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Abstract. We present a new active learning approach to incorporate
human feedback for on-line unusual event detection. In contrast to most
existing unsupervised methods that perform passive mining for unusual
events, our approach automatically requests supervision for critical points
to resolve ambiguities of interest, leading to more robust and accurate
detection on subtle unusual events. The active learning strategy is for-
mulated as a stream-based solution, i.e. it makes decision on-the-fly on
whether to query for labels. It adaptively combines multiple active learn-
ing criteria to achieve (i) quick discovery of unknown event classes and (ii)
refinement of classification boundary. Experimental results on busy pub-
lic space videos show that with minimal human supervision, our approach
outperforms existing supervised and unsupervised learning strategies in
identifying unusual events. In addition, better performance is achieved
by using adaptive multi-criteria approach compared to existing single
criterion and multi-criteria active learning strategies.

1 Introduction

Video surveillance data is typically characterised by highly imbalanced class
distribution, i.e.most of the samples corresponding to normal event classes whilst
the remaining unusual event (rare or abnormal events that should be examined
further) classes only constituent a small percentage of the entire dataset. In
addition, normal patterns are often known a-priori, whilst the unusual events
are unforeseeable. Consequently, most unusual event detection methods [1–4]
employ outlier detection strategy, in which a model is trained using normal events
through unsupervised one-class learning and events that deviate statistically
from the resulting normal profile are deemed unusual. This strategy offers a
practical way of bypassing the problems of imbalanced class distribution and
inadequate unusual event training samples. However, the unsupervised nature
of this outlier detection methods is subject to a few inextricable limitations:

1. Difficulty in detecting unusual events whose distributions are partially over-
lapped with normal events. Specifically, in a busy public scene, unusual
events are visually similar to a large number of normally behaving objects
co-existing in a scene (see Fig. 1 for example). Without human supervision,
it is hard to spot these subtle unusual events.

2. No subsequent exploitation of flagged unusual events. Outlier detection ap-
proach is therefore less effective in distinguishing the true unusual events
from noise.
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(a) (b)
Fig. 1. An example of illegal u-turn event (Fig. 1(a)). It is subtle due to its visual
similarity with large number of co-occurring normal patterns in a scene. This can
observed from a plot in a principal component analysis space (Fig .1(b)), where similar
u-turn cases (plotted as green dots) are partially overlapped with other normal patterns.

3. Large amount of uninteresting outliers causing false alarms. Normal be-
haviour patterns in a public scene are complicated and highly diverse. Hence,
preparation of well-defined and complete normal data for off-line learning
becomes unfeasible. Training a model using incomplete normal patterns is
likely to result in a large amount of uninteresting outliers, since some outly-
ing regions of the normal class may be consistently and wrongly flagged as
unusual event.

In most video surveillance tasks, human knowledge is readily available in
practise to remedy the aforementioned issues. Although it is unfeasible to label
every single instances at hand, it is still desirable to make use of occasional hu-
man inputs for guiding the creation of an activity model. In particular, human
inputs may exist in the form of feedback, i.e. indicating the exact event classes
or whether a particular detection is right/wrong, when the activity model en-
counters difficulty in distinguishing an equivocal event or subtle unusual activity.
The feedback would be extremely useful to resolve ambiguities of interest and to
strengthen the decision boundary of activity classes on what is normal/abnormal,
leading to more robust detection on inconspicuous and unknown unusual events.

Active learning strategy emerges as an compelling alternative to conventional
supervised and unsupervised unusual event detection methods, since it is capa-
ble of seeking human feedback automatically on critical instances to improve
event classification performance according to some predefined query criteria [5].
Note that it differs from supervised or semi-supervised strategies, which per-
form random labelling that treats all samples equally, whilst in essence, not all
samples are critical for learning the correct decision boundary. In this study, we
formulate a novel stream-based active learning strategy with several key features
outlined as follows: (1) The method is formulated as a stream-based approach to
ensure real-time response, i.e. the model makes immediate decision on whether
to query for labels as new video data are streamed in. (2) Multiple criteria are
employed for joint exploration and exploitation. In particular, some classes, es-
pecially unusual event classes have to be discovered (exploration) since they are
not available in the early stage of training. At the same time, it is necessary to
gradually improve the model by refining the decision boundary (exploitation).
Thus, different criteria are needed to achieve these goals. (3) Query criterion is
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adaptively selected from multiple criteria. This is important because good active
learning criteria are dataset dependent [5]. Importantly, we typically do not know
the best suited criterion for a specific dataset at different phases of learning.

In our approach, the first query criterion is a likelihood criterion, which
favours samples that have low likelihood w.r.t. the current model. Consequently,
unknown classes or unexplored regions of existing classes can be discovered. Note
that our method does not assume availability of predefined classes, i.e. once a
new class is discovered, the model will expand itself automatically. The second
criterion is an uncertainty criterion based on a modified Query-by-Committee
(QBC) algorithm [6–8]. It is used to refine the decision boundary by selecting
controversial samples in uncertain regions that give rise to the most disagree-
ment among classes, with more emphasis given to the regions surrounding un-
usual event classes to address the problem of imbalance class distribution. The
two query criteria are dynamically re-weighted based on the Kullback-Leibler
(KL) divergence [9] measured on the model before and after it is trained using a
queried sample. The premise behind this adaptive weighting scheme is to favour
the criterion that is more likely to return a queried sample that brings most
influence to the current model.

Comparative experiments are carried out on busy public space surveillance
videos. We show that by exploiting a small cost of human supervision through
active learning, more robust and accurate detection of subtle unusual events is
achieved compared to conventional supervised and unsupervised learning meth-
ods. In addition, the results also suggest that our adaptive multi-criteria ap-
proach outperforms single criterion and multi-criteria methods we evaluated.

2 Related Work

Most existing unusual event detection methods follow unsupervised one-class
learning strategy by employing different models such as topic models [1–3] and
Markov random field [4]. On the other hand, there are several studies that per-
form event classification [10,11] based on supervised strategy. Our method differs
significantly from these methods in that our approach is capable of discovering
unknown classes and resolve inter-class ambiguities by exploiting human feed-
back. It is thus more suitable for on-line mining of unusual events. It is worth
pointing out that Sillito and Fisher [12] attempt to incorporate human feedback
using a one-class semi-supervised model. However, their method is limited to
learning the normal event class. Therefore, it is still facing the same problems
encountered by unsupervised approaches (see Sec. 1).

In the active learning perspective, most studies to date assume pool-based
setting [13–16], which requires access to a fixed pool of unlabelled data for search-
ing the most informative instance for querying. For surveillance task since activ-
ity patterns are dynamic and unusual events are often unpredictable, preparing
a pool of unlabelled data that encompasses complete event classes is impractical.
Moreover, performing exhaustive search in the pool is expensive therefore un-
suitable for surveillance task that demands real-time performance. Stream-based



4 Chen Change Loy, Tao Xiang and Shaogang Gong

setting is preferred in this context as it is capable of making immediate query
decision without the need of accessing a data pool.

Most existing stream-based approaches are based on single query criterion [6,
8, 17], which are obviously not sufficient for exploration and exploitation that
pursue different goals in nature. Even though there are attempts in combining
multi-criteria for active learning, they are either not adaptive [13,14] or limited
to pool-based setting [16, 18]. Non-adaptive methods (e.g. iterate over different
criteria with constant weights) cannot apply the right criteria at different phases
of learning, e.g. the active learner may waste effort refining the boundary before
discovering the right classes, or vice versa. Methods proposed by Baram et al.[16]
and Cebron and Berthold [18], though adjusting weights of different criteria on-
line, they require access to a pool of unlabelled data, which are often unavailable
to stream-based environments.

Our uncertainty criterion is based the QBC algorithm [6,8], in which an en-
semble of committee members are maintained. Query will be triggered if class
label of a sample is controversial among the members. Various measures of dis-
agreement have been proposed [6, 7, 19]. These measures, however, only return
the disagreement score among members without identifying conflicting classes,
i.e. the classes closest to the uncertain point. We formulate a new QBC scoring
method to identify conflicting classes, thereby incorporate a prior constraint to
favour uncertain samples surrounding unusual event classes, leading to a more
balanced sample selection for class imbalanced data.

In summary, the main novelties and contributions of this study are:

1. We propose a new active learning approach to incorporate crucial human
supervision to resolve ambiguities for more robust and accurate unusual
event detection over conventional unsupervised and supervised approaches.
To the best of our knowledge, this problem has not been addressed before.

2. We introduce a new adaptive weighting scheme suitable for combining mul-
tiple query criteria in a stream-based setting. This method does not need to
access a fixed pool of unlabelled data.

3. To have a more balanced sample selection, we introduce prior to constrain
uncertainty criterion to favour unusual classes during decision boundary for-
mation. For this purpose, a new QBC scoring method is formulated to iden-
tify conflicting classes.

3 Active Unusual Event Detection

We consider active learning in a stream-based setting in which an unlabelled
sample xt is observed at each time step t from an input data stream X =
(x1, . . . ,xt, . . . ). Consequently, a classifier Ct is required to determine on-the-
fly whether or not to query for label yt or discard xt. Our goal is to select
critical samples from X for annotation to achieve two tasks simultaneously: (1)
to discover unusual event classes or unknown region of existing classes in the
input feature space and (2) to refine the classification boundary with higher
priority being given to regions surrounding the unusual classes so as to improve
the detection accuracy of unusual events.
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3.1 Activity Representation

We wish to represent activity patterns using location-specific motion information
over a temporal window without relying on object segmentation and tracking.
This is achieved through the following steps: (1) Given an input video, we extract
optical flow in each pair of consecutive frames using [20]. (2) A method similar
to that in [21] is employed to automatically decompose a complex scene into
D regions, r = {ri|i = 1, . . . , D} according to the spatial-temporal distribution
of motion patterns observed (Fig. 2(b,d)). (3) Motion direction of each moving
pixel in each region are quantised into four directions and put into bins. (4) A
histogram histf,ri with a size of four bins is constructed for each region ri in each
frame f . We uniformly divide the whole video sequence into non-overlapping
clips, each having 50 frames in length. We then sum up individual bins of a
regional histogram within each clip t as histt,ri =

∑
f∈clip t histf,ri . (5) Non-

dominant motion directions are then removed as they are more likely to be caused
by error in optical flow computation1. (6) Finally, the histogram is discretised
to construct a codebook with 16 words ωj , j ∈ {1, 2, ..., 16}, representing the
dominant motion directions of each region. For example, word ω1 represents
motionless region, word ω2 means only direction bin 1 is observed, and word ω4

indicates both occurrence of direction bins 1 and 2, etc. Consequently, the ith
region of the tth clip is represented as a variable xi,t of 16 possible discrete values
xij according to its word label and the clip is denoted as xt = (x1,t, . . . , xD,t).

3.2 Bayesian Classification

We wish to classify the D-dimensional observed vector x = (x1, . . . , xD) into one
of the K classes, where a class variable is represented by y = k ∈ {1, . . . ,K}.
We approach the classification task as Bayesian classification. To facilitate effi-
cient incremental learning, we employ a näıve Bayesian classifier with Bayesian
learning by assuming conditional independence among the distributions of input
attributes x1, . . . , xD given the class label. The classifier is quantified by a param-
eter set θ specifying the conditional probability distributions (CPDs). We assume
separate multinomial distribution p(xi|y) on each xi for each class label. Conse-
quently, we use θxi|y to represent a vector of parameters θxij |y for multinomial
p(xi|y). Given the multinomial CPDs, the conditional probability p(x|y = k) for

an observed vector given class y = k is given as p(x|y = k) =
∏D
i=1 p(xi|y = k).

Given p(x|y) and p(y), posterior conditional distribution p(y|x) can be computed
via Bayes rule. A class y∗ that best explains x can then be obtained as follows:

y∗ = argmax
k∈{1,...,K}

p(y = k|x) = argmax
k∈{1,...,K}

p(y = k)p(x|y = k). (1)

Incremental learning - Efficient incremental learning is required for stream-
based active learning. Since we have fully observed data, we use conjugate prior

1 The four direction bins are ranked in a descending order based on their values. The
dominant motion directions is identified from the first few bins in the rank that
account for a given fraction P ∈ [0, 1] of total bin values (P = 0.8 in this study).
Motion directions in the remainder of the bins are considered as non-dominant.
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to facilitate efficient Bayesian learning. The conjugate prior of a multinomial
distribution with parameters θxi|y is the Dirichlet distribution, which is given
as:

Dir(θxi|y | αxi|y) ∝
∏
j

[θxij |y]αxij |y−1, (2)

where αxij |y ∈ R+ are hyper-parameters of the distribution.

3.3 Query Criteria

In stream-based setting, the query decision is typically determined by a query
score pquery derived from a query criterion Q. The query score will be compared
against a threshold Th. Specifically, if pquery ≥ Th, query is made; otherwise xt
is discarded. In this study, we propose to employ two widely used criteria with
clear complementary nature, namely likelihood criterion and uncertainty crite-
rion for joint unknown event discovery and classification boundary refinement.
Next we formulate methods to compute the respective query scores based on
these criteria.

Likelihood criterion - Using this criterion a point is selected by comparing its
likelihood against current distribution modelled by the classifier. In particular,
given a sample x, we first find a class y∗ that best explains the sample accord-
ing to Eqn. (1). Secondly, for each feature node, we compute the normalised
probability score of xi given y∗:

p̂(xi|y∗) =
p(xi|y∗)− E [p(xij |y∗)]√

E [p(xij |y∗)− E [p(xij |y∗)]]
.

The normalised probability score p̂(xi|y∗) is bounded to ensure−0.5 ≤ p̂(xi|y∗) ≤
0.5. Finally, the likelihood score at time step t is calculated as:

plt = 1−

(
1

2
+

1

D

D∑
i=1

p̂(xi|y∗)

)
. (3)

The likelihood score lies within [0,1]. If plt of a sample is closer to 1, it is more
likely to be queried.

Uncertainty criterion - Our uncertainty criterion is re-formulated from the
existing QBC algorithm [6,7], with additional consideration on conflicting classes
for yielding a more balanced sample selection.

(1) Generating a committee - Given a classifier Ct and training data St, we
generate M committee members corresponding to hypotheses h = {hi} of the
hypotheses space Ht, where each hypothesis is consistent with the training data
seen so far [8], i.e., hi ∈ Ht|∀(x, y) ∈ St, hi(x) = y.

In a näıve Bayes classifier with multinomial CPDs, this can be done by sam-
pling new parameters from the posterior Dirichlet distribution of classifier [6,7].
It has been proven that parameters of a Dirichlet distribution can be generated
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from a Gamma distribution (Chapter XI, Theorem 4.1 in [22]). Consequently, we

sample θ̂xi|y from its posterior Dirichlet distribution Dir(θ̂xi|y|αxi|y), by draw-

ing new weights α̂xij |y from the Gamma distribution, i.e. α̂xij |y ∼ Gam
(
αxij |y

)
.

The parameter of a committee member is then estimated as:

θ̂xij |y =
α̂xij |y + λ∑
j

(
α̂xij |y + λ

) . (4)

where λ is a weight added to compensate data sparseness, i.e. to prevent zero
probabilities for infrequently occurring values xij .

(2) Measure of disagreement - As discussed in Sec. 2, existing approaches of
measuring member disagreement are not able to return the corresponding classes
that cause the most disagreement. In this study, we formulate a new uncertainty
score as follows: first, a class disagreement score is computed over all possible
class labels:

sy=k,t =

{
max

hi∈Ht,hj∈Ht

[pi(y = k|xt)− pj(y = k|xt)]
}
, (5)

where i 6= j. Consequently, the top two classes that return the highest sy=k,t are
identified as c1 and c2. The final uncertainty score is computed as:

put =
1

2
.γu. [sy=c1,t + sy=c2,t] , (6)

where γu is the prior introduced to favour the learning of classification boundary
for unusual classes. Specifically, γu is set to a low value if c1 and c2 are both
normal event class and a high value if any one of c1 and c2 is unusual event class.
If put of a sample is closer to 1, it is more likely to be queried.

3.4 Adaptive Selection of Multiple Query Criteria

As explained in Sec. 1, adaptive selection of multiple criteria is necessary for joint
unknown event discovery and classification boundary refinement. In particular,
different criteria can be more suitable for different datasets as well as different
learning stages. Since we usually do not know the right choice a priori, selecting
different criteria adaptively has the potential to provide a more reliable and even
more optimal solution than using any single criterion alone.

To this end, we formulate an adaptive approach in selecting different query
criteria for stream-based active learning. Specifically, given multiple query crite-
ria Q ∈ {Q1, . . . , Qa, . . . , QA}, a weight wa,t is assigned to each query criterion
Qa at time step t. A criterion is then chosen by sampling from a multinomial
distribution, a ∼ Mult(wt), where wt ∈ {w1,t, . . . , wa,t, . . . , wA,t}.

The weights w are guided by the change in distribution modelled by our näıve
Bayes classifier before and after it is updated using a newly queried sample. In-
tuitively, a criterion is preferred, therefore being assigned higher weight if it asks
for samples that give greater impact to the existing distribution modelled by the
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classifier. To measure the distance between two distributions pθ(x) and pθ̃(x),

we employ the KL-divergence, which is given as KL(θ ‖ θ̃) =
∑

x pθ(x) ln pθ(x)
pθ̃(x) .

Algorithm 1: Stream-based active unusual event detection.

Input: Data stream X = (x1, . . . ,xt, . . . ), an initial classifier C0 trained
with a small set of labelled samples from known classes

Output: A set of labelled samples S and a classifier C trained with S
1 Set S0 = a small set of labelled samples from known classes ;
2 for t from 1, 2, . . . until the data stream runs out do
3 Receive xt;

4 Compute plt (Eqn. (3)) ;
5 Compute put (Eqn. (6)) ;
6 Select query criterion by sampling a ∼ Mult(w), assign pquery

t based
on the selected criterion ;

7 if pquery
t ≥ Th then

8 Request yt and set St = St−1

⋃
{(xt, yt)} ;

9 Obtain classifier Ct+1 by updating classifier Ct with {(xt, yt)} ;
10 Update query criteria weights w (Eqn. (9)) ;

11 else
12 St = St−1;
13 end

14 end
15 Unusual event is detected if p(y = unusual|x) is higher than Thunusual;

In particular, given a näıve Bayes classifier Ct and an updated classifier Ct+1

trained using St
⋃
{(xt, yt)}, the KL-divergence between their distributions can

be decomposed as follows [23]:

KL(θ ‖ θ̃) =

D∑
i=1

KL
(
pθ(xi|y) ‖ pθ̃(xi|y)

)
=

D∑
i=1

K∑
k=1

p(y = k)KL
(
pθ(xi|y = k) ‖ pθ̃(xi|y = k)

)
. (7)

where θ and θ̃ represent sets of parameters of classifiers Ct and Ct+1 respectively.
A symmetric KL-divergence KL(θ ‖ θ̃) is computed as follows:

KL(θ ‖ θ̃) =
1

2
.
[
KL(θ ‖ θ̃) +KL(θ̃ ‖ θ)

]
. (8)

A weight wa,t at time step t associated to query Qa is defined as:

wa,t = βwa,t−1 + (1− β)
KLa(θ ‖ θ̃)∑A
a=1KLa(θ ‖ θ̃)

, (9)

where KLa(θ ‖ θ̃) (see Eqn. (8)) represents the symmetric KL-divergence yielded
by a query criterion Qa when it last triggered a query. Parameter β is an update
coefficient that controls the updating rate of weights. Algorithm 1 summaries
the proposed approach.



Stream-based Active Unusual Event Detection 9

(a) (b) (c) (d)
Fig. 2. Dominant traffic flows observed in MIT traffic dataset (a) and Junction dataset
(c) are treated as normal event classes. The scene decomposition results of both datasets
according to the spatial distribution of activity patterns are shown in (b) and (d),
respectively.

4 Experiments

4.1 Datasets and Settings

Two public video datasets2 captured at busy public scenes are employed in our
experiments.

MIT traffic dataset [1] - This dataset with an approximate length of 1.5 hours
(168822 frames), is recorded at 30 fps and scaled to a frame size of 360 × 240.
The traffic is controlled with traffic lights and dominated by five different traffic
flows (Fig. 2(a)). The scene decomposition result is given in Fig. 2(b), showing
the fourteen regions discovered.

Junction dataset - The length of the video is approximately 60 minutes (89999
frames) captured with 360× 288 frame size at 25 fps. The traffic is regulated by
traffic lights and dominated with three traffic flows as shown in Fig. 2(c). The
scene decomposition result is depicted in Fig. 2(d), showing the eight regions
discovered.

Both datasets feature complex activities exhibited by multiple objects. In
particular, behaviours and the correlations among vehicles are determined by
not only the traffic light cycles, but also traffic volume and driving habits of
drivers. For instance, vehicles waiting in region 6 of Junction dataset can perform
horizontal turning whenever there is a gap in vertical flow. This type of activity
is more frequent in MIT dataset, in which vehicles are allowed to do turning
between gaps of traffic flows. As a consequence, the traffic phases of MIT traffic
dataset are less distinctive visually and become harder to model compared to
Junction dataset.

Ground truth - The videos were segmented into non-overlapping clips of 50
frames long each, resulting 1800 clips and 3376 clips for Junction dataset and
MIT traffic dataset respectively. Each clip was manually labelled into different
event classes as listed in Table 1. The ground truth is used as feedback returned
to a classifier when it requests for labels during active learning process3. It is
also employed for comparison during testing phase.

2 Processed data with ground truth are available for download at: http://www.eecs.
qmul.ac.uk/~ccloy/files/accv_2010_dataset.zip.

3 In reality, these labels are assumed to be provided by human operators.
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Class No. of clips
(% from total)

Description

MIT Traffic Dataset

1 874 (25.89) Horizontal traffic flow (red arrows in Fig. 2(a))

2 1249 (37.00) Vertical traffic flow (yellow arrows in Fig. 2(a))

3 376 (11.14) Right-turn from zone 1 toward zone 4 (green arrow in Fig. 2(a))

4 185 (5.48) Left-turn from zone 3 toward zone 4 (magenta arrow in Fig. 2(a))

5 517 (15.31) Turning from left-exit toward zone 2, turning from zone 9 to zone 1
(cyan arrows in Fig. 2(a))

6 75 (2.22) [Unusual] Left-turn from zone 1 to left-exit

7 79 (2.34) [Unusual] Turning right from zone 7 to zone 2

8 21 (0.62) [Unusual] U-turn at zone 7

Junction Dataset

1 1078 (59.89) Vertical traffic flow (red arrows in Fig. 2(c))

2 323 (17.94) Rightward traffic flow (yellow arrows in Fig. 2(c))

3 355 (19.72) Leftward traffic flow (green arrows in Fig. 2(c))

4 29 (1.61) [Unusual] Illegal u-turns from zone 1 to zone 4 via zone 6

5 3 (0.17) [Unusual] Emergency vehicles using an improper lane of traffic

6 12 (0.67) [Unusual] Traffic interruptions by fire engines

Table 1. Ground truth.

Settings - The clips (see Table 1) were randomly partitioned into training/test
sets with equal size. Different partitions were used in different runs in the ex-
periments. In this study, all experimental results were averaged over 30 runs.

We followed similar experimental setting reported in [17]. In particular, if a
model did not request for any labels after observing a sufficiently large number of
samples (100 in this study), the query threshold Th (preset to 0.5) was reduced
to Th′ where Th′ was the largest pquery computed since the last query. A budget
constraint, i.e. the number of samples a classifier can request on the data stream
was specified as 250. There are three free parameters in our active learning
approach, namely λ (Eqn. (4)), uncertainty weights γu (Eqn. (6)), and update
coefficient β (Eqn. (9)). We used coarse values in parameters setting without
optimisation: λ = 0.1 for a weak prior, γu = 0.9 among normal classes, γu = 10
among normal-unusual classes, and β = 0.9 for slow adaptation rate. The number
of committee members for all QBC approaches was set to three. It is reported
in [7] that a committee size of three is sufficient and varying the size has little
effect. Initially, the classifier was given a sample from a random normal event
class to start the learning process. In the QBC approaches, two random samples
from different classes were needed.

4.2 Active Learning vs. Unsupervised Learning

We first compared the proposed method with unsupervised learning approach.
To build an unsupervised model, a random set of 250 normal samples was se-
lected and normal classes were automatically determined through Gaussian clus-
tering with automatic model selection based on Bayesian Information Criterion
score [24]. The samples together with the predicted cluster labels were then em-
ployed to train a model described in Sec. 3.2. Note that the unsupervised learning
strategy employed here is similar in spirit to that in [1–4]. For fair comparison,
we used the same feature representation and model for both active learning and
unsupervised learning strategies. As can be seen from Fig. 3(a), our method out-
performed the fully unsupervised method given as little as 90 samples annotated
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through active learning. Figure 3(b) suggests that the performance of an unsu-
pervised model was still inferior than the proposed approach even if the number
of unlabelled samples used for unsupervised learning was increased to 800. It is
evident from the results that without exploiting human feedback, unsupervised
learning method was unable to learn the correct decision boundary even if a
large amount of unlabelled samples were employed.

(a) (b)
Fig. 3. Comparison with unsupervised approach. Results were averaged over 30 runs.

4.3 Active Learning vs. Passive Supervised Learning and other
Active Learning Strategies

Passive supervised learning (random sampling strategy) and different active
learning strategies evaluated in this experiment are summarised as follow:

1. rand - passive supervised learning (random sampling strategy), i.e. samples
are randomly chosen from the data stream

2. like - likelihood criterion as explained in Sec. 3.3
3. qbcEntropy - QBC approach with vote entropy measure [6]
4. qbcPrior4 - QBC approach with the proposed measure as described in Sec. 3.3
5. like+qbcPrior+interleave - combine both like and qbcPrior using interleave

strategy, i.e. iterating different criteria during learning. This method is sim-
ilar to the multi-criteria strategy proposed in [14]

6. like+qbcPrior+KLdiv - combine both like and qbcPrior using the KL-divergence-
based strategy as described in Sec. 3.4

We evaluated different active learning strategies according to: (1) how fast
they can discover unknown classes (including normal and unusual event classes)
and (2) how accurately the learned classifier can detect unusual events. The for-
mer case was measured based on the number of classes discovered vs. number
of samples queried. The latter case was evaluated using Area Under Receiver
Operating Characteristic curve (AUROC) computed in each active learning it-
eration against the number of queried samples. ROC was obtained by varying
Thunusual.

Discover unknown event classes - As can be seen from Figure 4, like showed
the best performance in discovering unknown event classes in both datasets.
The QBC approaches (qbcEntropy and qbcPrior) yielded slightly inferior result
compared to like but still performed better than random sampling strategy.

4 Matlab codes are available for download at: http://www.eecs.qmul.ac.uk/~ccloy/
files/qbcPrior.zip.
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(a) MIT Traffic dataset (b) Junction dataset
Fig. 4. Class discovery performance.

Specifically, with the introduction of prior (see Eqn. (6)) for dealing with the
imbalanced data problem, the performance of our qbcPrior is better to that of
qbcEntropy (see Fig. 4(b)). Both the proposed like+qbcPrior+KLdiv method and
the alternative multi-criteria method like+qbcPrior+interleave showed compara-
ble results and performed better than qbcPrior and qbcEntropy after combining
with like.

(a) MIT Traffic dataset (b) MIT Traffic dataset

(c) Junction dataset (d) Junction dataset
Fig. 5. Unusual events detection performance. Numbers shown in the brackets within
graph legend are area under the mean AUROC of different approaches.

Unusual event detection - Figure 5 shows the performance of different active
learning strategies in detecting unusual events, measured as averaged AUROC
over 30 runs. Overall, it can be seen that the detection performance of all active
learning methods monotonically increase as more data is queried and impor-
tantly, all methods significantly outperformed random sampling (passive super-
vised learning). In particular, we observed that by incorporating prior constraint
into uncertainty criterion (qbcPrior) yielded slightly better result compared to
method without prior constraint (qbcEntropy). This is because that, without
the prior constraint, qbcEntropy wasted some effort in refining boundary be-
tween normal classes, whilst qbcEntropy focussed on the uncertainty regions
surrounding the unusual event classes.
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In both datasets, as can be seen from Fig. 5(a) and 5(c), the proposed method
like+qbcPrior+KLdiv yields the best performance. Adaptive selection of multiple
criteria leads to reliable and good performance with our like+qbcPrior+KLdiv
outperforming the alternative like+qbcPrior+interleave. The reliability of the
multi-criteria methods is also reflected by the smaller variance across multiple
trials shown in Fig. 5(b) and 5(d).

(a) MIT Traffic dataset (b) Junction dataset
Fig. 6. Selected criterion over 30 runs.

Adaptive selection of criteria - In contrast to iterative strategy reported
in [14], the proposed strategy assigns weights adaptively to different criterion
at different stage of active learning based on the KL-divergence of a model (see
Sec.3.4). For the MIT traffic dataset (Fig. 6(a)), likelihood criterion was more
frequently selected than uncertainty criterion before the number of queried sam-
ples reached 150. This observation suggests that when the visual distinctiveness
between event classes were less obvious (see Sec. 4.1), our method was capable
of selecting the right criterion and avoid uncertainty criterion that may keep
querying uncertain points located at highly overlapped area of class boundary,
which are less useful for improving the detection performance. On the other
hand, in the Junction dataset (Fig. 6(b)), likelihood criterion dominated at the
beginning, since it discovered unknown events that caused greater change in pa-
rameter values to the classifier compared to uncertainty criterion. The model
eventually switched from likelihood criterion to uncertainty criterion (after 80
samples were queried) to refine the classification boundary when the exploratory
learning was no longer fruitful (see Fig. 4(b), approximately 90% of total event
classes were discovered after 80 samples).

5 Conclusion
To our best knowledge, this study is the first investigation into the use of active
learning to exploit human feedback for on-line unusual event detection. Impor-
tantly, the proposed approach yielded more robust and accurate detection on
subtle unusual events in public space as compared to conventional supervised
and unsupervised learning strategies, by exploiting a small cost of human su-
pervision through active learning. Experimental results also showed that the
proposed stream-based multi-criteria approach is capable of balancing different
query criteria for joint unknown event discovery and decision boundary refine-
ment. It therefore results in a more reliable detection performance than using
single criterion alone, and it outperforms an existing multi-criteria strategy [14]
applied in a stream-based manner. In addition, by introducing a prior to deal
with imbalanced data, our re-formulated QBC criterion improves the perfor-
mance.
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