Skip to main content

Finite State Automata by DNA Self-assembly

  • Conference paper
ICT Innovations 2010 (ICT Innovations 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 83))

Included in the following conference series:

  • 889 Accesses

Abstract

Several models of finite state automata in biomolecular computing are already in literature and some of these models have been also implemented in vitro showing their possible feasibility. On the other side, DNA self assembly of two-dimensional arrays have been achieved by variety of DNA-like tiles, moreover, algorithmic self assembly simulations of the Sierpinski triangle and binary counters have also been recorded. With this talk we describe an implementation of couple of models by DNA and we concentrate on the recent implementation of a finite state transducer (finite state automaton with output) by Wang like DNA tiles simulated with triple cross-over DNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselmo, M., Giammarresi, D., Madonia, M.: Tiling automaton: A computational model for recognizable two-dimensional languages. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 290–302. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous recognizable two-dimensional languages. RAIRO - Inf. Theor. Appl. 40, 277–293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anselmo, M., Jonoska, N., Madonia, M.: Framed versus unframed two-dimensional languages. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 79–92. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Chakraborty, B., Jonoska, N., Seeman, N.C.: Programmable transducer by DNA self-assembly (in preparation)

    Google Scholar 

  6. Ding, B., Seeman, N.C.: Operation of a DNA robot arm inserted into a 2d DNA crystalline substrate. Science 314, 1583–1585 (2006)

    Article  Google Scholar 

  7. Dolzhenko, E., Jonoska, N., Seeman, N.C.: Transducer generated arrays of robotic nano-arms. Natural Computing 9(2), 437–455 (2010), doi:10.1007/s11047-009-9157-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolzhenko, E., Jonoska, N.: On complexity of two-dimensional languages generated by transducers. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 181–190. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Fu, T.J., Seeman, N.C.: DNA double crossover structures. Biochemistry 32, 3211–3220 (1993)

    Article  Google Scholar 

  10. Giammarresi, D., Restivo, A.: Recognizable picture languages. In: Nivat, M., Saoudi, A., Wang, P.S.P. (eds.) Proc. 1st Internat. Colloq. on Parallel Image Processing (1992); Internat. J. Pattern Recognition Artif. Intell. 6, 231–256

    Google Scholar 

  11. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Berlin (1997)

    Chapter  Google Scholar 

  12. Jonoska, N., Liao, S., Seeman, N.C.: Transducers with programmable input by DNA self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 219–240. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Jonoska, N., Pirnot, J.B.: Transitivity in two-dimensional local languages defined by dot systems. International Journal of Foundations of Computer Science 17, 435–464 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jonoska, N., Pirnot, J.B.: Finite state automata representing two-dimensional subshifts. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 277–289. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Kari, J.: A small aperiodic set of Wang tiles. Discrete Math. 160, 259–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kari, J., Moore, C.: Rectangles and squares recognized by two-dimensional automata, http://www.santafe.edu/~moore/pubs/picture.html

  17. Kari, J., Moore, C.: New results on alternating and non-deterministic two-dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)

    Article  Google Scholar 

  19. Latteux, M., Simplot, D., Terlutte, A.: Iterated length-preserving rational transductions. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 286–295. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Liao, S., Seeman, N.C.: Translation of DNA signals into polymer assembly instructions. Science 306, 2072–2074 (2004)

    Article  Google Scholar 

  21. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  22. Manca, V., Martin-Vide, C., Păun, G.: New computing paradigms suggested by DNA computing: computing by carving. BioSystems 52, 47–54 (1999)

    Article  Google Scholar 

  23. Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  24. Păun, G.: On the iteration of gsm mappings. Rev. Roum. Math. Pures Appl. 23(4), 921–937 (1978)

    MathSciNet  MATH  Google Scholar 

  25. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), e424 (2004), http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0020424&ct=1

    Article  Google Scholar 

  26. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  27. Winfree, E.: Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments. Journal of Biomolecular Structure and Dynamics 11(S2), 263–270 (2000)

    Article  MathSciNet  Google Scholar 

  28. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)

    Article  Google Scholar 

  29. Zheng, J., Constantinou, P.E., Micheel, C., Alivisatos, A.P., Kiehl, R.A., Seeman, N.C.: 2D Nanoparticle arrays show the organizational power of robust DNA motifs. NanoLetters 6, 1502–1504 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jonoska, N., Seeman, N.C. (2011). Finite State Automata by DNA Self-assembly. In: Gusev, M., Mitrevski, P. (eds) ICT Innovations 2010. ICT Innovations 2010. Communications in Computer and Information Science, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19325-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19325-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19324-8

  • Online ISBN: 978-3-642-19325-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics