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Abstract. We address the problem of quasi-automatic extraction of directed net-
works, which have characteristic geometric features, from images. To include the
necessary prior knowledge about these geometric features, we use a phase field
higher-order active contour model of directed networks. The model has a large
number of unphysical parameters (weights of energy terms), and can favour dif-
ferent geometric structures for different parameter values. To overcome this prob-
lem, we perform a stability analysis of a long, straight bar in order to find param-
eter ranges that favour networks. The resulting constraints necessary to produce
stable networks eliminate some parameters, replace others by physical param-
eters such as network branch width, and place lower and upper bounds on the
values of the rest. We validate the theoretical analysis via numerical experiments,
and then apply the model to the problem of hydrographic network extraction from
multi-spectral VHR satellite images.

1 Introduction

The automatic identification of the region in the image domain corresponding to a spec-
ified entity in the scene (‘extraction’) is a difficult problem because, in general, local
image properties are insufficient to distinguish the entity from the rest of the image.
In order to extract the entity successfully, significant prior knowledge K about the ge-
ometry of the region R corresponding to the entity of interest must be provided. This
is often in the form of explicit guidance by a user, but if the problem is to be solved
automatically, this knowledge must be incorporated into mathematical models. In this
paper, we focus on the extraction of ‘directed networks’ (e.g. vascular networks in med-
ical imagery and hydrographic networks in remote sensing imagery). These are entities
that occupy network-like regions in the image domain, i.e. regions consisting of a set
of branches that meet at junctions. In addition, however, unlike undirected networks,
directed networks carry a unidirectional flow. The existence of this flow, which is usu-
ally conserved, encourages the network region to have certain characteristic geometric
properties: branches tend not to end; different branches may have very different widths;
width changes slowly along each branch; at junctions, total incoming width and total
outgoing width tend to be similar, but otherwise width can change dramatically.

Creating models that incorporate these geometric properties is non-trivial. First, the
topology of a network region is essentially arbitrary: it may have any number of con-
nected components each of which may have any number of loops. Shape modelling
methods that rely on reference regions or otherwise bounded zones in region space,
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e.g. [1–7], cannot capture this topological freedom. In [8], Rochery et al. introduced the
‘higher-order active contour’ (HOAC) framework, which was specifically designed to
incorporate non-trivial geometric information about the region of interest without con-
straining the topology. In [9], a phase field formulation of HOACs was introduced. This
formulation possesses several advantages over the contour formulation. Both formula-
tions were used to model undirected networks in which all branches have approximately
the same width. While these models were applied successfully to the extraction of road
networks from remote sensing images, they fail on directed networks in which branches
have widely differing widths, and where information about the geometry of junctions
can be crucial for successful extraction. Naive attempts to allow a broader range of
widths simply results in branches whose width changes rapidly: branch rigidity is lost.

In [10], El Ghoul et al. introduced a phase field HOAC model of directed networks.
This extends the phase field model of [8] by introducing a vector field which describes
the ‘flow’ through network branches. The main idea of the model is that the vector
field should be nearly divergence-free, and of nearly constant magnitude within the
network. Flow conservation then favours network regions in which the width changes
slowly along branches, in which branches do not end, and in which total incoming
width equals total outgoing width at junctions. Because flow conservation preserves
width in each branch, the constraint on branch width can be lifted without sacrificing
rigidity, thereby allowing different branches to have very different widths. The model
was tested on a synthetic image.

The work in [10] suffers from a serious drawback, however. The model is complex
and possesses a number of parameters that as yet must be fixed by trial and error. Worse,
depending on the parameter values, geometric structures other than networks may be
favoured. There is thus no way to know whether the model is actually favouring net-
work structures for a given set of parameter values. The model was applied to network
extraction from remote sensing images in an application paper complementary to this
one [11], but that paper focused on testing various likelihood terms and on the concrete
application. The model was not analysed theoretically and no solution to the parameter
problem was described.

In this paper, then, we focus on a theoretical analysis of the model. In particular,
we perform a stability analysis of a long, straight bar, which is supposed to be an ap-
proximation to a network branch. We compute the energy of the bar and constrain the
first order variation of the bar energy to be zero and the second order variation to be
positive definite, so that the bar be an energy minimum. This results in constraints on
the parameters of the model that allow us to express some parameters in terms of oth-
ers, to replace some unphysical parameters by physical parameters e.g. the bar width,
and to place upper and lower bounds on the remaining free parameter values. The re-
sults of the theoretical study are then tested in numerical experiments, some using the
network model on its own to validate the stability analysis, and others using the net-
work model in conjunction with a data likelihood to extract networks from very high
resolution (VHR) multi-spectral satellite images.

In Section 2, we recall the phase field formulation of the undirected and directed
network models. In Section 3, we introduce the core contribution of this paper: the
theoretical stability analysis of a bar under the phase field HOAC model for directed
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networks. In Section 4, we show the results of geometric and extraction experiments.
We conclude in Section 5.

2 Network models

In this section, we recall the undirected and directed network phase field HOAC models
introduced in [9] and [10] respectively.

2.1 Undirected networks

A phase field is a real-valued function on the image domain: � : 
 ⊂ ℝ2 → ℝ. It de-
scribes a region by the map �z(�) = {x ∈ 
 : �(x) > z} where z is a given threshold.
The basic phase field energy is [9]
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For a given region R, Eq. (1) is minimized subject to �z(�) = R. As a result, the
minimizing function �R assumes the value 1 inside, and −1 outside R thanks to the
ultralocal terms. To guarantee two stable phases at −1 and 1, the inequality � > ∣�∣
must be satisfied. We choose � > 0 so that the energy at −1 is less than that at 1.
The first term guarantees that �R be smooth, producing a narrow interface around the
boundary ∂R interpolating between −1 and +1.

In order to incorporate geometric properties, a nonlocal term is added to give a total
energy EsP = Es0 + ENL, where [9]

ENL(�) = −�
2
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where d is the interaction range. This term creates long-range interactions between
points of ∂R (because ∂�R is zero elsewhere) using an interaction function, 	 , which
decreases as a function of the distance between the points. In [9], it was shown that
the phase field model is approximately equivalent to the HOAC model, the parameters
of one model being expressed as a function of those of the other. For the undirected
network model, the parameter ranges can be found via a stability analysis of the HOAC
model [12] and subsequently converted to phase field model parameters [9].

2.2 Directed networks

In [10], a directed network phase field HOAC model was introduced by extending the
undirected network model described in Section 2.1. The key idea is to incorporate geo-
metric information by the use, in addition to the scalar phase field �, of a vector phase
field, v : 
 → ℝ2, which describes the flow through network branches. The total prior
energy EP(�, v) is the sum of a local term E0(�, v) and the nonlocal term ENL(�)
given by Eq. (2). E0 is [10]

E0(�, v) =

∫
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where W is a fourth order polynomial in � and ∣v∣, constrained to be differentiable:
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∣v∣4
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Similarly to the undirected network model described in Section 2.1, where −1 and 1
are the two stable phases, the form of the the ultralocal term W (�, v) means that the
directed network model has two stable configurations, (�, ∣v∣) = (−1, 0) and (1, 1),
which describe the exterior and interior ofR respectively. The first term in Eq. (3) guar-
antees the smoothness of �. The second term penalizes the divergence of v. This repre-
sents a soft version of flow conservation, but the parameter multiplying this term will
be large so that in general the divergence will be small. The divergence term is not suf-
ficient to ensure smoothness of v: a small smoothing term (∂v : ∂v =

∑
m,n(∂mv

n)2,
where m,n ∈ {1, 2} label the two Euclidean coordinates) is added to encourage this.

The divergence term, coupled with the change of magnitude of v from 0 to 1 across
∂R, strongly encourages the vector field v to be parallel to ∂R. The divergence and
smoothness terms then propagate this parallelism to the interior of the network, meaning
that the flow runs along the network branches. Flow conservation and the fact that ∣v∣ ∼=
1 in the network interior then tend to prolong branches, to favour slow changes of width
along branches, and to favour junctions for which total incoming width is approximately
equal to total outgoing width. Because the vector field encourages width stability along
branches, the interaction function used in [9], which severely constrains the range of
stable branch widths, can be replaced by one that allows more freedom. We choose the
modified Bessel function of the second kind of order 0,K0 [10]. Different branches can
then have very different widths.

3 Theoretical stability analysis

There are various types of stability that need to be considered. First, we require that
the two phases of the system, (�, ∣v∣) = (−1, 0) and (1, 1), be stable to infinitesimal
perturbations, to prevent the exterior or interior of R from ‘decaying’. For homoge-
neous perturbations, this means they should be local minima of W , which produces
constraints reducing the number of free parameter of W from 7 to 4 (these are chosen
to be (�04, �03, �22, �21)). Stability to non-zero frequency perturbations then places
lower and upper bounds on the values of the remaining parameters. Second, we require
that the exterior (�, ∣v∣) = (−1, 0), as well as being locally stable, also be the global
minimum of the energy. This is ensured if the quadratic form defined by the derivative
terms is positive definite. This generates a further inequality on one of the parameters.
We do not describe these two calculations here due to lack of space, but the constraints
are used in selecting parameters for the experiments. Third, we require that network
configurations be stable. A network region consists of a set of branches, meeting at
junctions. To analyse a general network configuration is very difficult, but if we assume
that the branches are long and straight enough, then their stability can be analysed by
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considering the idealized limit of a long, straight bar. The validity of this idealization
will be tested using numerical experiments.

Ideally, the analysis should proceed by first finding the energy minimizing �RBar and
vRBar for the bar region, and then expanding around these values. In practice, there are
two obstacles. First, �RBar and vRBar cannot be found exactly. Second, it is not possi-
ble to diagonalize exactly the second derivative operator, and thus it is hard to impose
positive definiteness for stability. Instead, we take simple ansatzes for �RBar and vRBar

and study their stability in a low-dimensional subspace of function space. We define a
four-parameter family of ansatzes for �RBar and vRBar , and analyse the stability of this
family. Again, the validity of these ansatzes will be tested using numerical experiments.
The first thing we need to do, then, is to calculate the energy of this idealized bar con-
figuration.

3.1 Energy of the bar

Two phase field variables are involved: the scalar field � and the vector field v. The
ansatz is as follows: the scalar field � varies linearly from −1 to �m across a region
interface of width w, otherwise being −1 outside and �m inside the bar, which has
width w0; the vector field v is parallel to the bar boundary, with magnitude that varies
linearly from 0 to vm across the region interface, otherwise being 0 outside and vm
inside the bar. The bar is thus described by the four physical parameters w0, w, �m and
vm.

To compute the total energy per unit length of the bar, we substitute the bar ansatz
into Eq. (2) and (3). The result is

eP(ŵ0, ŵ, �m, vm) = ŵ0�(�m, vm) + ŵ�(�m, vm)

− �(�m + 1)2G00(ŵ0, ŵ) +
D̂(�m + 1)2 + L̂vv

2
m

ŵ
(5)

where ŵ = w/d, ŵ0 = w0/d, D̂ = D/d2 and L̂v = Lv/d
2 are dimensionless pa-

rameters. The functions �, � and G00 are given in appendix A. The parameters � and �
play the same roles as � and � in the undirected network model given by Eq. (1). The
energy gap between the foreground and the background is equal to 2� in the undirected
network model and � in the directed network model, and � must be strictly positive to
favour pixels belonging to the background. The parameter � controls the contribution
of the region interface of width w: it has an effect similar to the parameter �.

3.2 Stability of the bar

The energy per unit length of a network branch, eP, is given by Eq. 5. A network branch
is stable in the four-parameter family of ansatzes if it minimizes eP with respect to
variations of ŵ0, ŵ, �m and vm. This is equivalent to setting the first partial derivatives
of eP equal to zero and requiring its Hessian matrix to be positive definite. The desired
value of (�m, vm) is (1, 1) to describe the interior of the region R.
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Setting the first partial derivatives of eP, evaluated at (ŵ0, ŵ, 1, 1), equal to zero,
and after some mathematical manipulation, one finds the following constraints:

�★ −G(ŵ0, ŵ) = 0 (6)

� =
�★

4G10(ŵ0, ŵ)
(7)

D̂ =
ŵ

2

[
�★G00(ŵ0, ŵ)

2G10(ŵ0, ŵ)
− ŵ�★�

]
(8)

L̂v = − ŵ
2�★v
2

(9)

where G(ŵ0, ŵ) = [G00(ŵ0, ŵ)/ŵ +G11(ŵ0, ŵ)] /G10(ŵ0, ŵ), �★ = [�★ + �★� +
�★v/2]/�★, �★ = �(1, 1), �★ = �(1, 1), �★� = ��(1, 1) and �★v = �v(1, 1); �� =
∂�/∂�m, �v = ∂�/∂vm,G10 = ∂G00/∂ŵ0 andG11 = ∂G00/∂ŵ. The starred param-
eters depend only on the 4 parameters of W : �� = (�22, �21, �04, �03). The conditions
D̂ > 0 and L̂v > 0 generate lower and upper bounds on ŵ0, ŵ and ��.

