Skip to main content

A Biologically-Inspired Theory for Non-axiomatic Parametric Curve Completion

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Included in the following conference series:

  • 3775 Accesses

Abstract

Visual curve completion is typically handled in an axiomatic fashion where the shape of the sought-after completed curve follows formal descriptions of desired, image-based perceptual properties (e.g, minimum curvature, roundedness, etc...). Unfortunately, however, these desired properties are still a matter of debate in the perceptual literature. Instead of the image plane, here we study the problem in the mathematical space \({\mathbf R}^{2}\times {\mathcal S}^{1}\) that abstracts the cortical areas where curve completion occurs. In this space one can apply basic principles from which perceptual properties in the image plane are derived rather than imposed. In particular, we show how a “least action” principle in \({\mathbf R}^{2}\times {\mathcal S}^{1}\) entails many perceptual properties which have support in the perceptual curve completion literature. We formalize this principle in a variational framework for general parametric curves, we derive its differential properties, we present numerical solutions, and we show results on a variety of images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Shahar, O., Zucker, S.: The perceptual organization of texture flows: A contextual inference approach. IEEE Trans. Pattern Anal. Mach. Intell. 25, 401–417 (2003)

    Article  Google Scholar 

  2. Ben-Shahar, O.: The Perceptual Organization of Visual Flows. PhD thesis, Yale university (2003)

    Google Scholar 

  3. Ben-Yosef, G., Ben-Shahar, O.: Minimum length in the tangent bundle as a model for curve completion. In: Proc. CVPR, pp. 2384–2391 (2010)

    Google Scholar 

  4. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. of Math. Imaging and Vision 24, 307–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Geisler, W., Perry, J.: Contour statistics in natural images: Grouping across occlusions. Visual Neurosci. 26, 109–121 (2009)

    Article  Google Scholar 

  6. Gerbino, W., Fantoni, C.: Visual interpolation in not scale invariant. Vision Res. 46, 3142–3159 (2006)

    Article  Google Scholar 

  7. Grosof, D., Shapley, R., Hawken, M.: Macaque v1 neurons can signal ’illusory’ contours. Nature 365, 550–552 (1993)

    Article  Google Scholar 

  8. Guttman, S., Kellman, P.: Contour interpolation reveald by a dot localization paradigm. Vision Res. 44, 1799–1815 (2004)

    Article  Google Scholar 

  9. Horn, B.: The curve of least energy. ACM Trans. Math. Software 9, 441–460 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hubel, D., Wiesel, T.: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. London Ser. B 198, 1–59 (1977)

    Article  Google Scholar 

  11. Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger Publishers, Westport CT (1979)

    Google Scholar 

  12. Kellman, P., Shipley, T.: A theory of visual interpolation in object perception. Cognitive Psychology 23, 141–221 (1991)

    Article  Google Scholar 

  13. Kimia, B., Frankel, I., Popescu, A.: Euler spiral for shape completion. Int. J. Comput. Vision 54, 159–182 (2003)

    Article  MATH  Google Scholar 

  14. Levien, R.: The elastica: a mathematical history. Technical Report UCB/EECS-2008-103, EECS Department, University of California, Berkeley (2008)

    Google Scholar 

  15. Mumford, D.: Elastica in computer vision. In: Chandrajit, B. (ed.) Algebric Geometry and it’s Applications. Springer, Heidelberg (1994)

    Google Scholar 

  16. O’Neill, B.: Semi-Riemannian Geometry with applications to relativity. Academic Press, London (1983)

    MATH  Google Scholar 

  17. Palmer, S.: Vision Science: Photons to Phenomenology. The MIT Press, Cambridge (1999)

    Google Scholar 

  18. Petitot, J.: Neurogeometry of v1 and kanizsa contours. AXIOMATHES 13 (2003)

    Google Scholar 

  19. Sharon, E., Brandt, A., Basri, R.: Completion energies and scale. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1117–1131 (2000)

    Article  Google Scholar 

  20. Singh, M., Hoffman, D.: Completing visual contours: The relationship between relatability and minimizing inflections. Percept. Psychophys. 61, 943–951 (1999)

    Article  Google Scholar 

  21. Singh, M., Fulvio, J.: Visual extrapolation of contour geometry. Proc. Natl. Acad. Sci. USA 102, 939–944 (2005)

    Article  Google Scholar 

  22. Ullman, S.: Filling in the gaps: The shape of subjective contours and a model for their creation. Biol. Cybern. 25, 1–6 (1976)

    Google Scholar 

  23. Von der Heydt, R., Peterhans, E., Baumgartner, G.: Illusory contours and cortical neuron responses. Science 224, 1260–1262 (1984)

    Article  Google Scholar 

  24. Williams, L., Jacobs, D.: Stochastic completion fields: A neural model of illusory contour shape and salience. Neural Comp. 9, 837–858 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben-Yosef, G., Ben-Shahar, O. (2011). A Biologically-Inspired Theory for Non-axiomatic Parametric Curve Completion. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics