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Abstract . A support of a hypergraph H is a graph with the same vertex 
set as H in which each hyperedge induces a connect ed subgraph. We 
show how to test in polynomial time whether a given hypergraph has a 
cactus support , i.e . a support that is a tree of edges and cycles. While 
it is NP-complet e to decide whether a hyper graph has a 2-outerplanar 
support, we show how to t est in polynomial time whether a hypergraph 
that is closed under in tersedions and differences has an outerplanar or 
a planar support . In a ll cases our a lgorithms yield a construction of the 
required support if it exists. The algorithms are based on a new definit ion 
of biconnected components in hypergraphs. 

1 Introduction 

A hypergraph (see e.g. [2 ,28]) is a pair H = (V, A) where V is a finite set and 
A is a (mult i-)set of non-empty subsets of V . There are basically two different 
variants of drawing a hypergraph, the edge-standard (drawing each hyperedge 
h E A as a star or a tree whose leaves are the elements of h - see Fig. l(a)) or the 
subset standard (drawing each hyperedge h E A as a simple closed region that 
contains exactly the vertices in h and no other vertices of V - see Fig. 2 (b)). For 
drawings in the edge standard see, e.g., [7 ,11 ,18,20]. In this paper, we concen
trate on the second variant which is also called the Euler diagram of the set of 
hyperedges. Simultaneous drawings of a graph and a hypergraph in the subset 
standard are called clustered graphs. Drawing graphs with overlapping clusters 
is discussed in [9 ,19]. There are difl'erent variants on when a hypergraph admits 
a nice drawing in the subset standard . Several of them are based on some graphs 
associated with the hypergraph. 

A hypergraph H = (V, E ) is Zykov-planar [28] if and only if there is a plane 
multi-graph M with vertex set V such that each hyperedge equals the set of 
vert ices of some face of M . The hypergraph H can be represented as a bipartite 
graph BfJ with vertex set V U A and an edge between a vertex v E V and h E A 
if and only if v E h (see Fig. l(a)). A hypergraph is Zykov-planar if and only if 
its bipartite graph is planar [27] . Thus, Zykov-planarity can be tested in linear 
time [13]. 

http://www.springer.com/series/558
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(a) bipartite graph (b) block clecomp. (c) cactus support 

Fig. 1. Three representations of the hypergraph with hypereclges {s, t, v}, {s, t , u}, 
{q ,u,v}, {w,x, z ,v}, {x, y , z }, {w ,x, y} , {q,s,t,u,v,w, z , y} 

Some work on EuleT diagmms and a definition on their well-formedness is 
summarized in [12]. The definition is associated with the supeTdual (or combina
tOTial dual) of H. Assuming that no two vertices of H are contained in the same 
set of hyperedges , the superdual is a graph on the vertex set V plus an artificial 
vertex that is not contained in any hyperedge. There is an edge between two 
vertices v and w if and only if the symmetric difference of the set of hyperedges 
containing v and the set of hyperedges containing w contains exactly one set h. 
Edge {v, w} is then labeled h. Flower et al. [12] show that a hypergraph has a 
well-formed Euler diagram if and only if there is a plane subgraph of the super 
dual in which each hyperedge and its complement induces a connected subgraph 
and in which the labels around each face fulfill some condition. The superdual 
of the hypergraph H in Fig. 1 is highly non-connected and, hence, H has no 
well-formed Euler diagram. Verroust and Viaud [26] considered Euler diagrams 
for hypergraphs with at most 8 hyperedges. The complexity of Euler diagrams 
is discussed by Schaefer and Stcfankovic [21] . Drawings of arbitray hypergraphs 
in an extended subset standart where the regions representing the hyperedges 
do not have to be connected are discussed by Simonetto and Auber [22,23] . 

A SUppOTt [25,15] (or host gmph [17]) of a hypergraph H = (V, E) is a graph 
G = (V, E ) with the property that the subgraph of G induced by any hyperedge 
is connected. A hypergraph is (veTtex- )planar [1 4] if it has a planar support . (The 
partial connectivity graphs of Chow [8] are planar supports of a dualized version 
of a hypergraph.) Planar hypergraphs are a generalization of both, Zykov-planar 
hypergraphs [25] and hypergraphs having a well-formed Euler-diagram [12] . It 
is NP-complete to decide whether a hypergraph has a planar support [14] even 
if the set of hyperedges is closed under intersections and each hyperedge induces 
a path in the support . However, it can be decided in linear time whether a hy
pergraph has a support that is a tree [24], a path, or a cycle [6] . Tree supports 
with bounded degrees [6] and minimum weighted tree supports [16] can be con
structed in polynomial time. Equivalent formulations for hypergraphs having a 
tree support can be found in [1]. 
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To guarantee that each hyperedge can be drawn by a simple closed region, 
Kaufmann et al. [15] required compact supports. A support G = (V, E) of a 
hypergraph is compact if G is planar, triangulated and no inner face of the 
subgraph of G induced by a hyperedge h contains a vertex not in h. It can be 
concluded from [14] that it is NP-complete to decide whether a hypergraph 
has a compact support even if it is closed under intersections. However, a hyper
graph has a compact support if it has an outerplanar support . So it would b e 
interesting to know whether a hypergraph has an outerplanar support. So far the 
complexity of outerplanar supports is open. It is NP-complete to decide whether 
a hypergraph has a 3-outerplanar support [6] or a 2-outerplanar support [5]. 

The Hasse diagram of a hypergraph H = (V, A) is the directed acyclic graph 
with vertex set A U V and there is an edge (hI , h2) (or (hI, v) and h2 = {v}) if 
and only if h2 <; hJ and there is no set h E A with h2 <; h <; hI . A hypergraph 
H = (V, A) has an outerplanar support if its based Hasse diagram, i.e. the Hasse 
diagram of A U {V} is planar [15] . 

0 CD 
@ @ C0 CD 

G) (jj) @ 

(b) Euler diagram 

Fig. 2. Two more representations of the hypergraph with hyperedges {s, t, v}, {s, t, u} , 
{q ,u,v}, {w ,x,z,v}, {x, y, z }, {w ,x, y} , {q,s,t,u ,v,w , z, y} 

In this paper, we consider special cases of outerplanar supports. A graph is 
a cactus if it is connected and each edge is contained in at most one cycle. A 
cactus can be used to represent the set of all minimum cuts of a graph [10]. 
Cactus supports also have applications in hypergraph coloring [17] . In Sect. 3, 
we show that a hypergraph has a cactus support if its based Hasse diagram is 
planar but the converse is not true. Further , we show how to decide in polynomial 
time whether a hypergraph has a cactus support. The construction is based on a 
new definition of biconnected components of a hypergraph introduced in Sect. 2 
(see Fig. l(b) for an illustration). 

When drawing Euler diagrams it is desirable to visualize not only the hy
peredges itself but also the intersection and the differences of two hyperedges. 
Motivated by this fact, we consider hypergraphs closed under intersections and 
dift'erellces (hcid) ill Sect. 4. INc show that it call lJe decided in polynomial time 
whether a hcid has an outerplanar or planar support . 

In the remainder of the paper let H = (V, A) be a hypergraph with n = IVI 
vertices, m = IAI hyperedges, and N = LhEA Ihl equals the sum of the sizes of 
all hyperedges. The size of the hypergraph is then N + n + m. 
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2 Biconnected Components 

In this section, we show how to decompose a hypergraph into biconnected com
ponents that we will call blocks. This decomposition will be constructed in such 
a way that there is a support with the property that the blocks of the hypergraph 
correspond to the biconnected components of the support. 

For a hypergraph H = (V, A) and a subset V' c V the hypergraph induced 
by V' is H[V'] = (V',A[V']) with A[V'] = {hnV'; h E A} \ {0, {v};v E V}. I.e., 
A[V'] contains from each hyperedge the part that is in V' omitting the empty set 
and the sets of size one to be consistent with the definition for ordinary graphs. 
Let HW' = (V', AW') with AW' = {h E A; h <:;;; V'}. Note that H[V'] does not 
have to be planar if H is planar. However, HW' is planar if His. 

The sequence p: va,hl,VI , ... ,hk,Vk is a vavk-path in H if hl, ... ,hk E A , 
Va E hl,Vk E hk, and Vi E hi n hH1,i = 1, ... k - 1. Vertices Va and Vk are the 
end vertices of p. Two vertices v , w of a hypergraph H = (V, A) are connected 
if there is a vw-path in H. Connectivity is an equivalence relation on the set of 
vertices of a hypergraph and the hypergraphs induced by the equivalence classes 
are called connected components [28] . 

Let V E V. The connected components of HI (V \ {v}) are the parts of V and 
V is an articulation point of H if v has more than one part. Note that v is an 
articulation point of H if and only if there is a support of H in which v is a cut 
vertex. E.g., vertex v is a cut vertex of the hypergraph in Fig. 1 and {w, x, y, z}, 
{q}, and {u,t,s} are the parts ofv. 

A decomposition into blocks of a hypergraph H = (V, A) is defined recursively. 
H is a block if and only if H is connected and does not contain an articulation 
point. If H is not connected then the blocks of H are the blocks of the connected 
components of H. If H is connected and contains an articulation point v, let 
WI"'" Wk be the parts of v. Then the blocks of H are the blocks of H[WI U 
{v}], ... ,H[Wk U {v}] . 

Note that the blocks depend on the choices of the articulation points and 
are not uniquely defined. E.g., consider the hypergraph H in Fig. 1. Choosing 
the articulation points v, w , and t yields the subhypergraphs induced by the 
sets {v,w}, {w,x,y,z}, {v,q}, {t,u,v}, and {t,s} as blocks. These are indicated 
within the circles of Fig. l(b). Choosing s instead of t as an articulation point 
would yield the block H[{s,u,v}] instead of H[{t,u,v}]. 

Note that this definition of articulation points and blocks is related to but 
different from the definition given in [1 ]. Further note that the sum of the sizes 
of all blocks is at most three times the size of the hypergraph itself. 

We will use the terminology analogously for the bipartite graph B J-l on the 
vertex set V U A representing the hypergraph H = (V, A). The connected com
ponents of H correspond to the connected components of B I-J. Vertex v is an 
articulation point of BJ-l if B[V \ {v} U A \ {h E A; v E h}] contains more than 
one connected component which will again be called the parts of v. The blocks 
of B I-J are the bipartite graphs representing the blocks of H . Then the blocks of 
B J-l and, hence, of H can be constructed by determining n times the connected 
components of a subgraph of B I-J. 
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Lemma 1. The blocks of the hypergraph H can be found in O(nN + n + rn) 
time. 

Proof. Since the connected components of BH can be computed in O(N +n+rn) 
time, we may assume that H is connected. Let VI , . .. , Vn be any ordering of the 
vertices of H. The algorithm BLOCKFINDER(B, k) takes as argument a subgraph 
B of BH and a k = 0, ... , n such that VI , .. . , Vk are not articulation points of 
B. It outputs a link to the list of blocks of B. 

BLOCKFINDER(B, k) 

- If there is no k' > k such that Vk' is contained in B return B 
- Let k' > k be minimal such that Vk' is contained in B 
- Remove Vk' and all its adjacent vertices hI , . . . , h j from B and compute the 

connected components B I , ... , B e of this bipartite graph. 
- For i = 1, ... , e, add Vk' and those hyperedges among hI, ... , h j that contain 

some vertices of Bi with the corresponding edges to B i . 

- Return BLOCKFINDER(BI , k'), ... , BLOCKFINDER(Be, k'). 

Then 13LOCKFINDER(BH, 0) finds a partition of H into blocks represented as 
bipartite graphs: Assume that 13LOCKFINDER returns a subgraph Bi of BH that 
contains an articulation point Vk'. Let PI and P2 be two parts of Vk' in Bi . Con
sider the subgraph B of BH such that k' was chosen while proceeding BLOCK

FINDER(B, k). Since in the end PI and P2 are both in Bi there is a path p in 
B connecting PI and P2 that does not contain Vk" Let p have minimum length 
among all such paths. Then p is a path in Bi : Otherwise let p : wo, hI," ., he, We 
and assume that Wj is the first vertex of p not in B i . Let j' > j be the smallest 
index such that Wj' is in Bi . Then there is an articulation point Ve , e > k' of Bi 
with Ve E hj n hj ,. Hence, wo , hI , . . . , Wj - I, hj , ve , h1" Wj', . .. , he, We is a shorter 
path than p connecting PI and P2 . 0 

A decomposition of a hypergraph into blocks induces a "block-articulation-point 
tree" in the same way as block-cut-point trees for ordinary graphs: Let T be the 
bipartite graph that is constructed as follows. The vertices of T are the blocks 
of H and those vertices in V that are contained in more than one block. There 
is an edge between a vertex V and a block B if and only if V is contained in 
B. Then T is the block-articulation-point tTee of the chosen decomposition of a 
hypergraph into blocks (see Fig. l(b)). 

Lemma 2. A hypergraph has an (outeT-)planar support if all its blocks have an 
(outer-)planaT suppoTt. 

Pmof. Let BI" ' " Bk be the blocks of a hypergraph H = (V, A) . Let G i = 
eVi , E i ) be a support of Bi for i = 1, ... , k . Then G = (V, EI U ... U E k ) is a 
support of Hand G 1 , .. . ,Gk are the 2-connected components of G. Proceeding 
from the leaves of the block-articulation-point tree one can choose the embedding 
of the support of each block such that the articulation point with the parent 
block is on the outer face . Hence, if all Gi have an (outer-)planar support then 
so does G. 0 
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(a) blocks not planar (b) blocks not outerplanar 

Fig. 3. Illustration of some examples . Solid edges indicate a support, dashed curves 
indicate hyperedges that contain more than two vertices. 

The converse of Lemma 2 is not true. Let H be the hypergraph with hy
peredges {v ,vd , {V,V4 }, {V ,V5}, {V2,V4,V,W }, {V3,V5,V,W }, {VI,V2}, {Vl ,V3} , 
{ VI , V4}, {VI, vd, {V2, V3 }, {V3, V4}, {V4, V5}, {V2, V5 }. Then H is planar, V is an 
articulation point of Hand H [ { VI , V2, V3, V'l , V5, v }] is a block of H that is not 
planar. See Fig. 3( a) for an illustration. In the outerplanar case consider the 
hyperedges {VI, V2 }, {V2, V3}, {V3, v,t}, {V4, vs}, {Vs, V6}, {V, y}, {y , vd, {v, X}, 
{x,vd , {v ,X,W,V2,VS }, and {V , y,VI,w ,V3,V6 } and the articulation point v. See 
Fig. 3(b) for an illustration. For hypergraphs closed under intersections, however , 
we have equivalence. A hypergraph H = (V, A) is closed under intersections if 
hI n h2 E AU {0} U {{v ; V E V}} for hl , h2 E A. 

Lemma 3. A hypergmph that is closed under intersections has an (outer-) pla
nar support if and only if each block has an (outer-) planar support. 

Proof. Let H = (V, A) be a hypergraph that is closed under intersections and let 
G = (V, E) be an (outer-)planar support of H . Let V E V and let W be a part 
of v. We show by induction on the number of vertices of V \ W that H[W U {v}] 
has an (outer-)planar support . There is nothing to show if V = W U {v} . 

So let w E V \ (W U {v}) . We construct an (outer-)planar support GI of 
HI = (V \ {w} , {hi E A;w ~ hl} U{hl\ {w };v E hi E A}) . If there is no hyperedge 
containing v and w let G I be the graph that results from G by deleting wand 
all its incident edges. Otherwise let h be the intersection of all hyperedges that 
contain v and w. Then there is a wv-path in G[h]. Let Wi be the neighbor of w 
on this path. Then G I is constructed from G by merging wand Wi. I.e., for each 
neighbor u i= Wi of w add {u , Wi} to the edge set of G. Finally, remove wand 
all its incident edges from G. 

If V \ {w} = W U {v} then HI = H[W U {v}] . Otherwise v is an articulation 
point and W is a part of v in HI . Hence, by the inductive hypothesis HI[W U 
{v}] = H[W U {v}] has an (outer-)planar support. 0 

3 Cactus Supports 

A cactus is a connected graph that has an outerplanar embedding such that each 
edge is incident to the outer face. In this section, we relate cactus supports to 
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planar based Hasse diagrams and we show how to utilize the decomposition into 
blocks to construct a cactus support if one exists. 

It was shown by Kaufmann et al. [15] that a hypergraph H = (V, A) has an 
outerplanar support if its based Hasse diagram is planar. In fact, in that case 
H has even a cactus support. In the construction of Kaufmann et al. [15] some 
unnecessary edges on the outer face have to be omitted. We briefly sketch their 
construction and our modification. 

Theorem 1. A hypergraph has a cactus support if its based Hasse diagram is 
planar. 

Proof. Let H = (V, A) be a hypergraph, let V E A, and let its Hasse diagram D 
be planar. Assume that a planar embedding of D is given. Let T be the DFS tree 
resulting from a directed left-first DFS and replace each non-tree arc e = (hI, h2 ) 

in D by an arc (hI, v) for some v E h2 • According to Kaufmann et al. [15], this can 
be done by "sliding down" the arcs and thus maintaining planarity. Let DI be the 
thus constructed Hasse diagram and let AI be the set of vertices of DI that are not 
sinks. Let HI = (V, {{ v E V; there is a directed hv-path in DI}; h E Al} . Then T 
remains a left-first DFS-tree of DI and any support of HI is a support of H. 

Consider a simple closed curve C that visits the sequence VI, . .. , Vn of leaves 
of T from left to right. We may assume that the vertex V of D is in the exterior 
of C, that C intersects no tree edges and that it intersects non-tree edges at most 
once. The support sequence (J : WI , . . . , wp is the sequence of vertices or targets 
of intersecting edges as they occur on C. Note that (J contains only vertices of V 
and that a vertex of V may occur several times in (J. As mentioned by Kaufmann 
et al. [15], each set h E Al corresponds then to a subsequence of (J. 

Let now W€+l = Wj . Then G = (V, {{wi,wi+d; i = 1, ... ,e }) is a cactus 
support of HI and, hence, of H . In fact, the edges can be routed along C and the 
pieces of the arcs between C and VI, ... , Vn . Then G has a planar embedding in 
which each edge is on the outer face. Further, each subsequence of W corresponds 
to a walk in G. Hence, G is a cactus support for HI . 0 

However, not only hypergraphs with a planar Hasse diagram have a cactus sup
port. E.g., A = {{i,i+l} , i = 1, ... , 6;{1 , ... ,5},{2, ... ,6},{3, . .. ,7}}. In the 
following, we will show how to test efficiently whether any hyper graph has a 
cactus support and if so how to construct it in the same asymptotic run time. 

Lemma 4. A hypergraph has a support that is a cactus if and only if each block 
has a support that is a cycle or an edge . 

Proof. The if-part is analogous to Lemma 2. For the only-if-part let H = (V, A) 
be a hypergraph and let G = (V, E) be a cactus support of H . Let v be an 
articulation point and W a part of v. We show that H[W U {v}] has a support 
that is a cactus. 

We say that u E W is close to v if and only if there is a path in G from v to 
u not containing any edge of G[W]. Note that G[W] is a connected subgraph of 
a cactus not containing v, hence there are at most two vertices in W that are 



208 

• • 

(a) cactus support of H (b) cactus support of H[W U {v} 1 

Fig. 4. Illustration of the proof of Lemma 4. Vertices inside the dashed curve are 
contained in a part W of v. Vertices Ul and U2 are close to v. Vertices x and yare end 
vertices of pc . 

close to v. A cactus support Gw = (Vw , Ew) of H[W U {v}] can be constructed 
as follows (see Fig. 4 for an illustration) : 

- Start with Gw ;- G[W U {v}] 
- For each U E W that is close to v, add {u , v} to Ew 
- For each cycle of G, let 0 = {e1' e2, .. . , ed be its set of edges. If E[W] nO =f. 

o and 0 Cl E[W] then G[W n 0 ] is a path Pc . If the end vertices x and y of 
Pc are not both close to v, add {x, y} to Ew. D 

A hypergraph H = (V, A) has a support that is a cycle if and only if it has the 
circular- consecutive ones pmperty, i.e . if and only if there is an ordering V1, .. . , Vn 

of the vertices such that for each hyperedge h E A there are 1 ::; j ::; k ::; n such 
that h = {Vj, .. . , vd or V \ h = {Vj, . .. ,vd. Summarizing, we have the following 
theorem. 

Theorem 2. It can be tested in O(nN + n + m) time whether- a hyper-gmph has 
a suppor-t that is a cactus. 

Pmof. Compute all blocks in O( nN + n + m) time. Test all blocks in linear time 
for the circular consecutive ones property [4]. D 

4 Hypergraphs Closed under Intersections and 
Differences 

Two hyperedges h1 ' h2 over-lap if hI n h2 =f. 0, h1 \ h2 =f. 0, and h2 \ hJ =f. 0. 
An Euler diagram of two overlapping hyperedges is usually drawn such that 
the intersection of the two regions representing the two hyperedges is connected 
and such that the part of one of the regions that is not contained in the other 
is also connected. See Fig. 5 for an illustration. This motivates the following 
definition . A hypergraph H = (V, A) is closed ttnder- inter·sections and d~ffer-ences 
if hI n h2 E Au { {v}; v E V} and hI \ h2 E A u { {v}; v E V} for two overlapping 
hyperedges hJ , h2 E A. In the remainder of this section we show that it is easy 
to decide whether a hypergraph closed under intersections and differences has a 
planar or an outerplanar support. 
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(c) illustration of Lemma 5 

Fig. 5. (a) Undesired and (b) desired drawings of two overlapping hyperedges and (c) 
an illustration of the proof of Lemma 5. In (a) the intersection or the difference of two 
hyperedges is not connected, while in (b) it is. 

For a hypergraph H = (V, A) let H 2 = (V, {h E A; Ihl = 2}) be the graph of 
all hyperedges of H that contain exactly two vertices. We will show that H 2 is 
a support of H if H is a block. 

Lemma 5. If the hypergraph H is closed under' intersections and d~fferences 
and does not contain an articulation point then the hypergraph H 2 induced by 
all hyperedges of size two is a support of H . 

Proof. Let H = (V, A) be a hypergraph that is closed under intersections and 
differences and assume that H does not contain an articulation point. Let h by a 
hyperedge of H . By induction on the size of h, we show that H 2 [h] is connected. 
There is nothing to show if Ihl ::; 2. So assume that Ihl > 2. 

We first assume that h i-V. Since H does not contain any articulation point 
there are at least two hyperedges hI, h2 with hI n h i- h2 n h that overlap with h. 
We have h n hi, h \ hi E A u {{v} ; v E V}, i = 1,2. By the inductive hypothesis, 
Hdh n h·d and H 2[h \ hi], i = 1,2 are all four connected. If h n hI i- h \ h2 then 
it follows that H 2 [h] is connected. 

So assume that for all pairs hI , h2 of hyperedges with h n hI i- h n h2 that 
overlap with h it holds that h n hJ = h \ h2. Hence there is a bisection hI , h2 of 
h such that for all hyperedges hI that overlap with h it holds that h n hI = hI 
or h n hI = h2. See Fig. 5 for an illustration of this part of the proof. Note 
again that by the inductive hypothesis H 2 [hi], i = 1,2 are both connected. Since 
h contains more than two vertices, we may assume without loss of generality 
that h I contains at least two vertices. If I h 21 = 1 there has to be a hyperedge 
h' c h that overlaps hI and contains h2 . Otherwise every vertex in hI would be 
an articulation vertex. Similarly, if I h 21 > 1 there has to be a hyperedge h' that 
overlaps both, hI and h2 . Let h' be the smallest hyperedge with this property. 
Assume that Ih' n hil > 1 for i = 1 or i = 2. Since H 2 [h"i] is connected there 
have to be vertices v E hi n hi, W E hi \ h' such that {v, w} is a hyperedge. 
But then h' \ {v , w} E A is a smaller hyperedge than h' with the required 
property - a contradiction. It follows that WI = 2. Hence, H2 [h] contains the 
connected subgraphs H 2 [hi ], i = 1,2 and the edge h' connecting them. Thus, 
H d h] is connected. 



210 

Assume finally that h = V . If H contains more than two vertices then the 
hypergraph (V, A \ {V}) has to be connected. Otherwise all but at most one vertex 
of H would be articulation points. Since H2[h/] is connected for all hyper edges 
hi =I- V it thus follows that also H2 [V] is connected. 0 

Note that the hyperedges of size two have to be contained in every support 
of a hypergraph. So we have the following corollary. 

Corollary 1. It can be decided in O(nN + n + m) time whether a hypergraph 
closed under intersections and diffeTences has a planar OT outer'planar' support. 

Proof. First, decompose the hypergraph into blocks. Then test for each block 
whether the graph induced by the hyperedges of size two is planar or outerplanar, 
respectively (Lemma 3) . 0 

5 Conclusions 

In this paper, we newly defined a decomposition of a hypergraph into blocks. 
For any such decomposition there is a support with the property that the blocks 
of the hypergraph correspond to the biconnected components of the support. 
We then give two applications of the decomposition into blocks. A hypergraph 
has a cactus support if and only if each block has the cyclic consecutive one's 
property. A hypergraph that is closed under intersections and differences has an 
(outer-)planar support if and only if for each block the graph induced by the 
hyperedges of size two is (outer-)planar . 

As a future work, we want to improve the run time of the decomposition into 
blocks and to solve the problem of testing whether an outerplanar support exists 
in more general cases. 
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