Equation (6) shows that, for fixed �� i.e. when �★ is determined, the set of solutions
in the plane (ŵ0, ŵ) is the intersection of the surface representing the function G and
the plane located at �★. The result is then a set of curves in the plane (ŵ0, ŵ) where
each corresponds to a value of �★. The top-left of Fig. 1 shows examples of solutions
of Eq. (6) for some values of �★. The solutions must satisfy the condition ŵ < ŵ0

otherwise the bar ansatz fails.
Equation (7) shows that bar stability depends mainly on the scaled parameter �̂ =

�/�★. The top-right of Fig. 1 shows a plot of �̂ against the scaled bar width ŵ0 and the
scaled interface width ŵ. We have plotted the surface as two half-surfaces: one is lighter
(left-hand half-surface, smaller ŵ0) than the other (right-hand half-surface, larger ŵ0).
The valley between the half-surfaces corresponds to the minimum value of �̂ for each
value of ŵ. The graph shows that: for each value �̂ < �̂min = inf(1/4G10(ŵ0, ŵ)) =
0.0879, there are no possible values of (ŵ0, ŵ) which satisfy the constraints and so
the bar energy does not have extrema; for each value �̂ > �̂min and for some chosen
value ŵ, there are two possible values of ŵ0 which satisfy the constraints: the smaller
width (left-hand half-surface) corresponds to an energy maximum and the larger width
(right-hand half-surface) corresponds to an energy minimum.

The second order variation of the bar energy is described by the 4 × 4 Hessian
matrix H which we do not detail due to lack of space. In order for the bar to be an
energy minimum, H must be positive definite at (ŵ0, ŵ, �m, vm) = (ŵ0, ŵ, 1, 1). This
generates upper and lower bounds on the parameter values. This positivity condition is
tested numerically because explicit expressions for the eigenvalues cannot be found.

The lower part of Fig. 1 shows the bar energy, eP, plotted against the physical pa-
rameters of the bar �B = (ŵ0, ŵ, �m, vm). The desired energy minimum was chosen
at �★B = (1.36, 0.67, 1, 1).1 We choose a parameter setting, ��, and then compute D, �
and Lv using the parameter constraints given above. The bar energy per unit length eP

indeed has a minimum at the desired �★B.

1 The parameter values were: (�04, �03, �22, �21, D, �, d, Lv, Dv) = (0.05, 0.025, 0.013,
−0.6, 0.0007, 0.003, 1, 0.208, 0).
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Fig. 1. Top-left: examples of solutions of Eq. (6) for some values of �★; curves are labelled by the
values of �★. Top-right: behaviour of �̂; the light and dark surfaces show the locations of maxima
and minima respectively. Bottom: bar energy eP against the bar parameters ŵ, ŵ0, �m and vm.
Parameter values were chosen so that there is an energy minimum at �★

B = (1.36, 0.67, 1, 1).

3.3 Parameter settings in practice

There are nine free parameters in the model: (�04, �03, �22, �21, D, �, d, Lv, Dv). Based
on the stability analysis in Section 3, two of these parameters are eliminated while an-
other two can be replaced by the ‘physical’ parameters ŵ0 and ŵ: (�04, �03, �22, �21,
Dv, ŵ0, ŵ). The interface width w should be taken as small as possible compatible with
the discretization; in practice, we take 2 < w < 4 [9]. The desired bar width w0 is an
application-determined physical parameter. We then fix the parameter values as follows:
choose the 4 free parameter values (�04, �03, �22, �21) of the ultralocal term W ; com-
pute �★, �★, �★�, �★v and then �★, and solve Eq. (6) to give the values of the scaled widths
ŵ0 and ŵ; compute �, D̂ and L̂v using the parameter constraints given by Eq. (7), (8)
and (9), and then compute D = d2D̂ and Lv = d2L̂v where d = w0/ŵ0; choose the
free parameter Dv; check numerically the stability of the phases (−1, 0) and (1, 1) as
described briefly at the beginning of Section 3; check numerically positive definiteness
of the Hessian matrix H .

4 Experiments

In Section 4.1, we present numerical experiments using the new model EP that confirm
the results of the theoretical analysis. In Section 4.2, we add a data likelihood and use
the overall model to extract hydrographic networks from real images.
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Fig. 2. Geometric evolutions of bars using the directed network model EP with the interaction
function K0. Time runs from left to right. First column: initial configurations, which consist of a
straight bar of width 10. The initial � is −1 in the background and �s in the foreground, and the
initial vector field is (1, 0). First row: when �̂ < �̂min, the initial bar vanishes; second and third
rows: when �̂ > �̂min, the bars evolve toward bars which have the desired stable widths 3 and 6
respectively. The regions are obtained by thresholding the function � at 0.

4.1 Geometric evolutions

To confirm the results of the stability analysis, we first show that bars of different widths
evolve under gradient descent towards bars of the stable width predicted by theory.
Fig. 2 shows three such evolutions.2 In all evolutions, we fixed Dv = 0, because the
divergence term cannot destabilize the bar when the vector field is initialized as a con-
stant everywhere in the image domain. The width of the initial straight bar is 10. The
first row shows that the bar evolves until it disappears because �̂ < �̂min, so that the bar
energy does not have a minimum for ŵ0 ∕= 0. On the other hand, the second and third
rows show that straight bars evolve toward straight bars with the desired stable widths
w0 = 3 and 6, respectively, when �̂ > �̂min.

As a second test of the theoretical analysis, we present experiments that show that
starting from a random configuration of � and v, the region evolves under gradient
descent to a network of the predicted width. Fig. 3 shows two such evolutions.3 At
each point, the pair (�, ∣v∣) was initialized randomly to be either (−1, 0) or (1, 1). The
orientation of v was chosen uniformly on the circle. The evolutions in the first row has
predicted stable width w0 = 5, while that in the second row has predicted stable width
w0 = 8. In all cases, the initial configuration evolves to a stable network region with
branch widths equal to the predicted value, except near junctions, where branch width
changes significantly to accommodate flow conservation.

4.2 Results on real images

In this section, we use the new model to extract hydrographic networks from multi-
spectral VHR Quickbird images. The multi-spectral channels are red, green, blue and
infra-red. Fig. 4 shows three such images in which parts of the hydrographic network
to be extracted are obscured in some way.

2 From top to bottom, parameter values were: (�04, �03, �22, �21, D, �, d, Lv, Dv) =
(0.1,−0.064, 0.232,−0.6, 0.065, 0.0027, 3.66, 0.5524, 0), (0.112, 0.019,−0.051,−0.6,
0.055, 0.011, 2.78, 0.115, 0) and (0.1,−0.064, 0.232,−0.6, 0.065, 0.0077, 3.66, 0.5524, 0).

3 From top to bottom, the parameter values were: (�04, �03, �22, �21, D, �, d, Lv, Dv) =
(0.25, 0.0625, 0.0932,−0.8, 0.111, 0.0061, 3.65, 0.0412, 50) and (0.4,−0.1217, 0.7246,
−1, 0.4566, 0.0083, 10.8, 0.4334, 100).
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Fig. 3. Geometric evolutions starting from random configurations. Time runs from left to right.
Parameter values were chosen as a function of the desired stable width, which was 5 for the
first row and 8 for the second row. Both initial configurations evolve towards network regions in
which the branches have widths equal to the predicted stable width, except near junctions, where
branch width changes significantly to accommodate flow conservation. The regions are obtained
by thresholding the function � at 0.

To apply the model, a likelihood energy linking the region R to the data I is needed
in addition to the prior term EP. The total energy to minimize is then E(�, v) =
�EP(�, v) + EI(�) where the parameter � > 0 balances the two energy terms. The
likelihood energy EI(�) is taken to be a multivariate mixture of two Gaussians (MMG)
to take into account the heterogeneity in the appearance of the network produced by
occlusions. It takes the form

EI(�) = −1

2

∫



dx

{
ln

2∑
i=1

pi∣2��i∣−1/2e−
1
2 (I(x)−�i)

t�−1
i (I(x)−�i)

− ln

2∑
i=1

p̄i∣2��̄i∣−1/2e−
1
2 (I(x)−�̄i)

t�̄−1
i (I(x)−�̄i)

}
�(x) (10)

where the parameters (p1, p2, p̄1, p̄2, �1, �2, �̄1, �̄2, �1, �2, �̄1, �̄2) are learnt from the
original images using the Expectation-Maximization algorithm; labels 1 and 2 refer
to the two Gaussian components and the unbarred and barred parameters refer to the
interior and exterior of the region R respectively; t indicates transpose.

Fig. 4 shows the results. The second row shows the maximum likelihood estimate
of the network (i.e. using the MMG without EP). The third and fourth rows show the
MAP estimates obtained using the undirected network model,4 EsP, and the directed
network model,5 EP, respectively.

4 The parameter values were, from left to right: (�, �,D, �, d) = (18.74, 0.0775, 11.25,
0.0134, 34.1), (4.88, 0.3327, 3, 0.0575, 4.54) and (19.88, 0.6654, 12, 0.1151, 9.1).

5 The parameter values were, from left to right: (�04, �03, �22, �21, D, �, d, Lv, Dv, �) =
(0.412,−0.0008, 0.0022,−0.6, 0.257, 0.0083, 8.33, 0.275, 50, 25), (0.2650,−0.1659,
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Completeness =
TP / (TP+FN)

Correctness =
TP / (TP+FP)

Quality = TP /
(TP+FP+FN)

1
UNM 0.8439 0.9168 0.7739
DNM 0.8202 0.9489 0.7924

2
UNM 0.9094 0.6999 0.6043
DNM 0.8484 0.7856 0.6889

3
UNM 0.5421 0.6411 0.4158
DNM 0.7702 0.6251 0.6513

Table 1. Quantitative evaluations of experiments of the three images given in Fig. 4. T, F, P,
N, UNM and DNM correspond to true, false, positive, negative, undirected network model and
directed network model respectively.

The undirected network model favours network structures in which all branches
have the same width. Consequently, network branches which have widths significantly
different from the average are not extracted. The result on the third image shows clearly
the false negative in the central part of the network branch, where the width is about
half the average width. Similarly, the result on the second image shows a false positive
at the bottom of the central loop of the network, where the true branch width is small.
The result on the first image again shows a small false negative piece in the network
junction at the bottom.

The directed network model remedies these problems, as shown by the results in the
fourth row. The vector field was initialized to be vertical for the first and third images,
and horizontal for the second image. � and ∣v∣ are initialized at the saddle point of the
ultralocal term W , except for the third image where ∣v∣ = 1. The third image shows
many gaps in the hydrographic network due mainly to the presence of trees. These gaps
cannot be closed using the undirected network model. The directed network model can
close these gaps because flow conservation tends to prolong network branches. See
Table 1 for quantitative evaluations.

5 Conclusion

In this paper, we have conducted a theoretical study of a phase field HOAC model of di-
rected networks in order to ascertain parameter ranges for which stable networks exist.
This was done via a stability analysis of a long, straight bar that enabled some model
parameters to be fixed in terms of the rest, others to be replaced by physically meaning-
ful parameters, and lower and upper bounds to be placed on the remainder. We validated
the theoretical analysis via numerical experiments. We then added a likelihood energy
and tested the model on the problem of hydrographic network extraction from multi-
spectral VHR satellite images, showing that the directed network model outperforms
the undirected network model.

0.5023,−0.8, 0.1926, 0.0387, 2.027, 0.2023, 100, 16.66) and (0.4525,−0.2629, 0.6611,
−0.8, 0.3585, 0.0289, 5.12, 0.4224, 10, 22.22).
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Fig. 4. From top to bottom: multispectral Quickbird images; ML segmentation; MAP segmenta-
tion using the undirected model Es

P; MAP segmentation using the directed model EP. Regions
are obtained by thresholding � at 0. (Original images c⃝DigitalGlobe, CNES processing, images
acquired via ORFEO Accompaniment Program).
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A Appendix

The functions �, � and G00 are

� = −3v4
m

20
+
v2
m

2

(
�22

10
(�m + 1)(−3�m + 2) +

�21

6
(−3�m + 1) +

1

3

)
+
�04

60
(�m + 1)2(−9�2

m + 12�m + 1) +
�03

6
(�m + 1)2(−�m + 1)

+
1

24
(�22 + �21)(�m + 1)2 (11)

� =
v4
m

4
+
v2
m

2

(
�22

2
(�2
m − 1) + �21(�m − 1)− 1

)
+
�04

4
(�2
m − 1)2

+
�03

3
(�m + 1)2(�m − 2)− 1

8
(�22 + �21)(�m + 1)2 (12)

G00 =
2

ŵ2

∫ +∞

0

∫ ŵ

0

dz dx2

∫ ŵ−x2

−x2

dt 	(
√
z2 + t2)− 	(

√
z2 + (ŵ0 + t)2) (13)
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