
The Security Twin Peaks

Thomas Heyman1, Koen Yskout1, Riccardo Scandariato1, Holger Schmidt2,
and Yijun Yu3

1 IBBT-DistriNet, Katholieke Universiteit Leuven, Belgium
first.last@cs.kuleuven.be

2 Technische Universität Dortmund, Germany
holger.schmidt@cs.tu-dortmund.de
3 Open University, United Kingdom

y.yu@open.ac.uk

Abstract. The feedback from architectural decisions to the elaboration
of requirements is an established concept in the software engineering
community. However, pinpointing the nature of this feedback in a precise
way is a largely open problem. Often, the feedback is generically char-
acterized as additional qualities that might be affected by an architect’s
choice. This paper provides a practical perspective on this problem by
leveraging architectural security patterns. The contribution of this paper
is the Security Twin Peaks model, which serves as an operational frame-
work to co-develop security in the requirements and the architectural
artifacts.

Keywords: security, software architecture, requirements, patterns

1 Introduction

Often, the requirements specification is regarded as an independent activity with
respect to the rest of the software engineering process. In fact, both literature
and practice have pointed out that requirements cannot be specified in isolation
and “thrown over the wall” to the designers and implementers of the system. In
contrast, the requirements specification (describing the problem) and the archi-
tectural design (shaping a solution) are carried on concurrently and iteratively,
while still maintaining the separation between the problem and solution space.
This process of co-developing the requirements and the software architecture is
referred to as the Twin Peaks model [22]. As depicted in Figure 1, the speci-
fication process (i.e., refinement) in the Twin Peaks model continuously jumps
back and forth between the requirements and architectural peaks, in order to
embrace the decisions made in the other peak.

Some work already exists that focuses on the forward transition from secu-
rity requirements to software architectures [18, 11, 31, 26]. This work leverages
standardized solutions, such as security patterns. These solutions are related
to the security requirements via traceability links, facilitating both the selec-
tion of the right architectural solutions and documentation of the rationale for



ArchitectureRequirements

Le
ve

l o
f

de
ta

il

General

Detailed

Independent Dependent

Implementation dependence

Specification

Fig. 1. The original Twin Peaks model [22]

the architectural choice [29]. This, in turn, facilitates impact analysis in face of
change.

Concerning the backward transition, even if the importance of the feedback
from the architecture to the requirements is an established concept in the soft-
ware engineering community, the literature fails in pinpointing the nature of this
feedback in a precise and operational way. This is also true for software qualities
such as security. Often, the feedback is generically characterized as additional
qualities, such as performance, that might be affected by a security architectural
choice [28].

This paper presents an elaboration of the original Twin Peaks model in the
context of security, called the Security Twin Peaks. By leveraging architectural
security patterns, the model provides constructive insights in the process of spec-
ifying and designing a security-aware system, by pinpointing interaction points
between the software architect’s and the requirements engineer’s perspective. In
particular, we illustrate that an architectural security pattern actually consists
of three elements that are key with regard to the Twin Peaks: (1) components
supporting the security requirement by fulfilling a security functionality, (2)
roles (connecting the generic solution to the specific architecture) and the ex-
pectations on such roles, and (3) residual goals. As our main contribution, we
show how these elements are related to the requirements specification and can
be leveraged to drive the refinement process, thereby substantiating the Security
Twin Peaks model. KAOS is used to represent (security) requirements [27]. How-
ever, the presented model is not specific to the chosen requirements engineering
methodology.

The rest of this paper is organized as follows. The related work is presented
in Section 2. Architectural security patterns are analyzed in Section 3, in or-
der to identify the root causes of feedback from the architectural design to the
requirements specification. The Security Twin Peaks model is introduced and
discussed in Section 4. Finally, Section 5 presents the concluding remarks.



2 Related Work

The problem peak in secure software engineering. In the realm of security soft-
ware engineering, Haley et al. [10, 9] present a framework for representing se-
curity requirements in an application context and for both formal and informal
argumentation about whether a system satisfies them. The proposed argumen-
tation process specifies several iterative steps for the problem part of the Twin
Peaks. Mouratidis et al. [19, 18, 14] present a procedure to translate the Secure
Tropos models [8] into UMLsec diagrams [16]. However, they do not provide ex-
plicit feedback from the chosen architectural solution back to the requirements
phase.

The solution peak in secure software engineering. Côté et al. [5] propose a soft-
ware development method using problem frames for requirements analysis and
using architectural patterns for the design. For the benefit of evolving systems,
evolution operators are proposed to guide a pattern-based transformation pro-
cedure, including re-engineering tasks for adjusting a given software architecture
to meet new system demands. Through application of these operators, relations
between analysis and design documents are explored systematically for accom-
plishing desired software modifications, which allows for reusing development
documents to a large extent, even when the application environment and the
requirements change. In parallel, Hall et al. [12] propose the A-struct pattern in
problem frames to explore the relationship between requirements and architec-
tures in a problem-oriented software engineering methodology. Both work deals
with feedback for general software engineering problems, but they had not fo-
cused on specific difficulties in secure software development.

Security patterns. Many authors have advanced the field of security design pat-
terns during the last years [30, 17, 3, 24, 25, 6]. A comprehensive overview and
a comparison of the different existing security design patterns can be found in
[13], which establishes, among others, that the quality of the documentation of
some existing security design patterns is questionable. A recent survey by Ban-
dara et al. [1] compares various software engineering methods in application to
address a concrete RBAC security pattern to reveal that there is still a need to
systematically support the Security Twin Peaks by linking security requirements
with security architectures. To shed more lights on the mechanisms for Secure
Twin Peaks, another extensive survey on security requirements for evolving sys-
tems [21] categories the literature in terms of how an evolving system is related
to its evolving requirements and changing contexts. Fernandez et al. [7] propose
a methodology to systematically use security design patterns in UML activity
diagrams to identify threats to the system and to nullify these threats during
fine-grained design. Mouratidis et al. [20] present an approach to make use of
security design patterns that connects these patterns to the results generated by
the Secure Tropos methodology [8].



: Client : Authentication
Enforcer

: Authentication
Provider

p: Principal

login
authenticate

<<create>>
p

Client

Authentication
Enforcer

Authentication
Provider Component Connector Role

Fig. 2. Structure and behavior of the Authentication Enforcer pattern [25]

3 Architectural Security Patterns Revisited

Patterns are a well-known and recognized technique to build software architec-
tures. This section revisits architectural security patterns and highlights the key
elements that are used in Section 4 as stepping stones to link the solution domain
(architectural peak) to the problem domain (requirements peak).

To illustrate the concepts, the Authentication Enforcer [25] pattern is used as
an example. This pattern describes how to solve the problem of authenticating
users in a systematic way by creating an authentication layer, and provides a
number of different implementation alternatives to realize this layer in the ar-
chitecture. One of the alternatives is the provider-based authentication method
depicted in Figure 2. The solution consists of an Authentication Enforcer com-
ponent that mediates all access requests originated by Clients and delegates the
implementation of an authentication method to a third-party Authentication
Provider component.

3.1 Key Notions for Co-development

Besides the many pieces of information that are traditionally documented in a
pattern (e.g., the problem description and the known uses), we observe that an
architectural security pattern can be seen, at its core, as a combination of three
parts. They are:

1) Components and behavioral requirements. The participants of a pattern can be
grouped into components that are newly introduced, and roles (further discussed
in point 2) referring to components that are external to the pattern. A new
component has a security-specific purpose, i.e., it adds new functionality to the
system that is specific to a security requirement the system should uphold. This
corresponds to the operationalization of a secondary functional requirement, as
in Haley et al. [9]. Hence, new components introduce (finer-grained) behavioral
requirements, which they fulfil and to which they can be linked, as clarified in
Section 4.

Example. In the example, the Authentication Enforcer pattern introduces
an Authentication Enforcer component, which encapsulates the authentication
logic. This component is only needed to address the security problem statement.



2) Roles and expectations. Patterns are generic solutions that need to be instan-
tiated in the context of concrete (possibly partial) architectures. Roles are used
for that purpose. A role is a reference that needs to be mapped to a compo-
nent (or sub-system) that is already present in the existing architecture. Hence,
the roles provide the connective between the new components and the existing
components, and define how both should interact.

Often, a pattern introduces expectations specific to its roles that need to
be fulfilled by the concrete architecture. The pattern can impose constraints on
both the way an external component is supposed to play a given role, as well
as the way the external component interacts via the connectors with the rest
of the patten internals. Hence, roles introduce finer-grained requirements in the
problem domain.

Example. The Authentication Enforcer pattern introduces two roles: the
Client, which is mapped to the actual component that invokes the Authentica-
tion Enforcer component, and the Authentication Provider, which needs to be
mapped to a third-party system providing an authentication mechanism. One
expectation that should be realized by the Authentication Provider role is that
the result of the authentication process is passed back as a Principal object. The
pattern specifies the responsibilities but does not dictate how the Authentica-
tion Provider should be implemented (e.g., it does not specify the authentication
mechanism). The pattern also imposes certain expectations on the interaction
between the Authentication Enforcer and the Client. It suggests to protect the
confidentiality of credentials, especially during transit. For instance, in a web
context, the pattern suggests to avoid clear-text communication.

3) Residual goals. These are security considerations to take into account when
instantiating the pattern. For instance, the pattern might make (trust) assump-
tions on the environment in which the system is deployed, that fall outside the
scope of the solution presented by the pattern. These residual goals are not under
the responsibility of either the newly introduced components or the roles.

Example. One residual goal of the Authentication Enforcer pattern is to
localize all authentication logic in the Authentication Enforcer component. Re-
alizing this goal is out of scope of the pattern itself—it is impossible for the
Authentication Enforcer pattern to enforce, in some way, that no other com-
ponent contains custom authentication code. A residual goal externalizes this
concern, placing the responsibility back in the hands of the software architect.
Another residual goal is that it should be impossible for an attacker to obtain the
user’s credentials. This manifests itself in residual requirements such as “make
credentials hard to forge” (e.g., implement a strong password policy) and “en-
sure that credentials do not leak” (e.g., store salted hashes locally, do not store
the passwords in plain text).

As a final note, although this section focuses on architectural security pat-
terns, the three parts presented above can be identified in any generic security
architectural solution, irrespective from whether it is described as a pattern or
not.



3.2 Revisiting the Pattern Documentation

The above three parts have been implicitly mentioned (often in a scattered way)
in the literature, e.g., in the documentation of existing architectural patterns
[4]. These patterns are usually documented by means of the following informa-
tion [3]. The problem and forces describe the context from which the pattern
emerged. The solution describes how the pattern resolves the competing forces
and solves the problem. This solution consists of two parts. The structure of the
solution depicts the different participants that play a role in the pattern, and the
relationships among them. The behavior of the solution describes the collabora-
tions among the different participants, by which they realize their common goals
and solve the problem. Apart from the solution, a pattern should document its
consequences, that highlight both the strengths and weaknesses of the proposed
solution. Finally, an example of the pattern in an easily understood software
setting shows how this is applied in practise.

The three elements from the previous section are often present in a general
pattern description. The participants from the solution description correspond
to both the newly introduced components and roles. The behavior of the solution
introduces the behavioral requirements on the new components of the pattern,
and possibly also expectations on the roles. The consequences of the pattern (and
in particular the weaknesses) identify potential residual goals. This clearly shows
that the three key notions for co-development are not so abstract and are, in most
cases, already implicitly documented in existing patterns. This work contributes
to the subject by bringing these three parts to the front and illustrating the
primary role they play in the context of the Security Twin Peaks.

4 The Security Twin Peaks

In the previous section, we discussed the fundamental parts comprising an archi-
tectural security pattern. In this section, these concepts are leveraged to outline
a constructive process for co-developing secure software architectures and se-
curity requirements. Particular focus is placed on the feedback loop between
architecture and requirements, and the more subtle intricacies that need to be
taken into account.

This process is not a new development process or paradigm by itself. Rather,
it gives constructive guidance on what is mostly left implicit, i.e., how to inter-
leave the requirements and architectural peaks when designing a secure software
system using security patterns or other generic security solutions. Hopefully,
the awareness of this process contributes to the effectiveness of requirements
engineering and software architecture design.

For the solution peak, we apply an attribute-driven architectural design ap-
proach, such as Bass et al. (ADD, [2]). In attribute-driven design, non-functional
concerns such as performance, maintainability, security, and so on, are referred
to as quality attributes, which are orthogonal to the functionality expected of
the system and drive the design of the software architecture. Qualities are real-
ized through fundamental design decisions, referred to as tactics (a.k.a. solution



Phase I

Problem Peak Solution Peak

R
e
fi

n
e
m

e
n

t

Authentication Enforcer
Feedback

Selecting a
solution

g1

g4

g3
g2

g8 c1

r2

Goal

Goal 
realization

e7
e6

Generic security
solution (e.g. pattern)

Goal 
refinement

r1
g5

t1

Selecting
a tactic

Architectural
decision

Traceability link

Phase II

... ...
Name

Fig. 3. The Security Twin Peaks.

strategies). An architectural pattern (or style) is a domain-independent solution
to a recurring problem, which packages and operationalizes a number of tactics.

For the problem peak, we apply a goal-based requirements engineering ap-
proach, such as the one by van Lamsweerde (KAOS, [27]). In goal-based meth-
ods, goals (prescriptive statements of intent that the system should satisfy) are
used for requirements elicitation, analysis and elaboration. Agents (active sys-
tem components playing a specific role in goal satisfaction) achieve these goals
through cooperation.

We illustrate the process on a simple application. Consider an online shop
which allows customers to buy products over the Internet. Customers have an
account to which costs are billed. For billing purposes, an important goal of the
system is that all purchases are securely traced back to the customers.

4.1 Overview

The process is sketched in Figure 3. Table 1 complements the figure by ex-
plaining the meaning of the labels. The process progresses through 8 activities
grouped in 2 phases. These phases are repeated over several iterations until the
requirements specification and the architectural design are deemed as complete
(i.e., detailed enough). In KAOS terminology, the goal decomposition stops once
the leaf goals are realizable by software agents, i.e., a solution is selected and
instantiated. In Phase I (activities 1-4), a tactic is selected to realize a goal. In
Phase II (activities 5-9) a pattern is selected and instantiated. For each activity,
a graphical representation is given of the current peak (with a filled triangle),
and the transition between the peaks (with an arrow) where applicable. After a
bird’s-eye view on the whole process, each activity is described in more detail.



Table 1. The Security Twin Peaks: example.

Label Type Description

g1 Goal All purchases are securely traced
t1 Tactic User shall be authenticated before purchasing
g3 Goal An identified user shall be authenticated

g5 Goal Mediate requests and delegate authentication
e6 Expectation Return a Principal object
e7 Expectation Avoid clear-text communication
g8 Residual goal Ensure that credentials do not leak

c1 Component Authentication Enforcer
r1 Role Client
r2 Role Authentication Provider

Act. 1. N M Select an initial security goal that will be refined in this iter-
ation of the process. In the example, goal g1 (‘all purchases are securely
traced’) is selected. Obviously, g1 would be part of a larger goal tree that
is not shown here.

Act. 2. Mñ N Choose and assess a solution tactic for the goal. In the ex-
ample, a prevention tactic is chosen: users shall be authenticated before
purchase orders can be placed (t1). The architect (together with other
stakeholders), must decide whether, for example, the assurance gained
from authentication outweighs the decrease in usability that goes to-
gether with enforcing authentication.

Act. 3. Nó M Refine the goal based on the chosen tactic. In the example,
this leads to the introduction of sub-goals g2 (‘users shall be identified’),
g3 (‘an identified user shall be authenticated’) and g4 (‘only authenti-
cated users can purchase products’). While manual refinement by an
expert is possible, a problem decomposition pattern could be associated
to the tactic. The decomposition pattern can provide extra guarantees of
soundness, e.g., by ensuring that the set of sub-goals is indeed complete.

Act. 4. N M Check for conflicts between the newly introduced and the pre-
vious goals. Resolve conflicts where possible. If a conflict cannot be sat-
isfactorily resolved, backtrack to Activity 2 to select a different solution.
For instance, the identification goal g2 may conflict with an anonymity
goal elsewhere in the goal tree, aimed at protecting the customer’s pri-
vacy. The stakeholders can, for example, weaken the anonymity goal so
that customers can still anonymously browse the shop, but anonymity
is no longer required when an actual purchase is made.

Act. 5. N M Select a sub-goal introduced in the previous step (e.g., g3) that
has to be resolved using an architectural security pattern.

Act. 6. Mñ N Choose an architectural security pattern whose problem
statement matches the selected sub-goal. In the example, the Authenti-
cation Enforcer pattern is chosen to resolve goal g3. For instance, this
can be a solution pattern that is linked to the used problem decomposi-



tion pattern. If no suitable solution is found, backtrack to activity 2 to
select a different tactic.

Act. 7. M N Instantiate the architectural security pattern by performing
the following activities:
(a) Instantiate the newly introduced components from the pattern in the

architecture. In the example, an Authentication Enforcer component
(c1) is added to the architecture.

(b) Connect the new components to the rest of the architecture by bind-
ing the roles to concrete architectural elements. If no suitable ar-
chitectural elements are present already in the architecture, create
them. In the example, the Client role (r1) is mapped to the existing
component that handles purchases, and the Authentication Provider
role (r2) is mapped to a to-be-introduced component, responsible for
checking the customer’s credentials.

If the instantiation of the pattern becomes infeasible, backtrack to ac-
tivity 6 to select a different pattern.

Act. 8. Nó M Update the requirements model so that it corresponds to the
new architecture, by performing the following activities.
(a) Introduce new requirements that describe the functionality of the

newly introduced components. For instance, g5 (‘mediate requests
and delegate authentication’).

(b) Introduce the expectations that need to be achieved by the elements
that play one of the pattern’s roles. For instance, e6 (‘return a Prin-
cipal object’) is an expectation for role r2 and e7 (‘avoid clear-text
communication’) is an expectation on the connector between c1 and
r2. Note that this list of expectations is not complete for the given
example.

(c) Add the residual goals described by the pattern to the goal tree. For
instance, only g8 (‘ensure that credentials do not leak’) is shown in
the example.

Act. 9. N M Check for conflicts between the newly introduced and the
previous goals. Resolve conflicts where possible. If a conflict cannot be
satisfactorily resolved, backtrack to activity 6 to select a different solu-
tion.

4.2 Discussion

The previous process description should be complemented with the following
considerations.

Activity 1. The security goal that is selected in this activity can originate
from known requirements engineering techniques, which we do not consider fur-
ther in this work. Also, the order in which goals are selected for refinement is
not fixed, and should be decided by the requirements engineer and the other
stakeholders. It should be noted, however, that additional security goals can
be introduced by Activity 8 later in the process. These goals should also be
considered for selection in a next iteration.



Activity 2. In choosing the solution tactic, the focus is on determining
a suitable tactic to guide the goal decomposition, possibly led by a catalog of
tactics. For instance, security can be handled by preventing attacks (e.g., au-
thenticate users), detecting attacks (e.g., intrusion detection) or recovering from
an attack (e.g., using audit trails) [2]. While not having a direct manifestation
in the primary architectural artifacts (at this stage), choosing a tactic does in-
volve the architectural peak, as potential architectural constraints need to be
taken into account. This is why the architect should assess whether the current
architecture is able to support the considered tactic. Also, care must be taken to
choose a tactic that does not conflict with the important qualities of the existing
architecture. Note that it is still uncertain whether it is feasible to fulfill the goal
using the chosen tactic. This only becomes apparent after a solution has been
chosen and instantiated in Activity 7.

To determine the suitability of a tactic, various factors need to be taken
into account and a risk assessment should be performed to decide whether the
potential losses outweigh the implementation costs. For instance, the tactic can
be too costly or even impossible to implement, e.g., a tactic may require full
mediation, which is not supported by the current architectural environment.

Finally, notice that the selection of a tactic is an important architectural
decision that belongs to the body of architectural knowledge. As shown in Fig-
ure 3, the tactic can be linked to the pattern that will be selected later on. In
this respect, the tactic documents the rationale that will lead to the selection
of a certain pattern and complements the rationale represented by linking the
pattern and the goal it realizes.

In the online shop example, the prevention tactic is chosen: a user will be
asked to authenticate before the shopping process continues, ensuring that the
identity of the user is known before the billing procedure starts. An alternative
tactic (while not as straightforward in the e-commerce context) would be de-
tection and recovery: send the invoice to the address the user entered, without
performing rigorous authentication first. If the bill is paid, the item gets shipped.
Otherwise, the order is canceled.

Activity 3. Performing a goal decomposition based on a tactic represents
the completion of a first round-trip between the problem peak and the solution
peak. Note that the influence of architectural decisions on goal decomposition is
mentioned in KAOS as well. In particular, in KAOS, a goal can be decomposed
into several alternative branches and it is acknowledged that the selection of
an alternative leads to a different architecture. In KAOS, the selection of an
alternative is driven by soft goals (i.e., system qualities, development goals or
architectural constraints) [26].

Activity 4 (and 9). In some cases, the new goals (resulting from a de-
composition or introduced by a pattern instantiation) will fit naturally in the
existing goal tree. However, conflicts may emerge and, hence, there is a need to
explicitly incorporate conflict resolution in the secure development process.

Requirements engineering methodologies such as KAOS already define tech-
niques to resolve conflicts (e.g., avoidance, restoration, anticipation or weaken-



ing) [27]. If the conflict cannot be sufficiently resolved, however, backtracking
and selecting a different tactic or pattern can be considered. Of course, it can
also be decided that the currently selected pattern remains in place, and the
other (conflicting) part of the system is revisited.

Activity 5. The selection of a sub-goal initiates the second part of the
process, where a concrete solution is chosen and instantiated. Like in Activity 1,
the order of selection is left to the insight of the requirements engineer and the
other stakeholders, which may mandate certain priorities.

Activity 6. The selection of the architectural pattern defines a traceability
link, connecting the selected sub-goal and the pattern, i.e., the goal provides the
rationale for the pattern. As mentioned before, this explicit relationship enriches
the architectural knowledge.

Note also that, sometimes, a pattern may be able to solve a collection of goals
simultaneously. This leads to more complex traceability links, but the outlined
process can still be used.

Conversely, an architectural pattern may not be a complete match for the
selected sub-goal, and can only fulfill a part of it. In this case, the goal can
be additionally refined, such that one of its children match the pattern, or,
alternatively, the initial refinement can be adapted.

Activity 7. By instantiating new components and connecting these to ex-
isting components, the software architecture gets refined. This refinement comes
in two flavors. A pattern can extend an architecture with new components, while
largely leaving the existing system untouched, as is the case with the Authenti-
cation Enforcer. As a second category of refinements, a pattern can substitute
one or more components with a more refined subsystem. An example of such a
pattern is the Secure Message Router [2], which can replace an existing message
broker.

Of course, when instantiating the pattern, established software engineer-
ing practices need to be applied. For instance, related functionality should be
grouped together. This also implies that the solution should be merged with
existing components where possible. For instance, corresponding roles from dif-
ferent patterns can be mapped to the same component.

It can be expected that new components pose no difficulties to their introduc-
tion in the system, because they are independent from the context. Concerning
the role bindings, however, more problems can arise. In some cases, it can be
straightforward to select an existing component to fulfill a role, or to extend an
existing component with new responsibilities. In general, however, the expecta-
tions imposed on a role might fundamentally conflict with other parts of the
system. For example, consider a pattern dictating that communication between
a new component and a role should be encrypted. If the element to which the
role gets bound to requires that all its connections are plain-text to support au-
diting, then this clearly triggers a non-trivial conflict that prevents the pattern
from being instantiated correctly. In general, it can be observed that conflicting
expectations are the root cause of conflict among patterns, which are informally
documented in pattern catalogs. Similarly, pattern languages (such as [30]) con-



tain a cohesive set of patterns resolving each others residual goals as much as
possible, while not introducing conflicts.

Activity 8. There are three distinct types of feedback, arising from the
three parts of an architectural security pattern described in the Section 3. Each
type of feedback introduces new elements in the requirements model.

The first type of feedback is the addition of new requirements assigned to
the newly introduced components from the security pattern. These requirements
describe the functionality of the new components and are necessary to ensure
that all behavior implemented in the system is traceable to some requirement.

The second type of feedback is the set of expectations (i.e., constraints) im-
posed on the elements that play one of the roles from the pattern. It is then up
to the architect to iterate over the architecture and assess whether the expecta-
tions (1) are already met by the component and the connectors involved in the
corresponding role (e.g., it might be that the web server hosting the shop al-
ready supports SSL in order to securely transmit user credentials) or (2) require
a refinement of these architectural elements so that they meet the expectations.

The third type of feedback is the set of residual goals. These goals are not
assigned to a concrete element, because it is unspecified (from the pattern per-
spective) which element is responsible for them, or even how to achieve them.
Therefore, they serve as candidate initial goals for refinement in a next iteration
of the process. Obviously, it could be the case that the residual goals are already
met by some sub-system of the architecture as is. In summary, the unbounded
responsibility associated to residual goals distinguishes them from the previous
type of feedback.

The goals generated by the feedback need to be reconciled with the goal
tree. All goals introduced in this activity are prescribed by the pattern, and are
necessary to ensure its correct functioning. As the pattern itself was selected to
achieve the sub-goal selected in Activity 5 (e.g., g3 in the example), it is natural
to expect that the feedback goals need to be inserted as children of that sub-goal.

5 Conclusion

This paper has presented an elaboration of the Twin Peaks model, specific to
co-developing secure software architectures and security requirements using pat-
terns. The precise interaction points between architectural design and require-
ments engineering (in the context of software security) have been identified by
decomposing the instantiation of an architectural security pattern into the inter-
woven process of (a) introducing new components and binding existing compo-
nents to roles, and (b) introducing security behavioral requirements, expectations
and residual goals. By pinpointing these interaction points, it is easier for the
security-minded requirements engineer and software architect to predict where
feedback might arise during the development process, and identify its root cause.
Furthermore, this model can be leveraged to build more robust secure software
engineering methods.



We plan to evaluate the secure twin peaks by applying it to other security
requirements engineering methods such as SEPP [23], which is based on Jack-
son’s problem frames [15]. Also, we would like to validate our approach in the
context of industrial case studies. We believe that the explicit documentation
of traceability links between architectural design and requirements analysis ar-
tifacts helps to (1) systematically evolve software systems, and (2) increase the
applicability of security patterns in practice.

Acknowledgements. This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, and by the
Research Fund K.U. Leuven.

References

1. Bandara, A., Shinpei, H., Jürjens, J., Kaiya, H., Kubo, A., Laney, R., Mouratidis,
H., Nhlabatsi, A., Nuseibeh, B., Tahara, Y., Tun, T., Washizaki, H., Yoshioka,
N., Yu, Y.: Security patterns: Comparing modeling approaches. Technical Report
2009/06 (2009)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, 1st edn. (1998)

3. Blakley, B., Heath, C., members of The Open Group Security Forum: Security
design patterns. The Open Group (2004)

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A system of Patterns. Wiley (1996)

5. Côté, I., Heisel, M., Wentzlaff, I.: Pattern-based Exploration of Design Alternatives
for the Evolution of Software Architectures. International Journal of Cooperative
Information Systems, World Scientific Publishing Company Special Issue of the
Best Papers of the ECSA’07 (December 2007)

6. Dougherty, C., Sayre, K., Seacord, R.C., Svoboda, D., Togashi, K.: Secure design
patterns. Tech. Rep. CMU/SEI-2009-TR-010, Carnegie Mellon Software Engineer-
ing Institute (2009)

7. Fernandez, E.B., Larrondo-Petrie, M.M., Sorgente, T., Vanhilst, M.: Integrating
Security and Software Engineering: Advances and Future Visions, chap. A Method-
ology to Develop Secure Systems Using Patterns, pp. 107–126 (2007)

8. Giorgini, P., Mouratidis, H.: Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering 17(2), 285–309 (2007)

9. Haley, C.B., Laney, C.R., Moffett, D.J., Nuseibeh, B.: Security requirements en-
gineering: A framework for representation and analysis. IEEE Transactions on
Software Engineering 34(1), 133–153 (2008)

10. Haley, C.B., Moffett, J.D., Laney, R., Nuseibeh, B.: A framework for security re-
quirements engineering. In: Proceedings of the International Workshop on Software
Engineering for Secure Systems (SESS). pp. 35–42. ACM Press, New York, NY,
USA (2006)

11. Haley, C.B., Nuseibeh, B.: Bridging requirements and architecture for systems of
systems. In: Proceedings of the International Symposium on Information Technol-
ogy (ITSim). vol. 4, pp. 1–8 (2008)



12. Hall, J.G., Rapanotti, L., Jackson, M.: Problem oriented software engineering:
Solving the package router control problem. IEEE Transactions on Software Engi-
neering 34(2), 226–241 (2008)

13. Heyman, T., Yskout, K., Scandariato, R., Joosen, W.: An analysis of the security
patterns landscape. In: Proceedings of the International Workshop on Software
Engineering for Secure Systems (SESS). pp. 3–10. IEEE Computer Society (2007)

14. Islam, S., Mouratidis, H., Jürjens, J.: A framework to support alignment of se-
cure software engineering with legal regulations. Journal of Software and Systems
Modeling (March 2010), published online first

15. Jackson, M.: Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley (2001)

16. Jürjens, J.: Secure Systems Development with UML. Springer (2005)
17. Kienzle, D.M., Elder, M.C., Tyree, D., Edwards-Hewitt, J.: Security patterns repos-

itory (2002)
18. Mouratidis, H., Jürjens, J.: From goal-driven security requirements engineering

to secure design. International Journal of Intelligent Systems – Special issue on
Goal-Driven Requirements Engineering 25(8), 813 – 840 (June 2010)

19. Mouratidis, H., Jürjens, J., Fox, J.: Towards a comprehensive framework for secure
systems development. In: Dubois, E., Pohl, K. (eds.) Proceedings of the Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE) (LNCS
4001). pp. 48–62. LNCS 4001, Springer (2006)

20. Mouratidis, H., Weiss, M., Giorgini, P.: Modelling secure systems using an agent
oriented approach and security patterns. International Journal of Software Engi-
neering and Knowledge Engineering (IJSEKE) 16(3), 471–498 (2006)

21. Nhlabatsi, A., Nuseibeh, B., Yu, Y.: Security requirements engineering for evolving
software systems: A survey. Journal of Secure Software Engineering 1(1), 54–73
(2009)

22. Nuseibeh, B.: Weaving together requirements and architectures. Computer 34(3),
115–117 (2001)

23. Schmidt, H.: A Pattern- and Component-Based Method to Develop Secure Soft-
ware. Deutscher Wissenschafts-Verlag (DWV) Baden-Baden (April 2010)

24. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommer-
lad, P.: Security Patterns: Integrating Security and Systems Engineering. Wiley &
Sons (2005)

25. Steel, C., Nagappan, R., Lai, R.: Core security patterns: Best practices and strate-
gies for J2EE, web services, and identity management (2005)

26. van Lamsweerde, A.: From system goals to software architecture. In: Formal Meth-
ods for Software Architectures. pp. 25–43. LNCS 2804, Springer (2003)

27. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley (March 2009)

28. Weiss, M.: Modeling security patterns using NFR analysis. In: Integrating Security
and Software Engineering, pp. 127–141. Idea Group (2007)

29. Weiss, M., Mouratidis, H.: Selecting security patterns that fulfill security require-
ments. In: IEEE International Requirements Engineering Conference (2008)

30. Yoder, J., Barcalow, J.: Architectural patterns for enabling application security.
In: Proceedings of the International Patterns Language of Programming (PLoP)
Conference (1997)

31. Yskout, K., Scandariato, R., De Win, B., Joosen, W.: Transforming security re-
quirements into architecture. In: Proceedings of the International Conference on
Availability, Reliability and Security (AReS). pp. 1421–1428. IEEE Computer So-
ciety, Washington, DC, USA (2008)


