
Cache Sensitive Code Arrangement for
Virtual Machine

Chun-Chieh Lin and Chuen-Liang Chen

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei,

10764, Taiwan
{d93020, clchen}@csie.ntu.edu.tw

Abstract. This paper proposes a systematic approach to optimize the code
layout of a Java ME virtual machine for an embedded system with a
cache-sensitive architecture. A practice example is to run JVM directly
(execution-in-place) in NAND flash memory, for which cache miss penalty is
too high to endure. The refined virtual machine generated cache misses 96%
less than the original version. We developed a mathematical approach helping
to predict the flow of the interpreter inside the virtual machine. This approach
analyzed both the static control flow graph and the pattern of bytecode
instruction streams, since we found the input sequence drives the program flow
of the virtual machine interpreter. Then we proposed a rule to model the
execution flows of Java instructions of real applications. Furthermore, we used
a graph partition algorithm as a tool to deal with the mathematical model, and
this finding helped the relocation process to move program blocks to proper
memory pages. The refinement approach dramatically improved the locality of
the virtual machine thus reduced cache miss rates. Our technique can help Java
ME-enabled devices to run faster and extend longer battery life. The approach
also brings potential for designers to integrate the XIP function into
System-on-Chip thanks to lower demand for cache memory.

Keywords: cache sensitive, cache miss, NAND flash memory, code
arrangement, Java virtual machine, interpreter, embedded system.

1 Introduction

Java platform extensively exists in all kinds of embedded and mobile devices. The
Java™ Platform, Micro Edition (Java ME) [1] is no doubt a de facto standard
platform of smart phone. The Java virtual machine (it is KVM in Java ME) is a key
component that affects performance and power consumptions.

NAND flash memory comes with serial bus interface. It does not allow random
access, and the CPU must read out the whole page at a time, which is a slow operation
compared to RAM. This property leads a processor hardly to execute programs stored
in NAND flash memory using the “execute-in-place” (XIP) technique. In the

We acknowledge the support for this study through grants from National Science Council of

Taiwan (NSC 95-2221-E-002 -137).

meanwhile, NAND flash memory offers fast write access time, and the most
important of all, the technology has advantages in offering higher capacity than NOR
flash technology does. As the applications of embedded devices become large and
complicated, more mainstream devices adopt NAND flash memory to replace
NOR-flash memory.

In this paper, we tried to offer an answer to the question: can we speed up an
embedded device using NAND flash memory to store programs? “Page-based”
storage media, like NAND flash memory, have higher access penalty than RAM does.
Reducing the page miss becomes a critical issue. Thus, we set forth to find way to
reduce the page miss rate generated by the KVM. Due to the unique structure of the
KVM interpreter, we found a special way to exploit the dynamic locality of the KVM
that is to trace the patterns of executed bytecode instructions instead of the internal
flow of the KVM. It turned out to be a combinatorial optimization problem because
the code layout must fulfill certain code size constraints. Our approach achieved the
effect of static page preloading by properly arranging program blocks. In the
experiment, we implemented a post-processing program to modify the intermediate
files generated by the C compiler. The post-processing program refined machine code
placement of the KVM based on the mathematical model. Finally, the obtained tuned
KVMs dramatically reduced page accesses to NAND flash memories. The outcome of
this study helps embedded systems to boost performance and extend battery life as
well.

2 Related Works

Park et al., in [2], proposed a hardware module to allow direct code execution from
NAND flash memory. In this approach, program codes stored in NAND flash pages
will be loaded into RAM cache on-demand instead of moving entire contents into
RAM. Their work is a universal hardware-based solution without considering
application-specific characteristics.

Samsung Electronics offers a commercial product called “OneNAND” [3] based
on the same. It is a single chip with a standard NOR flash interface. Actually, it
contains a NAND flash memory array for storage. The vendor intent was to provide a
cost-effective alternative to NOR flash memory used in existing designs. The internal
structure of OneNAND comprises a NAND flash memory, control logic, hardware
ECC, and 5KB buffer RAM. The 5KB buffer RAM is comprised of three buffers:
1KB for boot RAM, and a pair of 2KB buffers used for bi-directional data buffers.
Our approach is suitable for systems using this type of flash memories.

Park et al., in [4], proposed yet another pure software approach to achieve
execute-in-place by using a customized compiler that inserts NAND flash reading
operations into program code at proper place. Their compiler determines insertion
points by summing up sizes of basic blocks along the calling tree. Special hardware is
no longer required, but in contrast to earlier work [2], there is still a need for
tailor-made compiler.

Typical studies of refining code placement to minimize cache misses can apply to
NAND flash cache system. Parameswaran et al., in [5], used the bin-packing

approach. It reorders the program codes by examining the execution frequency of
basic blocks. Code segments with higher execution frequency are placed next to each
other within the cache. Janapsatya et al., in [6], proposed a pure software heuristic
approach to reduce number of cache misses by relocating program sections in the
main memory. Their approach was to analyze program flow graph, identify and pack
basic blocks within the same loop. They have also created relations between cache
miss and energy consumption. Although their approach can identify loops within a
program, breaking the interpreter of a virtual machine into individual circuits is hard
because all the loops share the same starting point.

There are researches in improving program locality and optimizing code placement
for either cache or virtual memory environment. Pettis [7] proposed a systematic
approach using dynamic call graph to position procedures. They tried to place two
procedures as close as possible if one of the procedure calls another frequently. The
first step of Pettis’ approach uses the profiling information to create weighted call
graph. The second step iteratively merges vertices connected by heaviest weight
edges. The process repeats until the whole graph composed of one or more individual
vertex without edges.

However, the approach to collect profiling information and their accuracy is yet
another issue. For example, Young and Smith in [8] developed techniques to extract
effective branch profile information from a limited depth of branch history. Ball and
Larus in [9] described an algorithm for inserting monitoring code to trace programs.
Our approach is very different by nature. Previous studies all focused in the flow of
program codes, but we tried to model the profile by input data.

This research project created a post-processor to optimize the code arrangements. It
is analogous to “Diablo linker” [10]. They utilized symbolic information in the object
files to generate optimized executable files. However, our approach will generate
feedback intermediate files for the compiler, and invoke the compiler to generate
optimized machine code.

3 Background

3.1 XIP with NAND Flash

NOR flash memory is popular as code memory because of the XIP feature. There are
several approaches designed for using NAND flash memory as an alternative to NOR
flash memory. Because NAND flash memory interface cannot connect to the CPU
host bus, there has to be a memory interface controller to move data from NAND
flash memory to RAM.

Fig. 1. Access NAND flash through shadow RAM

In system-level view, Figure 1 shows a straightforward design which uses RAM as
the shadow copy of NAND flash. The system treats NAND flash memory as
secondary storage device [11]. There should be a boot loader or RTOS resided in
ROM or NOR flash memory. It copies program codes from NAND flash to RAM,
then the processor executes program codes in RAM [12]. This approach offers best
execution speed because the processor operates with RAM. The downside of this
approach is it needs huge amount of RAM to mirror NAND flash. In embedded
devices, RAM is a precious resource. For example, the Sony Ericsson T610 mobile
phone [13] reserved 256KB RAM for Java heap. In contrast to using 256MB for
mirroring NAND flash memory, all designers should agree that they would prefer to
retain RAM for Java applets rather than for mirroring. The second pitfall is the
implementation takes longer time to boot because the system must copy contents to
RAM prior to execution.

Figure 2 shows a demand paging approach uses limited amount of RAM as the
cache of NAND flash. The “romized” program codes stay in NAND flash memory,
and a MMU loads only portions of program codes which is about to be executed from
NAND into the cache. The major advantage of this approach is it consumes less
RAM. Several kilobytes of RAM are enough to mirror NAND flash memory. Using
less RAM means integrating CPU, MMU and cache into a single chip (the shadowed
part in Figure 2) can be easier. The startup latency is shorter since the CPU is ready to
run soon after the first NAND flash page is loaded into the cache. The component
cost is lower than in the previous approach. The realization of the MMU might be
either hardware or software approach, which is not covered in this paper.

However, performance is the major drawback of this approach. The penalty of each
cache miss is high, because loading contents from a NAND flash page is nearly 200
times slower than doing the same operation with RAM. Therefore reducing cache
misses becomes a critical issue for such configurations.

Fig. 2. Using cache unit to access NAND flash

3.2 KVM Internals

Source Level. In respect of functionality, the KVM can be broken down into several
parts: startup, class files loading, constant pool resolving, interpreter, garbage
collection, and KVM cleanup. Lafond et al., in [14], have measured the energy
consumptions of each part in the KVM. Their study showed that the interpreter
consumed more than 50% of total energy. In our experiments running Embedded
Caffeine Benchmark [15], the interpreter contributed 96% of total memory accesses.
These evidences lead to the conclusion that the interpreter is the performance
bottleneck of the KVM, and they motivated us to focus on reducing the cache misses
generated by the interpreter.
Figure 3 shows the program structure of the interpreter. It is a loop enclosing a large
switch-case dispatcher. The loop fetches bytecode instructions from Java applications,
and each “case” sub-clause deals with one bytecode instruction. The control flow
graph of the interpreter, as illustrated in Figure 4, is a flat and shallow spanning tree.
There are three major steps in the interpreter,
(1) Rescheduling and Fetching. In this step, KVM prepares the execution context
and the stack frame. Then it fetches a bytecode instruction from Java programs.
(2) Dispatching and Execution. After reading a bytecode instruction from Java
programs, the interpreter jumps to corresponding bytecode handlers through the big
“switch…case…” statement. Each bytecode handler carries out the function of the
corresponding bytecode instruction.
(3) Branching. The branch bytecode instructions may bring the Java program flow
away from original track. In this step, the interpreter resolves the target address and
modifies the program counter.

ReschedulePoint:
RESCHEDULE
opcode = FETCH_BYTECODE (ProgramCounter);
switch (opcode)
{
 case ALOAD: /* do something */
 goto ReschedulePoint;
 case IADD: /* do something */
 …
 case IFEQ: /* do something */
 goto BranchPoint;
 …
}
BranchPoint:
 take care of program counter;
 goto ReschedulePoint;

Fig. 3. Pseudo code of KVM interpreter

Fig. 4. Control flow graph of the interpreter

Assembly Level. Our analysis of the source files revealed the peculiar program
structure of the VM interpreter. Analyzing the code layout in the compiled
executables of the interpreter helped this study to create a code placement strategy.
The assembly code analysis in this study is restricted to ARM and gcc for the sake of
demonstration, but applying our theory to other platforms and tools is an easy job.
Figure 5 illustrates the layout of the interpreter in assembly form (FastInterpret() in
interp.c). The first trunk BytecodeFetching is the code block for rescheduling and
fetching, it is exactly the first part in the original source code. The second trunk
LookupTable is a large lookup table used in dispatching bytecode instructions. Each
entry links to a bytecode handler. It is actually the translated result of the
“switch…case…case” statement.

The third trunk BytecodeDispatch is the aggregation of more than a hundred
bytecode handlers. Most bytecode handlers are self-contained which means a
bytecode handler occupies a contiguous memory space in this trunk and it does not

jump to program codes stored in other trunks. There are only a few exceptions which
call functions stored in other trunks, such as “invokevirtual.” Besides, there are
several constant symbol tables spread over this trunk. These tables are referenced by
the program codes within the BytecodeDispatch trunk.

The last trunk ExceptionHandling contains code fragments related with exception
handling. Each trunk occupies a number of NAND flash pages. In fact, the total size
of BytecodeFetching and LookupTable is about 1200 bytes (compiled with
arm-elf-gcc-3.4.3), which is almost small enough to fit into two or three
512-bytes-page. Figure 6 shows the size distribution of bytecode handlers. The
average size of a bytecode handler is 131 bytes, and there are 79 handlers smaller than
56 bytes. In other words, a 512-bytes-page could gather 4 to 8 bytecode handlers. The
inter-handler execution flow dominates the number of cache misses generated by the
interpreter. This is the reason that our approach tries to rearrange bytecode handlers
within the BytecodeDispatch trunk.

Fig. 5. The organization of the interpreter at assembly level

Fig. 6. Distribution of Bytecode Handler Size (compiled with gcc-3.4.3)

4 Analyzing Control Flow

4.1 Indirect Control Flow Graph

Static branch-prediction and typical code placement approaches derive the layout of a
program from its control flow graph (CFG). However, the CFG of a VM interpreter is
a special case, its CFG is a flat spanning tree enclosed by a loop. The CFG does not
provide information to distinguish the temporal order between each bytecode handler.
If someone wants to improve the program locality by observing the dynamic
execution order of program blocks, the CFG is apparently not a good tool to this end.
Therefore, we propose a concept called “Indirect Control Flow Graph” (ICFG); it uses
the real bytecode instruction sequences to construct the dual CFG of the interpreter.
Consider a simplified virtual machine with 5 bytecode instructions: A, B, C, D, and E,
and use the virtual machine to run a very simple user applet. Consider the following
short alphabetic sequence as the instruction sequence of the user applet:

A-B-A-B-C-D-E-C
Each alphabet in the sequence represents a bytecode instruction. In Figure 7, the

graph connected with the solid lines is the CFG of the simplified interpreter. By
observing the flow in the CFG, the program flow becomes:

[Dispatch] – [Handler A] – [Dispatch] – [Handler B]…

Fig. 7. The CFG of the simplified interpreter

It is hard to tell the relation between handler-A and handler-B because the loop
header hides it. In other words, this CFG cannot easily present which handler would
be invoked after handler-A is executed. The idea of the ICFG is to observe the
patterns of the bytecode sequences executed by the virtual machine, not to analyze the
structure of the virtual machine itself. Figure 8 expresses the ICFG in a readable way,
it happens to be the sub-graph connected by the dashed directed lines in Figure 7.

Fig. 8. An ICFG example. The number inside the circle represents the size of the handler.

4.2 Tracing the Locality of the Interpreter

As stated, the Java applications that a KVM runs dominate the code locality of the
interpreter. Precisely speaking, the incoming Java instruction sequence dominates
code locality. Therefore, the first step to exploit the code locality is to consider the
bytecode sequences executed by the virtual machine. Consider the previous example
sequence, the order of accessed NAND flash pages is supposed to be:

[BytecodeFetching]–[LookupTable]–[A]–[BytecodeFetching]–[LookupTable]–
[B]–[BytecodeFetching]–[LookupTable]–[A]…

Obviously, memory pages containing BytecodeFetching and LookupTable are
much often to appear in the sequence than those containing BytecodeDispatch. As a
result, pages containing BytecodeFetching and LookupTable are favorable to last in
the cache. Pages holding bytecode handlers have to compete with each other to stay in
the cache. Thus, we induced that the order of executed bytecode instructions is the
key factor impacts cache misses.

Consider an extreme case: In a system with three cache blocks, two cache blocks
always hold memory pages containing BytecodeFetching and LookupTable due to the
stated reason. Therefore, there is only one cache block available for swapping pages
containing bytecode handlers. If all the bytecode handlers were located in distinct
memory pages, processing a bytecode instruction would cause a cache miss. This is
because the next-to-execute bytecode handler is always located in an uncached
memory page. In other words, the sample sequence causes at least eight cache misses.
Nevertheless, if both the handlers of A and B are grouped to the same page, cache
misses will decline to 5 times, and the page access trace becomes:

fault-A-B-A-B-fault-C-fault-D-fault-E-fault-C
If we extend the group (A, B) to include the handler of C, the cache miss count

would even drop to four times, and the page access trace looks like the following one:
fault-A-B-A-B-C-fault-D-fault-E-fault-C

Therefore, the core issue of this study is to find an efficient code layout method
partitioning all bytecode instructions into disjoined sets based on their execution
relevance. Each NAND flash page contains one set of bytecode handlers. We propose
partitioning the ICFG reaches this goal.

Back to Figure 8, the directed edges represent the temporal order of the instruction
sequence. The weight of an edge is the transition count for transitions from one
bytecode instruction to the next. If we remove the edge (B, C), the ICFG is divided
into two disjoined sets. That is, the bytecode handlers of A and B are placed in one
page, and the bytecode handlers of C, D, and E are placed in the other. The page
access trace becomes:

fault-A-B-A-B-fault-C-D-E-C
This placement causes only two cache misses, which is 75% lower than the worst

case! The next step is to transform the ICFG diagram to an undirected graph by
merging reversed edges connecting same vertices, and the weight of the undirected
edge is the sum of weights of the two directed edges. The consequence is actually a
variation of the classical MIN k-CUT problem. Formally speaking, we can model a
given graph G(V, E) as:

 Vi – represents the i-th bytecode instruction.
 Ei,j – the edge connecting i-th and j-th bytecode instruction.
 Fi,j – number of times that two bytecode instructions i and j executed after each

other. It is the weight of edge Ei,j.
 K – number of expected partitions.
 Wx,y – the inter-set weight. ∀ x ≠ y, Wx,y= ΣFi,j where Vi ∈ Px and Vj ∈ Py.

The goal is to model the problem as the following definition:
Definition 1. The MIN k-CUT problem is to divide G into K disjoined partitions {P1,
P2,…,Pk} such that ΣWi,j is minimized.

4.3 The Mathematical Model

Yet there is an additional constraint in our model. It is impractical to gather bytecode
instructions to a partition regardless of the sum of the program size of consisted
bytecode handlers. The size of each bytecode handler is distinct, and the code size of
a partition cannot exceed the size of a memory page (e.g. NAND flash page). Our aim
is to distribute bytecode handlers into several disjoined partitions {P1, P2,…,Pk}. We
define the following notations:

 Si – the code size of bytecode handler Vi.
 N – the size of a memory page.
 M(Pk) – the size of partition Pk . It is ΣSm for all Vm∈ Pk .
 H(Pk) – the value of partition Pk . It is ΣFi,j for all Vi , Vj ∈ Pk .

Our goal is to construct partitions that satisfy the following constraints.
Definition 2. The problem is to divide G into K disjoined partitions {P1, P2,…,Pk}.
For each Pk that M(Pk) ≤ N such that Wi,j is minimized, and maximize ΣH(Pi) for all
Pi ∈ {P1, P2,…,Pk}.

This rectified model is exactly an application of the graph partition problem, i.e.,
the size of each partition must satisfy the constraint (size of a memory page), and the
sum of inter-partition path weights is minimal. The graph partition problem is
NP-complete [16]. However, the purpose of this paper was neither to create a new
graph partition algorithm nor to discuss difference between existing algorithms. The
experimental implementation just adopted the following algorithm to demonstrate our
approach works. Other implementations based on this approach may choose another
graph partition algorithm that satisfies specific requirements.
Partition (G)

1. Find the edge with maximal weight Fi,j among graph G, while the Si + Sj ≤ N.
If there is no such an edge, go to step 4.

2. Call Merge (Vi , Vj) to combine vertices Vi and Vj.
3. Remove both Vi and Vj from G, go to step 1.
4. Find a pair of vertices Vi and Vj in G such that Si + Sj ≤ N. If there is not a pair

satisfied the criteria, go to step 7.
5. Call Merge (Vi , Vj) to combine vertices Vi and Vj.
6. Remove both Vi and Vj out of G, go to step 4.
7. End.

The procedure of merging both vertices Vi and Vj is:
Merge (Vi , Vj)

1. Add a new vertex Vk to G.
2. Pickup an edge E connects Vt with either Vi or Vj . If there is no such an edge,

go to step 6.
3. If there is already an edge F connects Vt to Vk.
4. Then, add the weight of E to F, and discard E.
5. Else, replace one end of E which is either Vi or Vj with Vk.
6. End.

Finally, each vertex in G is a collection of several bytecode handlers. The
refinement process is to collect bytecode handlers belonging to the same vertex and
place them into one memory page.

5 The Process of Rewriting the Virtual Machine

Our approach emphasizes that the arrangements of bytecode handlers affects cache
miss rate. In other words, it implies that programmers should be able to speed up their
programs by properly changing the order of the “case” sub-clauses in the source files.
Therefore, this study tries to optimize the virtual machine in two distinct ways. The
first approach revises the order of the “case” sub-clauses in the sources of the virtual
machine. If our theory were correct, this tentative approach should show that the
modified virtual machine performs better in most test cases. The second version
precisely reorganizes the layout of assembly code blocks of bytecode handlers, and
this approach should be able to generate larger improvements than the first version.

5.1 Source-Level Rearrangement

The concept of the refining process is to arrange the order of these “case” statements
in the source file (execute.c). The consequence is that after translating the rearranged
source files, the compiler will place bytecode handlers in machine code form in
meditated order. The following steps are the outline of the refining procedures.
A. Profiling. Run the Java benchmark program on the unmodified KVM. A custom
profiler traces the bytecode instruction sequence, and it generates the statistics of
inter-bytecode instruction counts. Although we can collect some patterns of
instruction combinations by investigating the Java compiler, using a dynamic
approach can capture further application-specific patterns.
B. Measuring the size of each bytecode handler. The refining program compiles the
KVM source files and measures the code size of each bytecode handler (i.e., the size
of each ‘case’ sub-clause) by parsing intermediate files generated by the compiler.
C. Partitioning the ICFG. The previous steps collect all necessary information for
constructing the ICFG. Then, the refining program partitions the ICFG by using a
graph partition algorithm. From that result, the refining program knows the way to
group bytecode handlers together. For example, a partition result groups (A, B) to a
bundle and (C, D, E) to another as shown in Figure 8.
D. Rewriting the source file. According to the computed results, the refining
program rewrites the source file by arranging the order of all “case” sub-clauses
within the interpreter loop. Figure 9 shows the order of all “case” sub-clauses in the
previous example.

switch (opcode) {

case B: …;
case A: …;
case E: …;
case D: …;
case C: …;

}

Fig. 9. The output of rearranged case statements

5.2 Assembly-Level Rearrangement

The robust implementation of the refinement process consists of two steps. The
refinement process acts as a post processor of the compiler. It parses intermediate
files generated by the compiler, rearranges program blocks, and generates optimized
assembly codes. Our implementation is inevitably compiler-dependent and
CPU-dependent. Current implementation tightly is integrated with gcc for ARM, but
the approach is easy to apply to other platforms. Figure 10 illustrates the outline of the
processing flow, entities, and relations between each entity. The following paragraphs
explain the functions of each step.
A. Collecting dynamic bytecode instruction trace. The first step is to collect
statistics from real Java applications or benchmarks, because the following steps will
need these data for partitioning bytecode handlers. The modified KVM dumps the
bytecode instruction trace while running Java applications. A special program called
TRACER analyzes the trace dump to find the transition counts for all instruction
pairs.

Fig. 10. Entities in the refinement process

B. Rearranging the KVM interpreter. This is the core step and is realized by a
program called REFINER. It acts as a post processor of gcc. Its duty is to parse
bytecode handlers expressed in the assembly code and organize them into partitions.
Each partition fits into one NAND flash page. The program consists of several sub
tasks described as follows.
(i) Parsing layout information of the original KVM. The very first thing is to
compile the original KVM. REFINER parses the intermediate files generated by gcc.
According to structure of the interpreter expressed in assembly code introduced in

§3.2, REFINER analyzes the jump table in the LookupTable trunk to find out the
address and size of each bytecode handler.
(ii) Using the graph partition algorithm to group bytecode handlers into
disjoined partitions. At this stage, REFINER constructs the ICFG with two key
parameters: (1) the transition counts of bytecode instructions collected by TRACER;
(2) the machine code layout information collected in the step A. It uses the
approximate algorithm described in §4.3 to divide the undirected ICFG into disjoined
partitions.
(iii) Rewriting the assembly code. REFINER parses and extracts assembly codes of
all bytecode handlers. Then, it creates a new assembly file and dumps all bytecode
handlers partition by partition according to the result of (ii).
(iv) Propagating symbol tables to each partition. As described in §3.2, there are
several symbol tables distributed in the BytecodeDispatch trunk. For most RISC
processors like ARM and MIPS, an instruction is unable to carry arbitrary constants
as operands because of limited instruction word length. The solution is to gather used
constants into a symbol table and place this table near the instructions that will access
these constants. Hence, the compiler generates instructions with relative addressing
operands to load constants from the nearby symbol tables. Take ARM for example, its
application binary interface (ABI) defines two instructions called LDR and ADR for
loading a constant from a symbol table to a register [17]. The ABI restricts the
maximal distance between a LDR/ADR instruction and the referred symbol table to
4K bytes.

Besides, it would cause a cache miss if a machine instruction in page X loads a
constant si from symbol table SY located in page Y. Our solution is to create a local
symbol table SX in page X and copy the value si to the new table. Therefore, the
relative distance between si and the instruction never exceeds 4KB neither causes
cache misses when the CPU tries to load si.
(v) Dumping contents in partitions to NAND flash pages. The aim is to map
bytecode handlers to NAND flash pages. Its reassembled bytecode handlers belong to
the same partition in one NAND flash page. After that, REFINER refreshes the
address and size information of all bytecode handlers. The updated information helps
REFINER to add padding to each partition and enforce the starting address of each
partition to align to the boundary of a NAND flash page.

6 Evaluation

In this section, we start from a brief introduction of the environment and conditions
used in the experiments. The first part of the experimental results is the outcome of
source-level rearranged virtual machine. Those positive results prove our theory
works. The next part is the experiment of assembly-level rearranged virtual machine.
It further proves our refinement approach is able to produce better results than the
original version.

6.1 Evaluation Environment

Figure 11 shows the block diagram of our experimental setup. In order to mimic real
embedded applications, we have implanted Java ME KVM into uClinux for ARM7 in
the experiment. One of the reasons to use this platform is that uClinux supports FLAT
executable file format which is perfect for realizing XIP. We ran KVM/uClinux on a
customized gdb. This customized gdb dumped memory access traces and performance
statistics to files. The experimental setup assumed there was a specialized hardware
unit acting as the NAND flash memory controller, which loads program codes from
NAND flash pages to the cache. It also assumed all flash access operations worked
transparently without the help from the operating system. In other words, modifying
the OS kernel for the experiment is unnecessary. This experiment used “Embedded
Caffeine Mark 3.0” [15] as the benchmark.

Embedded
Caffeine Mark J2ME API

K Virtual Machine (KVM) 1.1
uClinux Kernel

GDB 5.0/ARMulator
Windows/Cygwin

ARM7 / FLASH

ARM7 / ROM

Java / RAM

Intel X86

Title Version
arm-elf-binutil 2.15
arm-elf-gcc 3.4.3
uClibc 0.9.18
J2ME (KVM) CLDC 1.1
elf2flt 20040326

Fig. 11. Hierarchy of simulation environment

There are several kinds of NAND flash commodities in the market: 512-bytes,
2048-bytes, and 4096-bytes per page. In this experiment, we model the cache
simulator after the following conditions:
1. There were four NAND flash page size options: 512, 1024, 2048 and 4096.
2. The page replacement policy was full associative, and it is a FIFO cache.
3. The number of cache memory blocks varied from 2, 4 … to 32.

6.2 Results of Source-Level Rearrangement

First, we rearranged the “case” sub-clauses in the source codes using the introduced
method. Table 1 lists the raw statistics of cache miss rates, and Figure 12 plots the
charts of normalized cache miss rates from the optimized KVM.

Each of the four columns is the result from a special kind of KVM. The “original”
column refers to statistics from the original KVM, in which bytecode handlers were
arranged in machine code order. The second column “optimized” is the result from
the KVM refined with our approach. The improvement ratio is a comparison between
the original and the optimized KVM. The experiment assumed the maximal cache
size is 64K bytes. For each NAND flash page size, the number of cache blocks starts
from 4 to (64K / NAND flash page size).

The result showed that the optimized KVM outperforms than the other in most
cases. There is 95% improvement in the best case. Looking at the charts, the curves of
normalized cache miss rates (i.e., optimized_miss_rate / original_miss_rate) tend to

be concave. It means the improvement for the case of eight pages is greater than the
one of four pages. It benefits from the smaller “locality” of the optimized KVM.
Therefore, the cache could hold more localities, and this is helpful in reducing cache
misses. After touching the bottom, the cache is large enough to hold most of the KVM
program code. As the cache size grows, the numbers of cache misses of
configurations converge.

However, the miss rate at 1024 bytes * 32 blocks is an exceptional case. This is
because our approach rearranges the order of bytecode handlers at source level, and it
cannot enforce the predicted and the real start address and code size of a bytecode
handler to be the same. Therefore, it causes the cache miss rates to increase.

Fig. 12. The charts of normalized cache-miss rates from the source-level refined virtual
machine. The x-axis is the size of the cache memory (number_of_blocks * block_size).

Table 1. Normalized cache miss rates generated from source-level modified virtual machines.

512 Bytes/Blk Miss Count 1024 Bytes/Blk Miss Count
Blks Improve. Original Optimized # Blks Improve. Original Optimized

4 9.39% 25,242,319 22,871,780 4 42.58% 15,988,106 9,180,472
8 42.25% 11,269,029 6,508,217 8 46.58% 5,086,130 2,717,027
16 17.94% 2,472,373 2,028,834 16 73.10% 486,765 130,921
32 47.84% 145,005 75,632 32 -8.63% 23,395 25,413
64 3.75% 11,933 11,485 64 9.35% 3,230 2,928
128 1.91% 2,507 2,459
Total Access 567,393,732 567,393,732 Total Access 567,393,732 567,393,732

2048 Bytes/Blk Miss Count 4096 Bytes/Blk Miss Count
Blks Improve. Original Optimized # Blks Improve. Original Optimized

4 78.05% 10,813,688 2,373,841 4 59.33% 4,899,778 1,992,734
8 95.51% 2,341,042 105,157 8 82.82% 422,512 72,580
16 63.08% 68,756 25,388 16 22.37% 8,995 6,983
32 4.98% 4,294 4,080
Total Access 567,393,732 567,393,732 Total Access 567,393,732 567,393,732

6.3 Results of Assembly-Level Rearrangement

Fig. 13. The chart of normalized cache-miss rates from assembly-level rearranged virtual
machines. The x-axis is the size of the cache memory (number_of_blocks * block_size).

The last experiment proved the theory should work but with a few exceptions. The
assembly-level rearrangement method is a remedy. We tuned four versions of KVM;
each of them suited to one kind of page size. All the experimental measurements are

compared to those from the original KVM. Table 2 is the highlight of experimental
results and shows the extent of improvement of the optimized versions as well.

In the test case with 4KB/512-bytes per page, the cache miss rate of the tuned
KVM is less than 1%, in contrast to the cache miss rate of the original KVM that is
greater than 3%. In the best case, the cache miss rate of the tuned KVM is 96% lower
than the value from the original one. Besides, in the case with only two cache blocks
(1KB/512-bytes per page), the improvement is about 50%. It means tuned KVMs
outperform on devices with limited cache blocks.

Figure 13 is the chart of the normalized miss rates. The envelope lines of these
charts are tending to be concave. In the conditions that the amounts of cache blocks is
small, the cache miss rates of the tuned KVM decline faster than the rates of the
original version, and the curve goes downward. Once there is enough cache blocks to
hold the entire locality of the original KVM, the tuned version gradually loses its
advantages, and the curve turns upward.

In both experiments, the normalized miss rate curves are tending to be concave.
We conclude this is a characteristic of our approach.

Table 2. Experimental cache miss counts. Data of 21 to 32 blocks are omitted due to being less
relevant.

512 Bytes/Blk Miss Count 1024 Bytes/Blk Miss Count
Blks Improve. Original Optimized # Blks Improve. Original Optimized

2 48.94% 52106472 25275914 2 38.64% 29760972 17350643
4 50.49% 34747976 16345163 4 69.46% 21197760 6150007
6 71.19% 26488191 7249424 6 78.15% 13547700 2812730
8 80.42% 17709770 3294736 8 88.11% 8969062 1013010
10 78.02% 12263183 2560674 10 96.72% 6354864 197996
12 89.61% 9993229 986256 12 96.02% 3924402 148376
14 95.19% 6151760 280894 14 92.97% 1735690 115991
16 95.63% 4934205 204975 16 90.64% 1169657 104048
18 94.37% 3300462 176634 18 75.11% 380285 89934
20 90.48% 1734177 156914 20 58.30% 122884 48679

Total Access 548980637 521571173 Total Access 548980637 521571046

2048 Bytes/Blk Miss Count 4096 Bytes/Blk Miss Count
Blks Improve. Original Optimized # Blks Improve. Original Optimized

2 40.74% 25616314 14421794 2 62.32% 14480682 5183539
4 78.17% 14733164 3055373 4 86.32% 7529472 978537
6 80.10% 8284595 1566059 6 93.27% 2893864 185037
8 93.80% 4771986 281109 8 74.91% 359828 85762
10 95.66% 2297323 94619 10 33.39% 88641 56096
12 81.33% 458815 81395 12 -89.68% 25067 45173
14 54.22% 96955 42166 14 0.08% 16547 15708
16 52.03% 62322 28403 16 -33.81% 7979 10144
18 24.00% 26778 19336 18 -17.08% 5484 6100
20 10.08% 18390 15710 20 -24.69% 3536 4189

Total Access 548980637 521570848 Total Access 548980637 521570757

7 Conclusion

In this study, we present a refinement process to distribute bytecode handlers into
logical partitions that can map to pages of NAND flash memory. The technique we
used to profile the virtual machine analyzes not only the CFG of the interpreter but
also the patterns of bytecode instruction streams, since we observe the input sequence
drives the program flow. From this point of view, we conclude it is a kind of graph
partition problem.

We use two different approaches in the experiments. By modifying either source
codes or assembly codes, the refined KVMs effectively cause lower cache misses than
the unmodified version. The success in source code modification even implies that
our technique can help programmers to write efficient programs without the
knowledge of modifying compiler-backend. Certainly, the assembly-level (or
machine-code-level) rewriting tool is definitely the best solution, which provides the
ultimate performance.

The most important of all, the refined virtual machine performs well on the device
with limited cache memory blocks. Consider the case of 8KB/512-bytes per page, the
cache miss rate of the tuned KVM is 0.6%. Compare to the 3.2% of the original
KVM, this is a significant improvement. Undoubtedly, if the cache size is large, the
miss rate will not be an issue. However, our approach can ensure that the KVM
generates lower cache misses at smaller cache sizes. This technique also enables SOC
to integrate a small block of embedded cache RAM and still execute the KVM
efficiently.

Comparing our improvement on the KVM interpreter with JIT (dynamic
compilation) is an interesting issue. The outcome of JIT is usually good so that it
seems the effort on improving interpreter is in vain. However, a JIT VM usually
consumes huge amount of memory that a small-scaled embedded device cannot
afford, it is still worthwhile to refine the interpreter VM. The experimental results in
[18] by Anderson Faustino da Silva et al. suggest that an interpreter VM is between 3
to 11 times slower than a JIT VM. However, by taking timing parameters of real
NAND flash memory and DRAM into our formula, the performance boost by our
improvement helps an interpreter VM runs as faster as a JIT VM.

Actually, our approach is not exclusively for interpreters. Our investigation shows
our approach is applicable to the part of translating bytecodes to native codes in a JIT
VM. We left this issue for future development.

Furthermore, our systematic method can apply to any program with the following
two properties. First, its program flow branches to a large number of sibling
sub-blocks, i.e., a big “switch… case… case…” compound statement in the
interpreter. Second, the input data patterns drive the execution flows of those sibling
sub-blocks, so that we can plot an ICFG to capture the dynamic trace. In practice, our
approach can apply to other virtual machines, like Microsoft .NET Common
Language Runtime, or an XML-driven processing program besides KVM.

8 Reference

1. Sun Microsystems. J2ME Building Blocks for Mobile Devices. Sun Microsystems, Inc.
May 19, 2000.

2. C. Park, J. Seo, S. Bae, H. Kim, S. Kim, and B. Kim. A Low-Cost Memory Architecture
with NAND XIP for Mobile Embedded Systems. In ISSS+CODES 2003: First
IEEE/ACM/IFIP International conference on Hardware/Software Codesign and System
Synthesis, ACM Press, New York, NY, October 2003.

3. Samsung Electronics. OneNAND Features & Performance. Samsung Electronics,
November 4, 2005.

4. Chanik Park, Junghee Lim, Kiwon Kwon, Jaejin Lee, and Sang Lyul Min. Compiler
Assisted Demand Paging for Embedded Systems with Flash Memory, In Proceedings of
the 4th ACM international conference on Embedded software (EMSOFT’04) (September
27–29, 2004, Pisa, Italy.). ACM Press, New York, NY, 2000, pp. 114-124.

5. Parameswaran, S., and Henkel, J. I-CoPES: Fast Instruction Code Placement for
Embedded Systems to Improve Performance and Energy Efficiency. In Proceedings of
the 2001 IEEE/ACM international conference on Computer-aided design, IEEE Press,
Piscataway, NJ, USA, 2001, pp. 635–641.

6. A. Janapsatya, S. Parameswaran and J. Henkel. REMcode: relocating embedded code for
improving system efficiency. In IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6,
November 2004

7. Karl Pettis, Robert Hansen. Profile-guided code positioning. In the Proceedings of the
ACM SIGPLAN 1990 conference on Programming language design and implementation
PLDI '90, Volume 25 Issue 6. ACM Press, New York, NY, 1990, pp. 16-27.

8. C. Young and M. D. Smith. Improving the Accuracy of Static Branch Prediction Using
Branch Correlation, In Proceedings of the 6th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS VI), Oct. 1994.

9. Thomas Ball and James R. Larus. Optimally profiling and tracing programs, ACM
Transactions on Programming Languages and Systems, 16(4), pp. 1319-1360, July 1994.

10. Van Put, L., Chanet, D., De Bus, B., De Sutler, B., and De Bosschere, K. DIABLO: a
reliable, retargetable and extensible link-time rewriting framework. In the Proceedings of
the Fifth IEEE International Symposium on Signal Processing and Information
Technology, 2005, IEEE Press, Piscataway, NJ, USA, 2005, pp. 7-12.

11. Michael Santarini. NAND versus NOR-Which flash is best for bootin’ your next system?
EDN October 2005. Reed Business Information, a division of Reed Elsevier Inc. October
13, 2005, pp. 41-48.

12. Micron Technology, Inc. Boot-from-NAND Using Micron® MT29F1G08ABA NAND
Flash with the Texas Instruments™ (TI) OMAP2420 Processor, Micron Technology,
Inc., 2006.

13. Sony Ericsson. Java™ Support in Sony Ericsson Mobile Phones. Sony Ericsson Mobile
Communications AB, 2003.

14. Sébastien Lafond, Johan Lilius. An Energy Consumption Model for Java Virtual
Machine, In Turku Centre for Computer Science TUCS Technical Report No 597,
TUCS, March 2004.

15. CaffeineMark 3.0, Pendragon Software Corp, http://www.benchmarkhq.ru/cm30.
16. Garey M R, and Johnson D S. Computer and Intractability - A Guide to the Theory of

NP-Completeness. Bell Telephone Laboratories, 1979.
17. Steven Fuber. ARM System-on-Chip Architecture (2nd Edition). Addison-Wesley

Professional, August 25, 2000, pp. 49-72.
18. Anderson Faustino da Silva and Vitor Santos Costa. An Experimental Evaluation of

JAVA JIT Technology. Journal of Universal Computer Science, vol. 11, no. 7 (2005),
Graz University of Technology, pp. 1291-1309.

	5.1 Source-Level Rearrangement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

