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Abstract. Articulated tracking of humans is a well-studied field, but
most work has treated the humans as being independent of the environ-
ment. Recently, Kjellström et al. [1] showed how knowledge of interaction
with a known rigid object provides constraints that lower the degrees of
freedom in the model. While the phrased problem is interesting, the re-
sulting algorithm is computationally too demanding to be of practical
use. We present a simple and elegant model for describing this problem.
The resulting algorithm is computationally much more efficient, while it
at the same time produces superior results.

1 Introduction

Three dimensional articulated human motion tracking is the process of estimat-
ing the configuration of body parts over time from sensor input [2]. A large body
of work have gone into solving this problem by using computer vision techniques
without resorting to visual markers. The bulk of this work, however, completely
ignores that almost all human movement somehow involves interaction with a
rigid environment (people sit on chairs, walk on the ground, lift the bottle and
so forth). By incorporating this fact of life, one can take advantage of the con-
straints provided by the environment, which effectively makes the problem easier
to solve.

Recently, Kjellström et al. [1] showed that taking advantage of these con-
straints allows for improved tracking quality. To incorporate the constraints
Kjellström et al., however, had to resort to a highly inefficient rejection sam-
pling scheme. In this paper, we present a detailed analysis of this work and show
how the problem can be solved in an elegant and computationally efficient man-
ner. First we will, however, review the general articulated tracking framework
and related work.

1.1 Articulated Tracking

Estimating the pose of a person using a single view point or a small baseline
stereo camera is an inherently difficult problem due to self-occlusions. This man-
ifests itself in that the distribution of the human pose is multi-modal with an
unknown number of modes. Currently, the best method for coping with such
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distributions is the particle filter [3]. This aims at estimating the state of the
system, which is represented as a set of weighted samples. These samples are
propagated in time using a predictive model and assigned a weight according to
a data likelihood. As such, the particle filter requires two subsystems: one for
computing likelihoods by comparing the image data to a sample from the hidden
state distribution, and one for predicting future states. In practice, the predic-
tive system is essential in making the particle filter computationally feasible, as
it can drastically reduce the number of needed samples. As an example, we shall
later see how the predictive system can be phrased to incorporate constraints
from the environment.

For the particle filter to work, we need a representation of the system state,
which in our case is the human pose. As is common [2], we shall use the kine-
matic skeleton (see Fig. 1). This representation is a collection of connected rigid
bones organised in a tree structure. Each bone can be rotated at the point of
connection between the bone and its parent. We model the bones as having
known constant length (i.e. rigid), so the direction of each bone constitute the
only degrees of freedom in the kinematic skeleton. The direction in each joint can
be parametrised with a vector of angles, noticing that different joints may have
different number of degrees of freedom. We may collect all joint angle vectors
into one large vector θt representing all joint angles in the model at time t. The
objective of the particle filter, thus, becomes to estimate θt in each frame.

Fig. 1. An illustration of the kinematic skeleton. Circles correspond to the spatial bone
end points and the square corresponds to the root.

To represent the fact that bones cannot move freely (e.g. the elbow joint can
only bend between 0 and 120 degrees), we restrict θt to a subset Θ of RN . In
practice, Θ is chosen such that each joint angle is restricted to an interval. This
is often called box constraints [4].

From known bone lengths and a joint angle vector θt, it is straight-forward
to compute the spatial coordinates of the bones. The root of the kinematic tree
is placed at the origin of the coordinate system. The end point of the next bone
along a branch in the tree is then computed by rotating the coordinate system
and translating the root along a fixed axis relative to the parent bone. The
rotation is parametrised by the angles of the joint in question and the length
of the translation corresponds to the known length of the bone. We can repeat
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this process recursively until the entire kinematic tree has been traversed. This
process is known as Forward Kinematics [5].

1.2 Related Work

Most work in the articulated tracking literature falls in two categories. Either the
focus is on improving the vision system or on improving the predictive system.
Due to space constraints, we forgo a review of various vision systems as this
paper is focused on prediction. For an overview of vision systems, see the review
paper by Poppe [2].

Most work on improving the predictive system, is focused on learning motion
specific priors, such as for walking [6–12]. Currently, the most popular approach
is to restrict the tracker to some subspace of the joint angle space [7–10, 13].
Such priors are, however, action specific. When no action specific knowledge is
available it is common [1,10,14,15] to simply let θt follow a normal distribution
with a diagonal covariance, i.e.

pgp(θt|θt−1) ∝ N (θt|θt−1,diag) UΘ(θt) , (1)

where UΘ is a uniform distribution on the legal set of angles that encodes the
joint constraints. Recently, Hauberg et al. [16] showed that this model causes
the spatial variance of the bone end points to increase as the kinematic chains
are traversed. In practice this means that with this model the spatial variance
of e.g. the hands is always larger than of the shoulders. We will briefly review a
solution to this problem suggested by Hauberg et al. in Sec. 1.3, as it provides
us a convenient framework for modelling interaction with the environment.

In general, as above, the environment is usually not incorporated in the
tracking models. One notable environmental exception seems to be the ground
plane [6, 17]. Yamamoto and Yagishita [17] use a linear approximation of the
motion path by linearising the forward kinematics function. As this is a highly
non-linear function and motion paths in general are non-linear this modelling
decision seems to be made out of sheer practicality. Promising results are, how-
ever, shown on constrained situations, such as when the position and orientation
of a persons feet is known. Brubaker et al. [6] explicitly model the ground plane
in a biomechanical model of walking. Their approach is, however, limited to
interaction with the ground while walking.

Of particular importance to our work, is the paper by Kjellström et al. [1].
We will therefore review this in detail in Sec. 2.

1.3 Projected Spatial Priors

Recently, an issue with the standard general purpose prior from Eq. 1 was pointed
out by Hauberg et al. [16]. Due to the tree structure of the kinematic skeleton, the
spatial variance of bone end point increase as the kinematic chains are traversed.
To avoid this somewhat arbitrary behaviour it was suggested to build the prior
distribution directly in the spatial domain.
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To define a predictive distribution in the spatial domain, Hauberg et al. first
define a representation manifold M ∈ R3L, where L denotes the number of
bones. A point on this manifold corresponds to all spatial bone end points of a
pose parametrised by a set of joint angles. More stringent,M can be defined as

M = {F (θ)|θ ∈ Θ} , (2)

where F denotes the forward kinematics function for the entire skeleton.
Once this manifold is defined, a Gaussian-like distribution can be defined

simply by projecting a Gaussian distribution in R3L ontoM, i.e.

pproj(θt|θt−1) = projM [N (F (θt)|F (θt−1), Σ)] . (3)

When using a particle filter for tracking, one only needs to be able to draw
samples from the prior model. This can easily be done by sampling from the
normal distribution in R3L and projecting the result onto M. This, however,
requires an algorithm for performing the projection. This is done by seeking

θ̂t = min
θt

∣∣∣∣xt − F (θt)
∣∣∣∣2 s.t. θt ∈ Θ , (4)

where xt denotes a sample from the normal distribution in R3L. This is an overde-
termined constrained non-linear least-squares problem, that can be solved by any
off-the-shelf optimisation algorithm [4]. We shall later see that the spatial nature
of this prior is very helpful when designing priors that take the environment into
account.

2 The KKB Tracker

Kjellström et al. [1] consider the situation where a person is holding on to a
stick. It is assumed that the 3D position of the stick is known in each frame. In
practice they track the stick using 8 calibrated cameras. They define the stick
as

stick(γt) = γta+ (1− γt)b, γt ∈ [0, 1] , (5)

where a and b are the end points of the stick.
The state is extended with a γt for each hand, which encodes the position of

the respective hand on the stick. The state, thus, contains θt, γ
(left)
t and γ(right)

t .
The goal is then to find an algorithm where the hand positions implied by θt
corresponds to the hand positions expressed by the γt’s.

Kjellström et al. take a rejection sampling approach for solving this problem.
They sample θt from Eq. 1 and compute the attained hand positions using
forward kinematics. They then keep generating new samples until the attained
hand positions are within a given distance of the hand positions encoded by the
γt’s. Specifically, they keep generating new θt’s until

‖Fleft(θt)−stick(γ(left)t )‖ < TE and ‖Fright(θt)−stick(γ(right)t )‖ < TE , (6)
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where Fleft is the forward kinematics function that computes the position of the
left hand, Fright is the equivalent for the right hand and TE is a threshold. We
will denote this prior pkkb, after the last names of its creators.

The γt’s are also propagated in time to allow for sliding the hands along the
stick. Specifically, Kjellström et al. let

p
(
γ
(left)
t

∣∣γ(left)t−1

)
∝ N

(
γ
(left)
t

∣∣γ(left)t−1 , σ2
)
U[0,1]

(
γ
(left)
t

)
, (7)

where U[0,1] is the uniform distribution on [0, 1]. γ(right)
t is treated the same way.

