
An Architecture-Centric Approach to Detecting
Security Patterns in Software

Michaela Bunke and Karsten Sohr

Technologie-Zentrum Informatik, Bremen, Germany,
{mbunke|sohr}@tzi.de

Abstract. Today, software security is an issue with increasing impor-
tance. Developers, software designers, end users, and enterprises have
their own needs w.r.t. software security. Therefore, when designing soft-
ware, security should be built in from the beginning, for example, by
using security patterns. Utilizing security patterns already improves the
security of software in early software development stages. In this paper,
we show how to detect security patterns in code with the help of a reverse
engineering tool-suite Bauhaus. Specifically, we describe an approach to
detect the Single Access Point security pattern in two case studies using
the hierarchical reflexion method implemented in Bauhaus.

1 Introduction

The increasing and diverse number of technologies that are connected to the
Internet such as distributed enterprise systems or smartphones and other small
electronic devices like the iPad brings the topic IT security to the foreground. We
interact daily with these technologies and spend much trust on a well-established
software development process. However, security vulnerabilities appear in the
software on all kind of PC(-like) platforms. Hence, developers must more and
more face security issues during software design and especially reengineering [26].

Today’s security tools that aim to support developers during the implemen-
tation phase are based on static analysis. Chess et al. describe in depth how
static analysis tools can detect bugs in code such as buffer overflows or simple
race conditions [3]. These bugs can be used to exploit software. Using such anal-
ysis tools can increase the software’s security by ensuring its stability through
filtering out bugs at code level.

Beyond known static security analysis tools like Fortify [5], which work on
source code, security modeling elements exist at the architectural level such as
security patterns, which should enhance security at the software design stage.
Security patterns can model security issues driven by the software’s require-
ments. Similar to the design patterns introduced by Gamma et al. [6], security
patterns describe a general reusable solution to a well-known problem. Yoder
and Barcalow were the first that listed existing security patterns [29]. At that
time, their popularity in the pattern community grew and many patterns have
been published thereafter [12]. Yoshioka et al. [30] and Heymann et al. [12] give



a good survey of the published security patterns till 2008. Design patterns and
security patterns have several aspects in common, but are they similar?

VanHilst and Fernandez pointed out that “GoF Patterns are not security pat-
terns” [27]. Like design patterns, which are also called GoF patterns [6], security
patterns can be applied to implementing and structuring software systems, but
they can also model security issues and security processes in enterprises such as
“Enterprise Architecture Management Patterns” [4]. Based on this heterogene-
ity, the classification of security patterns is an important and often discussed
issue [24, 28, 8, 9]. Different approaches exist, some describe basic topologies like
separating the patterns in application domains (e.g., software, enterprise man-
agement), others describe complex layered structures. In this paper, we will have
a closer look on patterns that describe how to implement a specific security fea-
ture, i.e., so-called structural patterns [8].

Within the pattern community, various descriptive models for security pat-
terns exist [24]. The POSA model described by Buschmann et al. [2] is frequently
used to describe the context and usage of security patterns. Some descriptions
make use of UML diagrams or rarely source code snippets to clarify the security
pattern modeling during the design phase. Nevertheless, security patterns are
mostly described highly abstract; so it is difficult to understand the benefit or
use if one is not familiar with software design linked with security issues [12].
Those circumstances have an impact on the software design when you have to
ensure security interests and select an appropriate security pattern for the soft-
ware needs. Halkidis et al. show that the usage of security patterns can offer a
reasonable protection against most common attacks [10].

Frequently, software has to be modified due to changing requirements, bugs
and security flaws. Moreover, the reconstruction of patterns in grown systems
is quite difficult. Maintenance programmers, however, must deal with such use
cases. Given that patterns in general are the best-known solution of a recurring
problem [6], security patterns should also be recognized during the maintenance
process to guarantee security objectives and requirements. For example, a de-
tected Check Point pattern [24] allows one to conclude that on this point in code
relevant information will be validated before further steps in the application flow
are carried out. If the developer knows about a security pattern in code, he is
aware of what is going on in this code unit or component and can program ac-
cording to this context. An improvement of software quality caused by detecting
incorrect or not accomplished security patterns is conceivable. In this case, the
developer can avoid bypassing this Check Point in further implementations.

For this maintenance process, there exist several reengineering tools to get
a clear view about the software structure and behavior. However, only a few of
those tools take the well-known design patterns into account to support program
comprehension at that point. Some approaches are presented in [27]. Presently
none of them support the detection of security patterns.

All shown factors do not support the application, comprehension and recog-
nition of security patterns in software. Therefore, it is desirable to integrate
security patterns with a program comprehension tool. This ensures that secu-



rity patterns are preserved during software maintenance process and their high-
lighting allow once well-directed implementations of new (security) features in
software.

In this paper, we focus on the reengineering scope by discussing security
patterns. Specifically, we use the Resource Flow Graph (RFG) representation
provided by the reverse engineering tool-suite Bauhaus [21]. With this program
representation, we are able to use the integrated program comprehension method
called hierarchical reflexion method [16]. This method aims to reconstruct a soft-
ware architecture by mapping a hypothetical architecture to the actual software
architecture extracted from the source code. Our goal is to depict the existence
of security patterns on an abstract architectural level. We also describe which
methods can help programmers in preserving security patterns during the soft-
ware maintenance process. To demonstrate the feasibility of our approach, we
present two case studies. Here, security patterns are identified in a software
architecture by using our program comprehension technique.

The remainder of this paper is structured as follows. In Section 2, we briefly
describe the software analysis tool Bauhaus. There we will concentrate on the
RFG and the hierarchical reflexion method. In Section 3, we present further
steps in combining an architecture-based methodology with security pattern de-
tection. This is followed by the description of the case studies in Section 4. After
discussing related work, we give an outlook in Section 6.

2 The Bauhaus Tool

The Bauhaus tool-suite is a reverse engineering tool-suite that has been employed
in several industry projects [21]. Bauhaus allows one to retain two abstractions
from the source code. The low-level representation called Intermediate Language
(IML) is an attributed syntax tree (an enhanced AST) that contains the detailed
program structure information such as loop statements, variable definitions and
name bindings. The RFG, a more abstract representation, works at a higher
abstraction level and represents architecturally relevant information of the soft-
ware. At present such a graph can be created for programs written in C, C++,
Java, ADA and C#. The RFG is a hierarchical graph that consists of typed
nodes and edges representing elements like types, components, and routines and
their relations. The RFG’s information is stored in structured in views, where
each view represents a different aspect of the architecture, e.g. a call graph.

Several analyses are built upon this infrastructure to derive design and archi-
tectural information like the so-called hierarchical reflexion analysis [16]. This
analysis extends the original analysis developed by Murphy et al. [18] to hier-
archical systems. It starts with a hypothesis of the architecture and a mapping
of existing implementation components onto architectural components provided
by an human analyst. An automated analysis then determines convergences and
differences among the architecture and the implementation model, the so-called
reflexion model. Based on these findings, the architecture and mapping may be
refined and the process will be repeated until the architecture model sufficiently



describes the implementation.
Usually, this procedure will be used when a software system has to be mod-

ified but the documentation or the knowledge of it got lost. Besides this recon-
struction the reflexion analysis can be used to check the present implementation
against their architectural specification.

3 Security Aspects and the RFG

Sohr and Berger [25] depict some possibilities to accomplish a security analysis
with the RFG. We resume on their point and discuss other security aspects
that can be based upon the RFG. In contrast to their ideas, we will not focus
on policies and RBAC extensions. Our focus is software quality assurance and
program comprehension in conjunction with security patterns.

Hierarchical reflexion method for security issues: As already mentioned in Sec-
tion 2, the hierarchical reflexion analysis is a well-known method to reconstruct
software architectures. This method can be used to identify security patterns.
These will be marked as potential patterns and can be used to show deficiencies
in the software architecture. With an automated check against the real source
code, there can be detected architecture violations such as calling a component
not through a Check Point that can induce to security concept violations. This
reflexion method is used in case studies, presented in Section 4 to detect a se-
lected security pattern in a software’s architecture.

Security patterns at the architecture level: As shown above, the RFG provides
the ability to create new views. These views can be created containing only el-
ements focusing on special purposes. Conceivable is a view containing elements
that are supposed to belong to a single security pattern, possibly identified by
the method described above. If one has identified more than one security pattern
and created them on different views, one can create a new view by intersecting
or uniting the view to visualize composed or merged security patterns as de-
scribed in [23]. Possibly this process can be automated when the system knows
several available or often occurring compositions of security patterns. Presenting
such combinations to maintenance programmers may facilitate the realization of
adequately and inadequately programmed pattern collaborations. For instance,
consider the combination of Single Access Point and Check Point pattern [24],
where maybe a badly implemented cooperation raise security leaks.

Automatic detection, suggestions and learning: Semi-automatic detection of se-
curity patterns is good, but is time-consuming and requires deep knowledge of
the system. A better approach would be the automatic detection. However, this
is not easy to realize as there are many challenges as described in Section 1.
Maybe, there exists a pattern language that fulfills our needs for the description
of security patterns at the architecture level. We then can transform these de-
scriptions to the RFG model for an automatic pattern matching and are able



to present the maintenance programmer pattern suggestions. These suggestions
can be assessed or modified by the programmer to improve the security pattern
model. Thereby, we can collect pattern derivatives for improving the automatic
or even the semi-automatic detection. Moreover, this collection gives the ab-
stract appearance of security patterns a more clear shape that can be reused.
This technique can be refined by using security anti- or misuse patterns to model
an architecture’s irregularities to be able to detect the incorrect usage of security
patterns. The benefit of the sketched technique is that software systems can be
post-checked and hardened before they will be released.

Source and sink markers for pattern endings: Information flow is an important
issue concerning software security. A security view of the RFG can also model
fractals of the information flow. If we combine the RFG with the other more-
detailed code representations such as the IML, we can model the information
flow between components. If we have detected a security pattern or compound,
we can extract the pattern in a new view and highlight sources and sinks of the
patterns. This would enhance the role-based view described by Sohr et al. [25]
and give the opportunity to plug in a further information flow analysis to validate
the pattern’s behavior. To give an example consider the communication with
a database or a password manager. In these cases, the visualization of security
patterns’ sinks and sources like architectural glue dots addresses the maintenance
programmer. It will support and ensure the information flow comprehension
while reconstructing the software system.

4 Early Case Studies

We now discuss our architecture-centric security pattern analysis in the con-
text of two case studies. We selected the security pattern Single Access Point
to demonstrate that we can identify this pattern within an abstract software
representation.

We chose primarily the open source instant messenger client Spark [13] and
an open source Android application named Simple Android Instant Messaging
Application [17]. Both are Java-based programs, so we took the Java byte code
and generated the software architecture in the RFG format. This is the starting
point for using the hierarchical reflexion method to detect the Single Access
Point pattern. First of all, we present the pattern in Section 4.1 and then we
will have a closer look on the case studies in 4.2 and 4.3.

4.1 Single Access Point Pattern

A Single Access Point pattern [24] provides access to a system for external
clients. Moreover, it ensures that the system cannot be damaged or misused
by such clients. The idea behind this pattern is that an exclusive door to the
system can be better protected and controlled than many. Fig. 1 depicts the
UML diagrams for the Single Access Point security pattern. For this reason,



many application clients such as twitter or instant messenger clients that provide
any kind of access to other systems use a derivative of this pattern in order to
provide clients (mostly, users) access to underlying services.

Client

Single Access Point

Boundary Protection

Protected System

enter system

block access

protects

interacts with

deny acces to

enter system through

provides access to

(a) Single Access Point UML diagram

:Single Access 

Point

:Client

<<Actor>>

:Protected 

System

do anything

do something

OK

check client

(b) Single Access Point Sequence Diagram

Fig. 1. Single Access Point [24]

According to the UML diagram in Fig. 1(a), we modeled a first hypothetical
architecture (see Fig. 2(a)) containing the components Client, Single Access

Point, and Protected System. The client that uses this software is represented
by the Client component in the architecture. Given that the reflexion method is
based on static code dependencies and our client in the case studies is a human,
we obviously will never see any match in the dependencies with the system.
Schumacher et al. mentioned that the Boundary Protection component of a
protected system was often hard to show. This also applies to our case studies
where the client is a human user that needs to know a user name and pass-
word to gain access to the protected system. In this case, the user’s knowledge
models the Boundary Protection component. Hence we skip this component as
we cannot model it according to static analysis. We have not specified in depth
the dependencies between components such as “calls”, “references”, and “inher-
its” to simplify the dependencies and modeled them as undirected dependencies
according to the undirected edges in Fig. 1(a).

After our first attempt to model the architecture, we realized that the UML
model was not adequate enough to represent the idea of the Single Access Point
pattern. Thus, not every direction of the dependencies between the components
may be allowed to ensure a secure behavior. For this reason, we give a more spe-
cific access point model according to the information given in Fig. 1(b). First,
the Client interacts with the Single Access Point component, and thereafter
the client can interact with the Protected System. Based upon this, we assume
that the Single Access Point component allows or denies the user’s request
and informs the Protected System about the response. Possibly, the Single

Access Point component instantiates a further window to allow the user to



(a) Hypothetical architecture (b) Hypothetical architecture -
specific dependencies

Fig. 2. Hypothetical architectures

interact with the Protected System after the logon. Therefore, we specify that
a proper behavior of the system is that the Single Access Point has depen-
dencies to the Protected System to call, communicate or instantiate something
after passing the Single Access Point. The corresponding hypothetical archi-
tecture is shown in Fig. 2(b).

Both hypothetical architectures will be used with the hierarchical reflexion
method on the chosen applications to show and discuss distinctive features.

4.2 Case Study: Spark

Spark is an open source instant messenger client that provides a login screen
and is expected to use this pattern [13]. It is a client that allows users to log on
to an instant messenger network and then receive and write instant messages to
other users.

Intuitively, we map the software components according to their names such as
“LoginDialog”, “LoginSettingsDialog” to the component Single Access Point.
Then, we assume that the rest of the code is in package “org.jivesoftware” is the
Protected System.

(a) Model check result against
Fig. 2(a)

(b) Model check result against
Fig. 2(b)

Fig. 3. Detection results - Spark

Fig. 3(a) shows the match between the hypothetical architecture and the
real code architecture. As expected, outgoing and incoming edges of the Client

component are marked as absence (yellow edges). The edges between Single

Access Point and Protected System are marked as convergences. This shows
that this pattern can be found in the software’s architecture by using the reflexion



method.

In Fig. 3(b), we try to detect a login behavior in Spark. The architecture
match result is depicted in Fig. 3(b). The expected dependency between Single

Access Point and Protected System is marked as convergence (green edge).
However, there exist more dependencies than we have modeled, represented by
the red edges. They arise from static field usages and class instantiations. This
shows that the two identified components are bundled together and are not
strictly separated in Spark as one might expect according to their task.

4.3 Case Study: Simple Android Instant Messaging Application

According to our experiences with Spark we will have a closer look on another
open source application. The Simple Android Instant Messaging Application
[17] is an example application for the mobile phone platform Android [7]. The
author’s intention to make this application freely available was to provide inter-
ested people with an example of an Android application and show how instant
messaging can be provided easily. It communicates via the http protocol with a
web server. This server is also used for user authentication. We assume that ev-
ery component starting or ending with “Login” will indicate the Single Access

Point in the source code. The rest belongs to the Protected System because it
provides the instant messaging communication with the server. For the reflexion
method, we used the same hypothetical architectures as depicted in Fig. 2(a)
and 2(b).

(a) Model check result checking
against the hypothetical architec-
ture from Fig. 2(a)

(b) Model check result checking
against the hypothetical architec-
ture from Fig. 2(b)

Fig. 4. Detection results - Simple Android Instant Messaging Application

Fig. 4(b) depicts the architecture match result for the expected behavior.
Here, the dependency between the components Single Access Point and
Protected System is marked as convergence (green edge) and the dependen-
cies to the client are marked as absence (yellow edges). This indicates that in
the Simple Android Instant Messaging Application the components for Single

Access Point and Protected System are separated in the code. This hypothe-
sis is confirmed by Fig. 4(a) that shows an absence between Protected System

and Single Access Point.



4.4 Conclusion

We demonstrated with these case studies that we were able to detect a security
pattern within software using the components described in the pattern descrip-
tion. Besides the two case studies discussed, we have used this method to detect
the Single Access Point pattern in two other software systems and to detect the
Runtime mix’n and match design pattern [1] that is coupled with a Check Point
security pattern. In particular, we detected it in the middleware of the open
source platform Android [7].

Towards this case study we expect to be able to analyse more security pat-
terns which apply the classification of structural patterns. They description
should also contain UML diagrams that clarify their structure and behavior.
However, shown in this study even with the help of such diagrams it cannot be
clearly decided whether a security pattern is modeled accurate or inaccurate. In
our case Spark models the Single Access Point pattern according to the UML
class diagram and the Simple Android Instant Messaging Application in com-
pliance with both UML diagrams. Hence further researches on security patterns
and their appearance in software architecture are reasonable.

With the introduced static examination, however, we are not able to consider
if the system behaves in the expected way. Therefore, we will need more source
code information as provided in the IML representation, a more specific static
description of this pattern or even dynamic analysis information. Moreover, on
detecting such patterns automatically or semi-automatically we have to deal with
abstract descriptions that must be modeled differently for several application
contexts. For example, in the shown case the client was a user that must enter
his credentials. In another case, the client is possibly a web service that tries to
use another web service.

5 Related Work

There exist a plethora of works for the static security analysis of software [3]. The
works on static analysis for security often use the source code in order to detect
common vulnerabilities such as buffer overflows or cross site scripting [5, 20]. An-
other approach combines type-based security and annotations with dependence
graph-based information flow control [11]. All aforementioned approaches do not
deal with security patterns.

In addition, VanHilst and Fernandez [27] discuss the possibilities to detect
security patterns using reverse engineering like [19]. They identify some problems
that may occur during detection, but they do not describe a practical approach
using the reflexion method. Concerning security and software architectures, Ryoo
et al. [22] presented a basic approach to detecting architectural constructs and
properties that make software less secure. Another idea on employing the soft-
ware architecture for static security analysis was described by Sohr and Berger
[25]. They use the RFG to check policies and permissions on Java EE and the
Android platform. An approach to the automated verification of UMLsec models



has been presented by Jürjens and Shabalin [14]. They present automated veri-
fication of UML models w.r.t. modeled security requirements. The precondition
to this is that there exists a UML-modeled architecture for the software sys-
tem. Our approach has the reverse engineering point of view, and we work with
an abstract representation based on the software implementation for searching
security patterns. Thus, our approach requires no UML documentation of the
software architecture and represents always the actual software’s implementation
state.

6 Outlook

In this paper, we demonstrated that we are able to detect security patterns
using the reflexion method. As indicated in Section 4.4, we plan to improve on
the automation degree of our detection process for instance using the incremental
reflexion method [15]. In addition, we will search for the best arrangement of
static and dynamic analysis techniques to support this goal. A further step in
our work will be the examination of larger software systems to point out which
security patterns are used and clarify their impact on software’s architecture.

Section 1 indicates that many topics are open to discuss security patterns
and reverse engineering. Thus we consider this work as a starting point for
further approaches in security and program comprehension, bringing together
the different research communities of reverse engineering and software security.

References

1. Paul G. Austrem. Runtime mix’n and match design pattern. In Proc. of the 15th
Pattern Languages of Programs, pages 1–8, New York, NY, USA, 2008. ACM.

2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. Wiley, Chich-
ester, UK, 1996.

3. Brian Chess and Gary McGraw. Static analysis for security. IEEE Security and
Privacy, 2:76–79, 2004.

4. Alexander M. Ernst. Enterprise architecture management patterns. In Proc. of
the 15th Pattern Languages of Programs, pages 1–20, New York, NY, USA, 2008.
ACM.

5. Fortify Software. Fortify source code analyser, 2009. http://www.fortify.com/

products.
6. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Object-Oriented Software. Addison Wesley, 1995.
7. Google Inc. Android development, 2010. http://developer.android.com/index.

html.
8. Munawar Hafiz, Paul Adamczyk, and Ralph E. Johnson. Organizing security pat-

terns. IEEE Software, 24:52–60, 2007.
9. Munawar Hafiz and Ralph Johnson. Security patterns and their classification

schemes. Technical report, Technical Report for Microsoft’s Patterns and Practices
Group, September 2006.



10. Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides. A quali-
tative analysis of software security patterns. Computers & Security, 25(5):379–392,
2006.

11. Christian Hammer. Experiences with pdg-based ifc. In F. Massacci, D. Wallach,
and N. Zannone, editors, Proc. of International Symposium on Engineering Se-
cure Software and Systems, volume 5965 of LNCS, pages 44–60. Springer-Verlag,
February 2010.

12. Thomas Heyman, Koen Yskout, Riccardo Scandariato, and Wouter Joosen. An
analysis of the security patterns landscape. In Proc. of 3rd International Workshop
on Software Engineering for Secure Systems. IEEE Computer Society, 2007.

13. Jive Software. Spark - project page. Online, 2010. http://www.igniterealtime.

org/projects/spark/index.jsp.
14. Jan Jürjens and Pasha Shabalin. Automated verification of UMLsec models for se-

curity requirements. In Proc. of UML 2004 - The Unified Modelling Language:
Modelling Languages and Applications, volume 3273 of LNCS, pages 365–379.
Springer, 2004.

15. Rainer Koschke. Incremental reflexion analysis. In European Conference on Soft-
ware Maintenance and Reengineering. IEEE Computer Society Press, 2010.

16. Rainer Koschke and Daniel Simon. Hierarchical reflexion models. In Proc. of 10th
Working Conference on Reverse Engineering, pages 36–45, nov. 2003.

17. Ahmet Oguz Mermerkaya. Simple android instant messaging application - project
page, 2010. http://code.google.com/p/simple-android-instant-messaging-

application/.
18. Gail C. Murphy, David Notkin, and Kevin J. Sullivan. Software reflexion mod-

els: Bridging the gap between design and implementation. IEEE Transactions on
Software Engineering, 27(4):364–380, April 2001.

19. Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim Welsh.
Towards pattern-based design recovery. In Proc. of the 24th International Confer-
ence on Software Engineering, pages 338–348. ACM, 2002.

20. Ounce Labs Inc. Website, 2010. http://www.ouncelabs.com/.
21. Aoun Raza, Guther Vogel, and Erhard Plödereder. Bauhaus—A tool suite for

program analysis and reverse engineering. In Ada-Europe, LNCS, pages 71–82.
Springer, 2006.

22. Jungwoo Ryoo, Phil Laplante, and Rick Kazman. In search of architectural pat-
terns for software security. Computer, 42:98–100, 2009.

23. Markus Schumacher. Merging security patterns. In Proc. of 6th European Con-
ference on Pattern Languages of Programs, 2001. http://www.voelter.de/data/

workshops/europlop2001/merging_security_patterns.pdf.
24. Markus Schumacher, Eduardo Fernandez, Duane Hybertson, and Frank

Buschmann. Security Patterns: Integrating Security and Systems Engineering.
John Wiley & Sons, 2005.

25. Karsten Sohr and Bernhard Berger. Towards architecture-centric security analysis
of software. In Proc. of International Symposium on Engineering Secure Software
and Systems. Springer-Verlag, 2010.

26. The H Security. Number of critical, but unpatched, vulnerabilities is ris-
ing. Online, 2010. http://www.h-online.com/security/news/item/Number-of-

critical-but-unpatched-vulnerabilities-is-rising-1067495.html.
27. Michael VanHilst and Eduardo B. Fernandez. Reverse engineering to detect secu-

rity patterns in code. In Proc. of 1st International Workshop on Software Patterns
and Quality. Information Processing Society of Japan, December 2007.



28. Hironori Washizaki, Eduardo B. Fernandez, Katsuhisa Maruyama, Atsuto Kubo,
and Nobukazu Yoshioka. Improving the classification of security patterns. Work-
shop on International Conference on Database and Expert Systems Applications,
0:165–170, 2009.

29. Joseph Yoder and Jeffrey Barcalow. Architectural patterns for enabling application
security. In Proc. of 4th Pattern Languages of Programs, Monticello/IL, 1997.

30. Nobukazu Yoshioka, Hironori Washizaki, and Katsuhisa Maruyma. A survey on
security patterns. Progress in Informatics, 5:35–47, 2008.


