Skip to main content

Modeling Dynamic Scenes Recorded with Freely Moving Cameras

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6494))

Included in the following conference series:

Abstract

Dynamic scene modeling is a challenging problem in computer vision. Many techniques have been developed in the past to address such a problem but most of them focus on achieving accurate reconstructions in controlled environments, where the background and the lighting are known and the cameras are fixed and calibrated. Recent approaches have relaxed these requirements by applying these techniques to outdoor scenarios. The problem however becomes even harder when the cameras are allowed to move during the recording since no background color model can be easily inferred.

In this paper we propose a new approach to model dynamic scenes captured in outdoor environments with moving cameras. A probabilistic framework is proposed to deal with such a scenario and to provide a volumetric reconstruction of all the dynamic elements of the scene.

The proposed algorithm was tested on a publicly available dataset filmed outdoors with six moving cameras. A quantitative evaluation of the method was also performed on synthetic data. The obtained results demonstrated the effectiveness of the approach considering the complexity of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, H., Sarim, M., Takai, T., Guillemaut, J.Y., Hilton, A.: Dynamic 3d scene reconstruction in outdoor environments. In: 3DPVT (2010)

    Google Scholar 

  2. Guan, L., Franco, J.S., Pollefeys, M.: Multi-object shape estimation and tracking from silhouette cues. In: CVPR (2008)

    Google Scholar 

  3. Franco, J.S., Boyer, E.: Fusion of multi-view silhouette cues using a space occupancy grid. In: ICCV, pp. 1747–1753 (2005)

    Google Scholar 

  4. Furukawa, Y., Ponce, J.: Dense 3d motion capture for human faces. In: CVPR, pp. 1674–1681 (2009)

    Google Scholar 

  5. Tung, T., Nobuhara, S., Matsuyama, T.: Complete multi-view reconstruction of dynamic scenes from probabilistic fusion of narrow and wide baseline stereo. In: ICCV (2009)

    Google Scholar 

  6. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR (2006)

    Google Scholar 

  7. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. In: CVPR, p. 1067 (1997)

    Google Scholar 

  8. Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., Rusinkiewicz, S., Matusik, W.: Dynamic shape capture using multi-view photometric stereo. In: SIGGRAPH Asia (2009)

    Google Scholar 

  9. Ahmed, N., Theobalt, C., Dobrev, P., Seidel, H.P., Thrun, S.: Robust fusion of dynamic shape and normal capture for high-quality reconstruction of time-varying geometry. In: CVPR (2008)

    Google Scholar 

  10. Vedula, S., Baker, S., Seitz, S., Kanade, T.: Shape and motion carving in 6d. In: CVPR (2000)

    Google Scholar 

  11. Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L.: Image-based visual hulls. In: SIGGRAPH, pp. 369–374. ACM Press, New York (2000)

    Google Scholar 

  12. Goldlucke, B., Ihrke, I., Linz, C., Magnor, M.: Weighted minimal hypersurface reconstruction. PAMI, 1194–1208 (2007)

    Google Scholar 

  13. Hilton, A., Starck, J.: Multiple view reconstruction of people. In: 3DPVT (2004)

    Google Scholar 

  14. Sinha, S.N., Pollefeys, M.: Multi-view reconstruction using photo-consistency and exact silhouette constraints: A maximum-flow formulation. In: ICCV, pp. 349–356 (2005)

    Google Scholar 

  15. Hasler, N., Rosenhahn, B., Thormahlen, T., Wand, M., Gall, J., Seidel, H.P.: Markerless motion capture with unsynchronized moving cameras. In: CVPR (2009)

    Google Scholar 

  16. Ballan, L., Brostow, G.J., Puwein, J., Pollefeys, M.: Unstructured video-based rendering: Interactive exploration of casually captured videos. SIGGRAPH (2010)

    Google Scholar 

  17. Baumberg, A., Hogg, D.: An efficient method for contour tracking using active shape models. In: Motion of Non-Rigid and Articulated Objects, pp. 194–199 (1994)

    Google Scholar 

  18. Leibe, B., Cornelis, N., Cornelis, K., Gool, L.V.: Dynamic 3d scene analysis from a moving vehicle. In: CVPR (2007)

    Google Scholar 

  19. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90, 1151–1163 (2002)

    Article  Google Scholar 

  20. Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: ICCV (2009)

    Google Scholar 

  21. Ivanov, Y., Bobick, A., Liu, J.: Fast lighting independent background subtraction. International Journal of Computer Vision 37, 199–207 (2000)

    Article  MATH  Google Scholar 

  22. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518

    Book  MATH  Google Scholar 

  23. Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. IJCV 59, 207–232 (2004)

    Article  Google Scholar 

  24. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L 1 range image integration. In: ICCV (2007)

    Google Scholar 

  25. Zhang, Z.: A flexible new technique for camera calibration. PAMI 22 (2000)

    Google Scholar 

  26. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)

    Article  Google Scholar 

  27. Haralick, R.M., Lee, C.N., Ottenberg, K., Nölle, M.: Review and analysis of solutions of the three point perspective pose estimation problem. IJCV 13 (1994)

    Google Scholar 

  28. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. In: Computer Graphics and Applications, vol. 21, pp. 34–41. IEEE, Los Alamitos (2001)

    Google Scholar 

  29. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23, 1222–1239 (2001)

    Article  Google Scholar 

  30. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? PAMI 26, 147–159 (2004)

    Article  Google Scholar 

  31. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. PAMI 26, 1124–1137 (2004)

    Article  MATH  Google Scholar 

  32. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH 21, 163–169 (1987)

    Article  Google Scholar 

  33. Kim, S., Frahm, J., Pollefeys, M.: Radiometric calibration with illumination change for outdoor scene analysis. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taneja, A., Ballan, L., Pollefeys, M. (2011). Modeling Dynamic Scenes Recorded with Freely Moving Cameras. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19318-7_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19317-0

  • Online ISBN: 978-3-642-19318-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics