Skip to main content

Pyramid Center-Symmetric Local Binary/Trinary Patterns for Effective Pedestrian Detection

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6495))

Included in the following conference series:

Abstract

Detecting pedestrians in images and videos plays a critically important role in many computer vision applications. Extraction of effective features is the key to this task. Promising features should be discriminative, robust to various variations and easy to compute. In this work, we presents a novel feature, termed pyramid center-symmetric local binary/ternary patterns (pyramid CS-LBP/LTP), for pedestrian detection. The standard LBP proposed by Ojala et al. [1] mainly captures the texture information. The proposed CS-LBP feature, in contrast, captures the gradient information. Moreover, the pyramid CS-LBP/LTP is easy to implement and computationally efficient, which is desirable for real-time applications. Experiments on the INRIA pedestrian dataset show that the proposed feature outperforms the histograms of oriented gradients (HOG) feature and comparable with the start-of-the-art pyramid HOG (PHOG) feature when using the intersection kernel support vector machines (HIKSVMs). We also demonstrate that the combination of our pyramid CS-LBP feature and the PHOG feature could significantly improve the detection performance—producing state-of-the-art accuracy on the INRIA pedestrian dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture meatures with classification based on featured distribution. Pattern Recogn. 29, 51–59 (1996)

    Article  Google Scholar 

  2. Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22, 809–830 (2000)

    Article  Google Scholar 

  3. Gavrila, D.M., Munder, S.: Multi-cue pedestrian detection and tracking from a moving vehicle. Int. J. Comp. Vis. 73, 41–59 (2007)

    Article  Google Scholar 

  4. abd J. Giebel, D.M.G., Munder, S.: Vision-based pedestrian detection: the protector system. In: Proc. IEEE Int. Conf. Intell. Vehic. Symposium, Parma, Italy, pp. 13–18 (2004)

    Google Scholar 

  5. Nakada, T., Kagami, S., Mizoguchi, H.: Pedestrian detection using 3d optical flow sequences for a mobile robot. In: Proc. IEEE Conf. Sens, Leece, Italy, pp. 776–779 (2008)

    Google Scholar 

  6. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrian using patterns of motion and appearance. In: Proc. IEEE Int. Conf. Comp. Vis., Nice, France, vol. 2, pp. 734–741 (2003)

    Google Scholar 

  7. Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust part detectors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 69–82. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Dalal, N., Triggs, B.: Histogram of oriented gradients for human detection. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., San Diego, USA, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  9. Dalal, N.: Finding people in images and videos. PhD thesis, Institut National Polytechnique de Grenoble (2006)

    Google Scholar 

  10. Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on riemannian manifolds. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., Minneapolis, Minnesota, USA, pp. 1–8 (2007)

    Google Scholar 

  11. Munder, S., Gavrila, D.M.: An experimental study on pedestrian classification. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1863–1868 (2006)

    Article  Google Scholar 

  12. Paisitkriangkrai, S., Shen, C., Zhang, J.: Fast pedestrian detection using a cascade of boosted covariance features. IEEE Trans. Circuits Syst. Video Technol. 18, 1140–1151 (2008)

    Article  Google Scholar 

  13. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: A benchmark. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pp. 304–311 (2009)

    Google Scholar 

  14. Wang, X., Han, T., Yan, S.: An HoG–LBP human detector with partial occlusion handling. In: Proc. IEEE Int. Conf. Comp. Vis., Kyoto, Japan, pp. 32–39 (2009)

    Google Scholar 

  15. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: Survey and experiments. IEEE Trans. Pattern Anal. Mach. Intell. 31, 2179–2195 (2009)

    Article  Google Scholar 

  16. Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., Anchorage, Alaska, USA, pp. 1–8 (2008)

    Google Scholar 

  17. Wojek, C., Walk, S., Schiele, B.: Multi-cue onboard pedestrian detection. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., Miami, Florida, USA, pp. 794–801 (2009)

    Google Scholar 

  18. Heikkila, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42, 425–436 (2009)

    Article  MATH  Google Scholar 

  19. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  20. Ahonen, T., Hadid, A., Pietikainen, M.: Face detection with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–2041 (2006)

    Article  MATH  Google Scholar 

  21. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19, 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  22. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via PLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proc. ACM. Int. Conf. Image & Video Retrieval, pp. 401–408 (2007)

    Google Scholar 

  24. Gehler, P., Nowozin, S.: On feature combination for multiclass object classification. In: Proc. IEEE Int. Conf. Comp. Vis., pp. 221–228 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, Y., Shen, C., Hartley, R., Huang, X. (2011). Pyramid Center-Symmetric Local Binary/Trinary Patterns for Effective Pedestrian Detection. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19282-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19281-4

  • Online ISBN: 978-3-642-19282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics