’s Output and Privacy of A’s Inputs when A trusts at least one Token

Covert A. The only message A obtains from B are the random values r, rT which
do not depend on B’s inputs, and this proves B’s input privacy. For correctness
of B’s output, we observe that only one token can cheat while the other behaves
correctly such that the probability of being caught remains 1/2. Alternatively,
the two tokens could run a combined cheating strategy: token T1 which is queried
first can only guess on which of the two values to cheat without being detected
with probability 1/2. In case cheating is not detected, T1 can transfer information
on which value it cheated successfully to T2 in the value ȳ1,j. However, the
combined cheating strategy will still be caught with probability at least 1/2.

A and B trust all tokens. In this case the protocol realizes the set intersection
functionalities (i.e., both input privacy in the simulation-based sense and output
correctness are achieved). The proof is similar to that of Theorem 2. ��

Multiple Tokens and Efficiency. The protocol in Fig. 4 can be generalized
to n ≥ 1 tokens T1, . . . , Tn manufactured by M1, . . . ,Mn, where a malicious B
is able to break all but one token. For n = 1, the protocol is equivalent to the
protocol of Fig. 3, where B cannot break into the single token. With n tokens,
the protocol in Fig. 4 is essentially a n-times repetition of the protocol in Fig. 3.

Secure Set Intersection with Untrusted Hardware Tokens 15

Acknowledgments. The work described in this paper was supported in part
by the European Commission through the ICT program under contract 238811
UNIQUE, 216676 ECRYPT II, 216499 CACE, and 215270 FRONTS. The first
author was supported by an Emmy Noether Grant Fi 940/2-1 of the German Re-
search Foundation (DFG) and by CASED (www.cased.de). The second author
was supported by the SFEROT project of the European Research Council. The
last author was also supported in part by the MIUR Project PRIN “PEPPER:
Privacy E Protezione di dati PERsonali” (prot. 2008SY2PH4).

References

1. Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using stan-
dard smartcards. In: CCS 2008, pp. 491–500. ACM, New York (2008)

2. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145 (2001)

3. Sharangpani, H.P., Barton, M.L.: Statistical analysis of floating point flaw in the
PentiumTMprocessor. White paper, Intel Corporation (1994)

4. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)

5. Security, H.: Hacker extracts crypto key from TPM chip (2010),
http://www.h-online.com/security/news/item/

Hacker-extracts-crypto-key-from-TPM-chip-927077.html

6. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

7. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

8. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

9. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with
linear computational and bandwidth complexity. In: Sion, R. (ed.) FC 2010. LNCS,
vol. 6052, pp. 143–159. Springer, Heidelberg (2010)

10. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: Size-hiding private
set intersection. Cryptology ePrint Archive, Report 2010/220 (2010),
http://eprint.iacr.org/

11. Sang, Y., Shen, H.: Privacy preserving set intersection protocol secure against
malicious behaviors. In: PDCAT 2007, pp. 461–468. IEEE Computer Society, Los
Alamitos (2007)

12. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

13. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)

14. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010)

http://www.h-online.com/security/news/item/Hacker-extracts-crypto-key-from-TPM-chip-927077.html
http://www.h-online.com/security/news/item/Hacker-extracts-crypto-key-from-TPM-chip-927077.html
http://eprint.iacr.org/

16 M. Fischlin et al.

15. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
312–331. Springer, Heidelberg (2010)

16. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. JoC 23, 422–456 (2010)

17. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

18. Tate, S., Vishwanathan, R.: Improving cut-and-choose in verifiable encryption and
fair exchange protocols using trusted computing technology. In: Gudes, E., Vaidya,
J. (eds.) Data and Applications Security XXIII. LNCS, vol. 5645, pp. 252–267.
Springer, Heidelberg (2009)

19. Fort, M., Freiling, F.C., Penso, L.D., Benenson, Z., Kesdogan, D.: Trustedpals:
Secure multiparty computation implemented with smart cards. In: Gollmann, D.,
Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 34–48. Springer,
Heidelberg (2006)

20. Iliev, A., Smith, S.: More efficient secure function evaluation using tiny trusted
third parties. Technical Report TR2005-551, Dartmouth College, Computer Sci-
ence, Hanover, NH (2005)

21. Hofheinz, D., Müller-Quade, J., Unruh, D.: Universally composable zero-knowledge
arguments and commitments from signature cards. In: MoraviaCrypt 2005 (2005)

22. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

23. Järvinen, K., Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Garbled circuits for
leakage-resilience: Hardware implementation and evaluation of one-time programs.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 383–397.
Springer, Heidelberg (2010)

24. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

25. Moran, T., Segev, G.: David and Goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008)

26. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

27. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Universally composable multiparty com-
putation with partially isolated parties. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 315–331. Springer, Heidelberg (2009)

28. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

29. Järvinen, K., Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Embedded SFE: Of-
floading server and network using hardware tokens. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 207–221. Springer, Heidelberg (2010)

30. Kolesnikov, V.: Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 327–342.
Springer, Heidelberg (2010)

31. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007)

	Secure Set Intersection with Untrusted Hardware Tokens
	Introduction
	Related Work

	Preliminaries
	The Setting for Token-Based Set Intersection Protocols
	Security Models

	Both Parties Trust Token [1]
	Only Issuer Trusts Token: Privacy of B's Input
	Only Issuer Trusts Token: Correctness of B's Output
	Only One Token Trusted: Privacy of A's Input
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