The advantage of this approach is that it actually works; successful tracking
was reported in [1] and in our experience decent results can be attained with
relatively few particles. Due to the rejection sampling, the approach is, however,
computationally very demanding (see Sec. 5, in particular Fig. 4). The approach
also has a limit on how many constraints can be encoded in the prior, as more
constraints yield smaller acceptance regions. Thus, the stronger the constraints,
the longer the running time. Furthermore, the rejection sampling has the side
effect that the time it takes to predict one sample is not constant. In parallel
implementations of the particle filter, such behaviour causes thread divergence,
which drastically lessens the gain of using a parallel implementation.

3 Spatial Object Interaction Prior

We consider the same basic problem as Kjellström et al. [1], that is, assume we
know the position of a stick in 3D and assume we know the person is holding on
to the stick. As Kjellström et al., we extend the state with a γt for each hand
that encodes where on the stick the hands are positioned using the model stated
in Eq. 5. As before these are propagated in time using Eq. 7.

Following the idea of Hauberg et al. [16], we then define a motion prior in
the spatial domain. Intuitively, we let each bone end point, except the hands,
follow a normal distribution with the current bone end point as the mean value.
The hands are, however, set to follow a normal distribution with a mean value
corresponding to the hand position implied by γ(left)t and γ(right)

t . The resulting
distribution is then projected back on the manifold M of possible poses, such
that the final motion prior is given by

pstick3d(θt|θt−1) = projM [N (F (θt)|µ, Σ)] , (8)

where µ indicates the just mentioned mean value. Samples can then be drawn
from this distribution as described in Sec. 1.3.

3.1 Two Dimensional Object Information

When we defined pstick3d we assumed we knew the three dimensional position of
the stick. In the experiments presented in Sec. 5, we are using an active motion
capture system to attain this information. While this approach might be feasible
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in laboratory settings it will not work in the general single-viewpoint setup; in
practice it is simply too hard to accurately track even a rigid object in 3D. It
is, however, not that difficult to track a stick in 2D directly in the image. We,
thus, suggest a trivial extension of pstick3d to the case were we only know the 2D
image position of the stick.

From the 2D stick position in the image and the value of γ(left)t we can
compute the 2D image position of the left hand. We then know that the actual
hand position in 3D must lie on the line going through the optical centre and
the 2D image position. We then define the mean value of the predicted left hand
as the projection of the current left hand 3D position onto the line of possible
hand positions. The right hand is treated similarly. This is sketched in Fig. 2.
The mean value of the remaining end point is set to their current position, and
the resulting distribution is projected ontoM. We shall denote this motion prior
pstick2d.

Optical Centre

Space of possible
hand positions

Fig. 2. An illustration of the geometry behind the pstick2d model. The stick is detected
in the image and the hands are restricted to the part of R3 that projects onto the
detected stick.

4 Visual Measurements

To actually implement an articulated tracker, we need a system for making visual
measurements. To keep the paper focused on prediction, we use a simple vision
system [16] based on a consumer stereo camera1. This camera provides a dense
set of three dimensional points Z = {z1, . . . ,zK} in each frame. The objective of
the vision system then becomes to measure how well a pose hypothesis matches
the points. We assume that points are independent and that the distance between
a point and the skin of the human follows a zero-mean Gaussian distribution,
i.e.

p(Z|θt) ∝
K∏

k=1

exp

(
−
min

[
D2(θt, zk), τ

]
2σ2

)
, (9)

1http://www.ptgrey.com/products/bumblebee2/
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where D2(θt, zk) denotes the squared distance between the point zk and the
skin of the pose θt and τ is a constant threshold. The minimum operation is
there to make the system robust with respect to outliers.

We also need to define the skin of a pose, such that we can compute distances
between this and a data point. Here, we define the skin of a bone as a capsule
with main axis corresponding to the bone itself. Since we only have a single view
point, we discard the half of the capsule that is not visible. The skin of the entire
pose is then defined as the union of these half-capsules. The distance between
a point and this skin can then be computed as the smallest distance from the
point to any of the half-capsules.

5 Experimental Results

Using the just mentioned likelihood model we can create an articulated tracker
for each suggested prior. This gives us a set of weighted samples at each time step,
which we reduce to one pose estimate θ̂t by computing the weighted average.

We record images from the previously mentioned stereo camera at 15 FPS
along with synchronised data from an optical motion capture system2. We place
motion capture markers on a stick such that we can attain its three dimensional
position in each frame. In the case of pstick2d, we only use the marker positions
projected into the image plane.

To evaluate the quality of the attained results we also position motion capture
markers on the arms of the test subject. We then measure the average distance
between the motion capture markers and the capsule skin of the attained re-
sults. This measure is then averaged across frames, such that the error measure
becomes

E =
1

TM

T∑
t=1

M∑
m=1

D(θ̂t,vm) , (10)

where D(θ̂t,vm) is the Euclidean distance between the mth motion capture
marker and the skin at time t.

In the first sequence we study a person who moves the stick from side to
side and finally move the stick behind his head. This type of motion utilises
the shoulder joints a lot, which is typically something that can cause difficulties
for articulated trackers. We show selected frames from this sequence with the
estimated pose superimposed in Fig. 3. Results are shown for the three different
priors that utilise knowledge of the stick position. For reference, we also show the
result of the standard model pgp that assumes independent normally distributed
joint angles. In all cases, 500 particles was used. As can be seen, the three stick-
based priors all track the motion successfully, whereas the general purpose prior
fail. This is more evident in the videos, which are available online3.

2http://www.phasespace.com/
3http://humim.org/accv2010
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To quantify the quality of the results, we compute the error measure from
Eq. 10 for each of the attained results. This is reported along with the compu-
tation time in Table 1. As can be read, pstick3d gives the most accurate results,
closely followed by pkkb and pstick2d. However, when it comes to computation
speed, we note that the pkkb prior is 7.2 times slower than the general purpose
angular prior, whereas our priors are both only 1.1 times slower.

Upon further study of the results attained by the pkkb prior we note that in
a few frames the pose estimate does not actually grab onto the stick. To under-
stand this phenomena, we need to look at the details of the rejection sampling
scheme. If we keep rejecting samples until Eq. 6 is satisfied, we have no way of
guaranteeing that the algorithm will ever terminate. To avoid infinite loops, we
stop the rejection sampling after a maximum of 5000 rejections. We found this
to be a reasonable compromise between running times and accuracy. In Fig. 4a
we plot the percentage of particles meeting the maximum number of rejections
in each frame. As can be seen this number fluctuates and even reaches 100 per-
cent in a few frames. This behaviour causes shaky pose estimates and even a
few frames where the knowledge of the stick position is effectively not utilised.
This can also be seen in Fig. 5 where the generated particles are shown for the
different priors. Videos showing these are also available online3. Here we see that
the pkkb prior generates several particles with hand positions far away from the
stick. We do not see such a behaviour of neither the pstick3d nor pstick2d priors.

We move on to the next studied sequence. Here the person is waiving the
stick in a sword-fighting-manner. A few frames from the sequence with results
superimposed are available in Fig. 6. While pstick3d and pstick2d are both able to
successfully track the motion, pkkb fails in several frames. As before, the reason
for this behaviour can be found in the rejection sampling scheme. In Fig. 4b we
show the percentage of particles reaching the maximum number of rejections.
As before, we see that a large percentage of the particles often reach the limit
and as such fail to take advantage of the known stick position. This is the reason
for the erratic behaviour. In Table 2 we show accuracy and running time of the
different methods, and here it is also clear that the pkkb prior fails to track the
motion even if it spends almost 10 times more time per frame than pstick3d and
pstick2d.

Table 1. Results for the first sequence using 500 particles.

Prior Error (std.) Computation Time

pkkb 2.7 cm (1.3 cm) 687 sec./frame
pstick3d 2.4 cm (1.0 cm) 108 sec./frame
pstick2d 2.9 cm (1.5 cm) 108 sec./frame
pgp 4.2 cm (2.3 cm) 96 sec./frame
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pkkb pstick3d

pstick2d pgp

Fig. 3. Frame 182 from the first sequence. Image contrast has been enhanced for view-
ing purposes.
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Fig. 4. Percentage of particles which reached the limit of the rejection sampling.

Table 2. Results for the second sequence using 500 particles.

Prior Error (std.) Computation Time

pkkb 8.4 cm (1.9 cm) 782 sec./frame
pstick3d 2.2 cm (0.8 cm) 80 sec./frame
pstick2d 2.8 cm (1.7 cm) 80 sec./frame
pgp 8.4 cm (2.2 cm) 68 sec./frame
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pkkb pstick3d

pstick2d pgp

Fig. 5. The particles active in frame 182 in the first sequence.

6 Discussion

In this paper we have analysed an algorithm suggested by Kjellström et al. for ar-
ticulated tracking when environmental constraints are available. We argued, and
experimentally validated, that the algorithm is computationally too demanding
to be of use in real-life settings. We then presented a simple model for solving
the same problem, that only comes with a small computational overhead. The
simplicity of our method comes from the decision to model the motion spatially
rather than in terms of joint angles. This provides us with a general framework in
which spatial knowledge can trivially be utilised. As most environmental knowl-
edge is available in this domain, the idea can easily be extended to more complex
situations.

In practice, much environmental information is not available in three dimen-
sions, but can only be observed in the image plane. As such, we have suggested
a straight-forward motion prior that only constraint limb positions in the image
plane. This provides a framework that can actually be applied in real-life settings
as it does not depend on three dimensional environmental knowledge that most
often is only available in laboratory settings.

The two suggested priors are both quite simple and they encode the environ-
mental knowledge in a straight-forward manner. The priors, thus, demonstrate
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pkkb pstick3d

pstick2d pgp

Fig. 6. Frame 101 from the second sequence. Image contrast has been enhanced for
viewing purposes.

the ease of which complicated problems can be solved when the motion is mod-
elled spatially rather than in terms of joint angles. As spatial models have been
shown to have more well-behaved variance structure than models expressed in
terms of joint angles [16], we do believe spatial models can provide the basis of
the next leaps forward for articulated tracking.

References

1. Kjellström, H., Kragić, D., Black, M.J.: Tracking people interacting with objects.
In: CVPR ’10: Proceedings of the 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. (2010)

2. Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision
and Image Understanding 108 (2007) 4–18

3. Cappé, O., Godsill, S.J., Moulines, E.: An overview of existing methods and recent
advances in sequential Monte Carlo. Proceedings of the IEEE 95 (2007) 899–924

4. Nocedal, J., Wright, S.J.: Numerical optimization. Springer Series in Operations
Research. Springer-Verlag (1999)

5. Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H.: Physics Based Animation.
Charles River Media (2005)



12 Søren Hauberg and Kim Steenstrup Pedersen

6. Brubaker, M.A., Fleet, D.J., Hertzmann, A.: Physics-based person tracking using
the anthropomorphic walker. International Journal of Computer Vision 87 (2010)
140–155

7. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian Process Dynamical Models for
Human Motion. IEEE Transactions on Pattern Analysis and Machine Intelligence
30 (2008) 283–298

8. Sminchisescu, C., Jepson, A.: Generative modeling for continuous non-linearly em-
bedded visual inference. In: ICML ’04: Proceedings of the twenty-first international
conference on Machine learning, ACM (2004) 759–766

9. Lu, Z., Carreira-Perpinan, M., Sminchisescu, C.: People Tracking with the Lapla-
cian Eigenmaps Latent Variable Model. In Platt, J., Koller, D., Singer, Y., Roweis,
S., eds.: Advances in Neural Information Processing Systems 20. MIT Press (2008)
1705–1712

10. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3d human figures
using 2d image motion. In: Proceedings of ECCV’00. Volume II of Lecture Notes
in Computer Science 1843., Springer (2000) 702–718

11. Elgammal, A.M., Lee, C.S.: Tracking People on a Torus. IEEE Transaction on
Pattern Analysis and Machine Intelligence 31 (2009) 520–538

12. Urtasun, R., Fleet, D.J., Fua, P.: 3D People Tracking with Gaussian Process
Dynamical Models. In: CVPR ’06: Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. (2006) 238–245

13. Urtasun, R., Fleet, D.J., Hertzmann, A., Fua, P.: Priors for people tracking from
small training sets. In: Tenth IEEE International Conference on Computer Vision.
Volume 1. (2005) 403–410

14. Bandouch, J., Engstler, F., Beetz, M.: Accurate human motion capture using an
ergonomics-based anthropometric human model. In: AMDO ’08: Proceedings of
the 5th international conference on Articulated Motion and Deformable Objects,
Springer-Verlag (2008) 248–258

15. Balan, A.O., Sigal, L., Black, M.J.: A quantitative evaluation of video-based 3d
person tracking. Visual Surveillance and Performance Evaluation of Tracking and
Surveillance 0 (2005) 349–356

16. Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-like spatial priors for articu-
lated tracking. In Daniilidis, K., Maragos, P., , Paragios, N., eds.: ECCV 2010.
Volume 6311 of Lecture Notes in Computer Science., Springer, Heidelberg (2010)
425–437

17. Yamamoto, M., Yagishita, K.: Scene constraints-aided tracking of human body.
In: CVPR, Published by the IEEE Computer Society (2000) 151–156


