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Abstract. We introduce a novel image defencing method suitable for
consumer photography, where plausible results must be achieved under
common camera settings. First, detection of lattices with see-through
texels is performed in an iterative process using online learning and clas-
sification from intermediate results to aid subsequent detection. Then,
segmentation of the foreground is performed using accumulated statistics
from all lattice points. Next, multi-view inpainting is performed to fill in
occluded areas with information from shifted views where parts of the
occluded regions may be visible. For regions occluded in all views, we
use novel symmetry-augmented inpainting, which combines traditional
texture synthesis with an increased pool of candidate patches found by
simulating bilateral symmetry patterns from the source image. The re-
sults show the effectiveness of our proposed method.

1 Introduction

We address a real-life problem in photo editing where one would like to remove
or change fence-like, near-regular foreground patterns that are often unavoid-
able, as illustrated in Figure 1. This task was first addressed by Liu et al. [1]
by a 3-step procedure 1) lattice detection [2], 2) foreground / background seg-
mentation and 3) inpainting [3, 4]. Lattice detection and foreground/background
segmentation in [1] proceeded sequentially, hence an abundant amount of infor-
mation arising from the repeating pattern was not fully utilized. Furthermore,
the performance of previous lattice detection algorithms [2] is far from practical
for this application due to inaccuracy and slowness.

In this paper, we make the following novel contributions to this challenging
goal; • online learning and classification is used to aid lattice detection and
segmentation, resulting in a substantial improvement in detection rate over cur-
rent state-of-the-art lattice detection algorithms [5, 2]. Our online classification
and segmentation method is not confined to this specific application; it can be
applied to other near-regular texture detection and analysis tasks. • multiview
inpainting is introduced to improve the region filling process by using multiple,
shifted camera views, since the best way to infer an unknown pixel is to see the
occluded region in another view. The approach does not assume any rigidity of
the fence nor objects, but requires some offset between views: either by camera
or object movement. These are practical requirements for every-day photogra-
phy, since one can take multiple photos of a scene simply by shifting the camera,
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(a) Input (b) Automatic Segmentation

(c) Liu et al. [1] (d) Our Result

Fig. 1: (a) Input image (b) Automatic segmentation using online learning (c)
Result of Liu et al. [1] (d) Result of our proposed method

revealing objects behind the fence due to parallax. • symmetry-augmented
inpainting is introduced to tackle the problem of scarcity of candidate sam-
ples after large amounts of foreground have been removed leaving fragmented
background pixels. We increase the candidate pool by simulating bilaterally sym-
metric patches from the source image. For instance, if half of someone’s mouth is
covered, we can recover the occluded region reliably from the opposite side of the
mouth by reflecting that patch. The experimental results show the effectiveness
of our proposed method, especially for objects that are extremely unforgiving to
flawed inpainting such as a human face and structured backgrounds (see Figures
1 and 8 for examples).

2 Related Work

Liu et al. [1] introduce a novel application in computational photography by
taking advantage of see-through NRTs to remove a near regular foreground. As
the authors of [1] point out, each of the components in the application is very
challenging on its own and poses many research questions.

2.1 Lattice Detection

There is a rich body of work on lattice detection in the literature [6, 2, 5, 7–11].
However, it was Hays et al. [2] who first developed an automatic deformed lattice



Image De-fencing Revisited 3

detection algorithm for real images without pre-segmentation. The method of
[2] is based on looking for the neighbors of a randomly selected interest point
in the image. If a sufficient number of points look like their respective t1, t2
neighbors (lower order similarity) and also share their t1, t2 neighbors’ direc-
tions/orientations (higher order correspondences) towards other interest points
in the image, those points and their neighborhood relationships are confirmed to
be part of the lattice. Based on this partial result, the slightly deformed lattice
is straightened out and a new round of lattice discovery starts, so the extracted
lattice grows bigger and bigger. Formulating the lattice detection problem as
a higher order correspondence problem adds computational robustness against
geometric distortions and photometric artifacts in real images, and the publicly
available code produces impressive results.

Later, Park et al. [5] developed a deformed lattice detector within a Markov
Random Field using an efficient inference engine called Mean-Shift Belief Prop-
agation. They showed 72% improvement in lattice detection rate over the Hays’
algorithm [2], with a factor of 10 speed up.

However, all algorithms discussed so far ignore the foreground/background
characteristics of the repeating pattern we want to find. In particular, images
which contain fence-like structures are inevitably highly irregular despite the reg-
ularity of the foreground. For such cases, the irregular background interferes with
the detection of the see-through foreground lattice. Our method learns the type
of the repeating pattern, removes the irregularities, and uses the learned regular-
ity in evaluating the foreground appearance likelihood during lattice growth, a
crucial improvement since robust and complete lattice detection plays the most
significant role in our application.

2.2 Image Completion

Traditional texture filling tools such as Criminisi et al. [3, 4] require users to
manually mask out unwanted image regions. Based on our own experience, for
images such as those in Figures 1, 7, and 8, this process is very tedious and
error-prone. Simple color-based segmentations are not sufficient. Painting a mask
manually, as in previous inpainting work, requires copious time and attention
because of the complex topology of the foreground regions.

Favaro et al. [12] introduce a method for the restoration of images in which
certain areas have been blurred. Their method develops a map of the relative
amount of blur at each position in the image, then learns correspondences be-
tween recurring objects or image patches. This allows them to copy the least
blurred occurrence of an object and paste patches from it to inpaint over blurred
occurrences of the same or similar objects. This is a powerful method of relating
undesirable blur utilizing the power of understanding multiple instances of the
same object in a scene. Their work differs from ours in that they do not attempt
to use or understand any underlying structure, such as a lattice, that may exist
among the instances of the recurring object. Also, their method of inpainting re-
moves blurring, such as that from varying depth, but does not remove occlusion,
such as a fence-like foreground region.
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As an extension to photo inpainting, Wexler et al. [13] and Patwardhan et al.
[14] each propose a video inpainting method. This is desirable, since temporal
information can give additional information that can aid the inpainting process.
Although the balance of spatial and temporal continuity is far from trivial, both
methods produced spatially and temporally coherent results, albeit at the cost
of needing to mask out unwanted regions manually. With these filling tools, a
user has the capability to reveal content in a photo behind occlusions. However,
if the missing region is part of a complex object with high resolution, such as a
human subject, the quality of inpainting is often insufficient, as can be seen in
Figure 1 and 8.

Hays and Efros [15] proposed a scene completion method using millions of
photographs. The algorithm fills in the hole regions in images with seamless
and semantically valid patches from the database. However neither the database
images nor the regions to be filled are fragmented by any foreground structures.

Vaish et al. [16] proposed a method to reconstruct densely occluded scenes
using synthetic aperture photography. However, they require a large, synchro-
nized camera array (30 ∼ 100 cameras) to achieve this goal, which is obviously
impractical for consumer-grade use.

Our approach represents a middle ground between traditional image com-
pletion and video completion/synthetic aperture reconstruction, since we use
only a small number of auxiliary images that are easily achievable in everyday
photography.

3 Near Regular Texture Segmentation

Our basic lattice detection algorithm is similar to [5]. The procedure is divided
into two phases, where the first phase proposes one (t1 , t2)-vector pair and
one texture element, or texel. 2D lattice theory tells us that every 2D repeating
pattern can then be reconstructed by translating this texel along the t1 and t2
directions. During phase one, we detect KLT corner features, extract texture
around the detected corners, and select the largest group of similar features in
terms of normalized correlation similarity. Then we propose the most consistent
(t1 , t2)-vector pair through an iterative process of randomly selecting 3 points to
form a (t1 , t2) pivot for RANSAC and searching for the pivot with the maximum
number of inliers.

At phase two, tracking of each lattice point takes place under a 2D Markov
Random Field formulation with compatibility functions built from the proposed
(t1 , t2)-vector pair and texel. The lattice grows outwards from the initial texel
locations using the (t1 , t2)-vector pair to detect additional lattice points. The
tracking is initiated by predicting lattice points using the proposed (t1 , t2)-vector
pair under the MRF formulation. The inferred locations are further examined;
if the image likelihood at a location is high, then that location becomes part of
the lattice. However, for robustness, the method avoids setting a hard threshold
and uses the region of dominance idea introduced in [6]. This is particularly
important since there is no prior information about how many points to expect
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in any given image. If the threshold of detecting lattice points is too high, then
recall rate suffers.

Fig. 2: Procedure of lattice detection using online clustering, learning and clas-
sification

Since the performance of lattice detection plays an essential role in this appli-
cation, we introduce a better decision system that uses online classification and
combines the lattice detection procedure with foreground / background segmen-
tation. In addition, we segment out the foreground layer during the detection
procedure and build a mask to remove noisy regions of each texel to represent
background irregularities from distracting and misguiding the inference proce-
dure. Since evaluation of a noisy image likelihood could misdirect the inference
of new texel locations, resulting in inaccurate lattice detection, we evaluate the
image likelihood of the each texel by normalized cross correlation using only the
foreground mask.

(a) (b) (c) (d)

Fig. 3: Sample FG/BG classification for a layer mask. (a) sample texels from the
lattice are shown. (b)-(c) results of two methods proposed in [1]. (d) results of
our proposed method.
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3.1 Clustering for the Foreground Segmentation

Liu et al. [1] simultaneously align multiple texels by calculating a homography
for each texel that brings its corners into alignment with the average texel shape
(Figure 2 B). After aligning all the texels, they compute the standard deviation
of each pixel in each texel with respect to the values at the same location in all
other texels. They propose two methods of pixel classification. The first was the
classification of background versus foreground by thresholding of the variance
among corresponding pixels. The second was to consider the color of each texel
along with the variance and performing K-means clustering on 6D vectors com-
posed of the value and standard deviation of red, green, and blue channels for
each pixel. They identified the pixels belonging to the lower variance cluster as
the lattice region. Sample results from these two methods are shown in Figures
3b and 3c.

Differing from Liu et al. [1], we use the mean of all pixels at each location
within the average texel shape. Now the input to the K-means (K=2) clustering
is a set of 6D vectors composed of the mean value (for all pixels at that location)
and the standard deviation (for each pixel) of red, green, and blue channels. We
achieve better results with the use of the mean value, as can be seen in Figure
3d. This is because the means cancel out the irregularities in the backgrounds
and make the boundary between the foreground and the background clear.

(a) (b) (c)

Fig. 4: (a) An uniform background can make the relative mean RGB variance of
the foreground larger. (b) Results of taking the cluster with lower variance as
foreground: red is foreground. (This picture is best viewed in color.) (c) Results
of our proposed foreground segmentation.

However, taking the cluster with a smaller RGB variance does not always
work since severe lighting conditions on the foreground or a uniform background
can result in equivalent RGB variance for each cluster, as can be seen in Figure
4.

3.2 Online Learning-based Lattice Detection

In our lattice detection algorithm, online learning using a support vector machine
is performed to improve the classification of lattice points and for foreground seg-
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mentation. The base lattice detection algorithm provides both samples, xi ∈ Rn
and the label of the samples yi = {−1, 1}, which enables us to do supervised
learning. Positive samples, xi, yi = 1 are collected from patches centered at lat-
tice points (Figure 2, red arrows). Negative samples xi, yi = −1 are collected
from patch locations between positive samples (Figure 2, yellow arrows). Next,
we segment the lattice region to determine the lattice mask using K-means (Sec-
tion 3.1 and Figure 2 B). At this stage we have two candidates for the foreground
mask. Then, at each sample location, RGB color histograms are computed from
the two masks and used as features.

We use a support vector machine (SVM) with linear kernel and 10-fold
cross validation. We train the SVM to minimize the objective function given
by equation (1) with respect to w, b (support vector) and ξ (slack variable for
non-separable data). For this purpose, we used the OpenCV Machine Learning
toolbox.

minw,b,ξ
1
2wTw + C

∑N
i=1 ξi

yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0

(1)

The parameter C (the penalty parameter of the error term in equation (1)
and the only optional parameter set by the user for the linear kernel SVM) is
iterated on a logarithmic grid and selected based on a 10-fold cross validation
estimate of error rate given by the ratio of the number of misclassified samples
over the number of test samples. Since we have two possible foreground masks
from clustering, we train an optimal classifier for each mask. To decide the best
foreground mask for representing the positive samples, xi, yi = 1 we further
examine the collected positive and negative samples using the trained classifiers.
The idea behind our approach is that if a mask A is representing xi, yi = 1
faithfully, then the training error of the classifier with features collected from
A should be smaller than that of the classifier with features collected from the
other mask, B. We measure the training error of each classifier and select the
foreground mask that results in lower training error. The optimal classifier with
the selected mask is used to aid further lattice detection, an advancement from
[1]. Finally, we consider the foreground mask when determining image likelihood
during the lattice point inference procedure, increasing accuracy in localization
of lattice points. The procedure repeats until no more texels are found. Our
proposed method has a 30% improved detection rate1 over the state-of-the-art
algorithm [5] on the 32 images from the PSU NRT database.

4 Multi-view and Symmetry Augmented Inpainting

One of the most challenging problems in inpainting is the scarcity of source
samples [1]. We seek to overcome this in two ways. The first approach is to try

1 The detection rate is measured by the ratio of the number of correctly detected
texels over the total number of ground truth texels.



8 Minwoo Park†, Kyle Brocklehurst†, Robert T. Collins†, and Yanxi Liu†*

to see the occluded object in another view. It is reported by Liu et al. [1] that
overall occupation of the foreground fence layer in their data set is from 18% to
53%. However, even a small offset of the camera can reveal pixel values behind
the foreground layer since objects behind the layer will experience less parallax
than the foreground. Also, moving objects will reveal parts of themselves, even
to a stationary camera, through multiple frames. Since in video these offsets are
small, object alignment can be approximated as a 2D translation. We utilize the
information from multiple views to aid the inpainting process by minimizing the
number of pixel values that need to be inferred.

A second approach deals with the situation after multi-view inpainting or
where no additional views are available. For gaps that still remain, we adopt
an exemplar based inpainting algorithm [3][4] as our base tool. In addition ,we
seek to overcome scarcity of candidate patches by simulating bilateral symmetry
patterns from the source image. As reflection symmetry often exists in man-made
environments and nature, simulating these patterns from the source image often
recovers occluded regions reliably and efficiently.

4.1 Multi-view Inpainting

To begin fence removal, we first remove the foreground layer (section 3) and then
start extracting patches for inpainting. Since the order of synthesis is critical, the
method for determining order that appears in [14] is used. That is, any objects
that are closer or have moved more between views should be dealt with first
because of their depth or motion boundary. Although optical flow estimation is
often not robust due to hole regions, errors are generally not noticeable in the
resulting image.

(a) Patch 1 (b) Patch 2 (c) Inpainting
region

(d) Inpainting
result

Fig. 5: Process of multiview inpainting and result: The green region shows the
region that is made visible by patch 2 and the yellow region shows the region to
inpaint using augmented symmetries

For a given image, I, we compute magnitude of optical flow, F , using the
Lucas Kanade algorithm [17] for every pixel. The priority of the matching follows
a descending order with respect to F . From the location p with the maximum
F , we extract patch Φp to do block matching with the other view, I ′. Formally,
we seek to solve,
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Φq̂ = arg min
Φq∈I′

SSD(Φp, Φq) (2)

where SSD is sum of squared difference.
We use a larger patch width (15∼30) than the original inpainting algorithm

(≤ 9) to disambiguate similar patches. This would have posed problems in earlier
works [4, 13] because only complete source regions (containing no pixels to be
inpainted) were considered as candidates. We allow for an area that matches
better to be selected even if some of the pixels of the patch will need to be
synthesized later.

Another possible problem of using a larger patch occurs at boundaries be-
tween objects at different depths. We attempt to minimize the effect of these
depth boundaries by filling in the pixel values in descending order of optical flow
magnitude as in [14]. Having found Φq̂, the value of each pixel p ∈ Φp ∩ H is
copied from its corresponding pixel q ∈ Φq̂ \ H. If q(∈ Φq̂ \ H) is the null set,
the value of p is not observable from any other views, hence we use the single
view inpainting algorithm in Section 4.2. As can be seen in Figure 5 we do not
replace the entire original patch (Figure 5b), but only replace the region that is
occluded in the original patch (Figure 5d).

(a) Normal inpainting (b) Our symmetry-augmented in-
painting

Fig. 6: Result of normal inpainting compared with symmetry-augmented inpaint-
ing. Both inpainting algorithms are applied after multi-view inpainting. (a) Re-
sults of normal inpainting [3, 4] (b) Inpainting with simulated bilateral symmetry
patches

4.2 Symmetry-Augmented Inpainting

After multi-view inpainting or when only one view is available, we adopt an
exemplar-based single view inpainting algorithm [3, 4] for hole regions that still
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remain. As symmetry is common in nature and man-made environments, sim-
ulating these patterns from the source image increases the pool of candidate
matches, which could improve the inpainting quality. First, size of the template
window Φ is given as 9 by 9 for a given image, I, and the patch priority is com-
puted according to [3, 4]. We select the patch with the highest priority, Φp and
we rotate Φp by 90, 180 and 270 degrees as well as flip Φp around the x, y, y = x
and y = −x axes. We next search in the source region, S = I \H for the patch

most similar to Φp or its simulated symmetry patches, Φ
(i)
p , where i = 1 ∼ 7.

Formally we seek to solve,

Φq̂ = arg min
Φq∈S,i=1∼7

SSD(Φ(i)
p , Φq) (3)

Having found the source exemplar Φq̂, we apply the appropriate inverse rotation
or reflection on Φq̂ depending on the index, i, then the value of each pixel p ∈
Φp ∩H is copied from its corresponding location in Φq̂.

As can be seen in Figure 6, although there are still artifacts, our proposed
method offers improvements in keeping the image structure (inner corner of
sunglasses in Figure 6).

5 Experimental Results

We first compare our method of lattice detection to [5]. We then compare our
overall system with [1] on the same images that appeared in [1]. Last, we demon-
strate results of multiview and symmetry-augmented inpainting on multiview
images.

5.1 Lattice Detection

We have tested on 32 images from the PSU NRT database2 [18, 19] and have
found a 30% improvement in detection rate over [5]. Quantitative evaluation of
true positive rate and false positive rate are shown in Table 1. The true positive
rate is computed by the ratio of the number of correctly identified texels over
the number of ground truth texels, and the false positive rate is computed by
the ratio of the number of incorrectly identified texels over the number of ground
truth texels. The ground truth data and automatic evaluation code is obtained
from the PSU Near Regular Texture Database2.

5.2 Comparison with Liu et al. [1]

Our proposed method is successful at finding lattices and corresponding masks
for both of the images that appeared in [1]. Sample results of [1] and our results3

are shown in Figure 7.

2 “http://vision.cse.psu.edu/data/data.shtml”.
3 More results can be found in “http://vision.cse.psu.edu/research/Defencing-

Revisited/index.shtml”.
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Lattice Detection Rate True Positive False Positive

Park et al. 59.34%± 25.58 0.62%± 2.4

Ours 77.11%± 16.24 0.74%± 2.5

Table 1: Quantitative evaluation of true positive rate and false positive rate, the
true positive rate is computed by the ratio of the number of correctly identified
texels over the number of ground truth texels and the false positive rate is
computed by the ratio of the number of incorrectly identified texels over the
number of the ground truth texels

5.3 Multi-view Inpainting Result

We apply our multi-view inpainting and symmetry augmented inpainting to
images that have multiple views and a few frames extracted from the show
“Prison Break”. The results are illustrated in Figure 8. In Figure 8, the first row
uses 4 views, the second row uses 3 views, and the last row uses 2 views.

6 Conclusion

We introduce a novel technique for “image de-fencing”, the automatic removal
of foreground fence layer in real photos, by detecting, segmenting and inpainting
repeating foreground structures. We treat detection and segmentation of the
lattice as a coupled learning process since the results of each one can be fed
to the other to improve the overall performance. Our lattice detection method
produces improved results over the state-of-the-algorithm [5] by 30%. We also
propose multi-view inpainting and symmetry-augmented inpainting methods to
overcome the problem of candidate sample patch impoverishment for inpainting.
Even for human faces, these new alternatives lead to acceptable results (Figure
8). Our future goal is to deal with large view angle changes between multiple
views.
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