Skip to main content

Invariant Feature Set Generation with the Linear Manifold Self-organizing Map

  • Conference paper
  • 2308 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6495))

Abstract

One of the most important challenges faced by computer vision is the almost unlimited possibilities of variation associated with the objects. It has been hypothesized that the brain represents image manifolds as manifolds of stable neural-activity patterns. In this paper, we explore the possibility of manifold representation with a set of topographically organized neurons with each representing a local linear manifold and capturing some local linear feature invariance. In particular, we propose to consider the local subspace learning at each neuron of the network from a Gaussian likelihood point of view. Robustness of the algorithm with respect to the learning rate issue is obtained by considering statistical efficiency. Compared to its predecessors, the proposed network is more adaptive and robust in learning globally nonlinear data manifolds, which is verified by experiments on handwritten digit image modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adibi, P., Safabakhsh, R.: Linear manifold topographic map formation based on an energy function with on-line adaptation rules. Neurocomputing 72, 1817–1825 (2009)

    Article  Google Scholar 

  2. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artificial Intelligence Review 11, 11–73 (1997)

    Article  Google Scholar 

  3. Cai, D., He, X., Hu, Y., Han, J., Huang, T.: Learning a spatially smooth subspace for face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2007)

    Google Scholar 

  4. Kohonen, T.: The adaptive-subspace SOM (ASSOM) and its use for the implementation of invariant feature detection. In: Proceedings of International Conference on Artificial Neural Networks, pp. 3–10 (1995)

    Google Scholar 

  5. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  6. Kohonen, T., Kaski, S., Lappalainen, H.: Self-organized formation of various invariant-feature filters in the adaptive-subspace SOM. Neural Computation 9, 1321–1344 (1997)

    Article  Google Scholar 

  7. Laaksonen, J., Oja, E.: Subspace dimension selection and averaged learning subspace method in handwritten digit classification. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 227–232. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  8. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  9. Liu, Z.Q.: Adaptive subspace self-organizing map and its application in face recognition. International Journal of Image and Graphics 2, 519–540 (2002)

    Article  Google Scholar 

  10. López-Rubio, E., Muñoz-Pérez, J., Gómez-Ruiz, J.A.: A principal components analysis self-organizing map. Neural Networks 17, 261–270 (2004)

    Article  MATH  Google Scholar 

  11. Oja, E.: Subspace Methods of Pattern Recognition. Research Studies Press, Letchworth (1983)

    Google Scholar 

  12. Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Mathematical Statistics 22, 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  13. Roweis, S., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  14. Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290, 2268–2269 (2000)

    Article  Google Scholar 

  15. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  16. Weng, J., Zhang, Y., Hwang, W.S.: Candid covariance-free incremental principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1034–1040 (2003)

    Article  Google Scholar 

  17. Zhang, B., Fu, M., Yan, H., Jabri, M.: Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM). IEEE Transactions on Neural Networks 10, 939–945 (1999)

    Article  Google Scholar 

  18. Zheng, H., Shen, W., Dai, Q., Hu, S., Lu, Z.M.: Learning nonlinear manifolds based on mixtures of localized linear manifolds under a self-organizing framework. Neurocomputing 72, 3318–3330 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, H. (2011). Invariant Feature Set Generation with the Linear Manifold Self-organizing Map. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19282-1_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19281-4

  • Online ISBN: 978-3-642-19282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics