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Abstract. This paper proposes a systematic approach to optimize the code 
layout of a Java ME virtual machine for an embedded system with a 
cache-sensitive architecture. A practice example is to run JVM directly 
(execution-in-place) in NAND flash memory, for which cache miss penalty is 
too high to endure. The refined virtual machine generated cache misses 96% 
less than the original version. We developed a mathematical approach helping 
to predict the flow of the interpreter inside the virtual machine. This approach 
analyzed both the static control flow graph and the pattern of bytecode 
instruction streams, since we found the input sequence drives the program flow 
of the virtual machine interpreter. Then we proposed a rule to model the 
execution flows of Java instructions of real applications. Furthermore, we used 
a graph partition algorithm as a tool to deal with the mathematical model, and 
this finding helped the relocation process to move program blocks to proper 
memory pages. The refinement approach dramatically improved the locality of 
the virtual machine thus reduced cache miss rates. Our technique can help Java 
ME-enabled devices to run faster and extend longer battery life. The approach 
also brings potential for designers to integrate the XIP function into 
System-on-Chip thanks to lower demand for cache memory. 

Keywords: cache sensitive, cache miss, NAND flash memory, code 
arrangement, Java virtual machine, interpreter, embedded system. 

1   Introduction 

Java platform extensively exists in all kinds of embedded and mobile devices. The 
Java™ Platform, Micro Edition (Java ME) [1] is no doubt a de facto standard 
platform of smart phone. The Java virtual machine (it is KVM in Java ME) is a key 
component that affects performance and power consumptions. 

NAND flash memory comes with serial bus interface. It does not allow random 
access, and the CPU must read out the whole page at a time, which is a slow operation 
compared to RAM. This property leads a processor hardly to execute programs stored 
in NAND flash memory using the “execute-in-place” (XIP) technique. In the 
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meanwhile, NAND flash memory offers fast write access time, and the most 
important of all, the technology has advantages in offering higher capacity than NOR 
flash technology does. As the applications of embedded devices become large and 
complicated, more mainstream devices adopt NAND flash memory to replace 
NOR-flash memory. 

In this paper, we tried to offer an answer to the question: can we speed up an 
embedded device using NAND flash memory to store programs? “Page-based” 
storage media, like NAND flash memory, have higher access penalty than RAM does. 
Reducing the page miss becomes a critical issue. Thus, we set forth to find way to 
reduce the page miss rate generated by the KVM. Due to the unique structure of the 
KVM interpreter, we found a special way to exploit the dynamic locality of the KVM 
that is to trace the patterns of executed bytecode instructions instead of the internal 
flow of the KVM. It turned out to be a combinatorial optimization problem because 
the code layout must fulfill certain code size constraints. Our approach achieved the 
effect of static page preloading by properly arranging program blocks. In the 
experiment, we implemented a post-processing program to modify the intermediate 
files generated by the C compiler. The post-processing program refined machine code 
placement of the KVM based on the mathematical model. Finally, the obtained tuned 
KVMs dramatically reduced page accesses to NAND flash memories. The outcome of 
this study helps embedded systems to boost performance and extend battery life as 
well. 

2 Related Works 

Park et al., in [2], proposed a hardware module to allow direct code execution from 
NAND flash memory. In this approach, program codes stored in NAND flash pages 
will be loaded into RAM cache on-demand instead of moving entire contents into 
RAM. Their work is a universal hardware-based solution without considering 
application-specific characteristics. 

Samsung Electronics offers a commercial product called “OneNAND” [3] based 
on the same. It is a single chip with a standard NOR flash interface. Actually, it 
contains a NAND flash memory array for storage. The vendor intent was to provide a 
cost-effective alternative to NOR flash memory used in existing designs. The internal 
structure of OneNAND comprises a NAND flash memory, control logic, hardware 
ECC, and 5KB buffer RAM. The 5KB buffer RAM is comprised of three buffers: 
1KB for boot RAM, and a pair of 2KB buffers used for bi-directional data buffers. 
Our approach is suitable for systems using this type of flash memories. 

Park et al., in [4], proposed yet another pure software approach to achieve 
execute-in-place by using a customized compiler that inserts NAND flash reading 
operations into program code at proper place. Their compiler determines insertion 
points by summing up sizes of basic blocks along the calling tree. Special hardware is 
no longer required, but in contrast to earlier work [2], there is still a need for 
tailor-made compiler. 

Typical studies of refining code placement to minimize cache misses can apply to 
NAND flash cache system. Parameswaran et al., in [5], used the bin-packing 



approach. It reorders the program codes by examining the execution frequency of 
basic blocks. Code segments with higher execution frequency are placed next to each 
other within the cache. Janapsatya et al., in [6], proposed a pure software heuristic 
approach to reduce number of cache misses by relocating program sections in the 
main memory. Their approach was to analyze program flow graph, identify and pack 
basic blocks within the same loop. They have also created relations between cache 
miss and energy consumption. Although their approach can identify loops within a 
program, breaking the interpreter of a virtual machine into individual circuits is hard 
because all the loops share the same starting point. 

There are researches in improving program locality and optimizing code placement 
for either cache or virtual memory environment. Pettis [7] proposed a systematic 
approach using dynamic call graph to position procedures. They tried to place two 
procedures as close as possible if one of the procedure calls another frequently. The 
first step of Pettis’ approach uses the profiling information to create weighted call 
graph. The second step iteratively merges vertices connected by heaviest weight 
edges. The process repeats until the whole graph composed of one or more individual 
vertex without edges. 

However, the approach to collect profiling information and their accuracy is yet 
another issue. For example, Young and Smith in [8] developed techniques to extract 
effective branch profile information from a limited depth of branch history. Ball and 
Larus in [9] described an algorithm for inserting monitoring code to trace programs. 
Our approach is very different by nature. Previous studies all focused in the flow of 
program codes, but we tried to model the profile by input data. 

This research project created a post-processor to optimize the code arrangements. It 
is analogous to “Diablo linker” [10]. They utilized symbolic information in the object 
files to generate optimized executable files. However, our approach will generate 
feedback intermediate files for the compiler, and invoke the compiler to generate 
optimized machine code. 

3 Background 

3.1   XIP with NAND Flash 

NOR flash memory is popular as code memory because of the XIP feature. There are 
several approaches designed for using NAND flash memory as an alternative to NOR 
flash memory. Because NAND flash memory interface cannot connect to the CPU 
host bus, there has to be a memory interface controller to move data from NAND 
flash memory to RAM. 



 

Fig. 1. Access NAND flash through shadow RAM 

In system-level view, Figure 1 shows a straightforward design which uses RAM as 
the shadow copy of NAND flash. The system treats NAND flash memory as 
secondary storage device [11]. There should be a boot loader or RTOS resided in 
ROM or NOR flash memory. It copies program codes from NAND flash to RAM, 
then the processor executes program codes in RAM [12]. This approach offers best 
execution speed because the processor operates with RAM. The downside of this 
approach is it needs huge amount of RAM to mirror NAND flash. In embedded 
devices, RAM is a precious resource. For example, the Sony Ericsson T610 mobile 
phone [13] reserved 256KB RAM for Java heap. In contrast to using 256MB for 
mirroring NAND flash memory, all designers should agree that they would prefer to 
retain RAM for Java applets rather than for mirroring. The second pitfall is the 
implementation takes longer time to boot because the system must copy contents to 
RAM prior to execution. 

Figure 2 shows a demand paging approach uses limited amount of RAM as the 
cache of NAND flash. The “romized” program codes stay in NAND flash memory, 
and a MMU loads only portions of program codes which is about to be executed from 
NAND into the cache. The major advantage of this approach is it consumes less 
RAM. Several kilobytes of RAM are enough to mirror NAND flash memory. Using 
less RAM means integrating CPU, MMU and cache into a single chip (the shadowed 
part in Figure 2) can be easier. The startup latency is shorter since the CPU is ready to 
run soon after the first NAND flash page is loaded into the cache. The component 
cost is lower than in the previous approach. The realization of the MMU might be 
either hardware or software approach, which is not covered in this paper. 

However, performance is the major drawback of this approach. The penalty of each 
cache miss is high, because loading contents from a NAND flash page is nearly 200 
times slower than doing the same operation with RAM. Therefore reducing cache 
misses becomes a critical issue for such configurations. 



 

Fig. 2. Using cache unit to access NAND flash 

3.2 KVM Internals 

Source Level. In respect of functionality, the KVM can be broken down into several 
parts: startup, class files loading, constant pool resolving, interpreter, garbage 
collection, and KVM cleanup. Lafond et al., in [14], have measured the energy 
consumptions of each part in the KVM. Their study showed that the interpreter 
consumed more than 50% of total energy. In our experiments running Embedded 
Caffeine Benchmark [15], the interpreter contributed 96% of total memory accesses. 
These evidences lead to the conclusion that the interpreter is the performance 
bottleneck of the KVM, and they motivated us to focus on reducing the cache misses 
generated by the interpreter. 
Figure 3 shows the program structure of the interpreter. It is a loop enclosing a large 
switch-case dispatcher. The loop fetches bytecode instructions from Java applications, 
and each “case” sub-clause deals with one bytecode instruction. The control flow 
graph of the interpreter, as illustrated in Figure 4, is a flat and shallow spanning tree. 
There are three major steps in the interpreter, 
(1) Rescheduling and Fetching. In this step, KVM prepares the execution context 
and the stack frame. Then it fetches a bytecode instruction from Java programs. 
(2) Dispatching and Execution. After reading a bytecode instruction from Java 
programs, the interpreter jumps to corresponding bytecode handlers through the big 
“switch…case…” statement. Each bytecode handler carries out the function of the 
corresponding bytecode instruction. 
(3) Branching. The branch bytecode instructions may bring the Java program flow 
away from original track. In this step, the interpreter resolves the target address and 
modifies the program counter. 



ReschedulePoint: 
RESCHEDULE 
opcode = FETCH_BYTECODE ( ProgramCounter ); 
switch ( opcode ) 
{ 
 case ALOAD: /* do something */ 
  goto ReschedulePoint; 
 case IADD: /* do something */ 
  … 
 case IFEQ: /* do something */ 
  goto BranchPoint; 
  … 
} 
BranchPoint: 
 take care of program counter; 
 goto ReschedulePoint; 

Fig. 3. Pseudo code of KVM interpreter 

 

Fig. 4. Control flow graph of the interpreter 

Assembly Level. Our analysis of the source files revealed the peculiar program 
structure of the VM interpreter. Analyzing the code layout in the compiled 
executables of the interpreter helped this study to create a code placement strategy. 
The assembly code analysis in this study is restricted to ARM and gcc for the sake of 
demonstration, but applying our theory to other platforms and tools is an easy job. 
Figure 5 illustrates the layout of the interpreter in assembly form (FastInterpret() in 
interp.c). The first trunk BytecodeFetching is the code block for rescheduling and 
fetching, it is exactly the first part in the original source code. The second trunk 
LookupTable is a large lookup table used in dispatching bytecode instructions. Each 
entry links to a bytecode handler. It is actually the translated result of the 
“switch…case…case” statement. 

The third trunk BytecodeDispatch is the aggregation of more than a hundred 
bytecode handlers. Most bytecode handlers are self-contained which means a 
bytecode handler occupies a contiguous memory space in this trunk and it does not 



jump to program codes stored in other trunks. There are only a few exceptions which 
call functions stored in other trunks, such as “invokevirtual.” Besides, there are 
several constant symbol tables spread over this trunk. These tables are referenced by 
the program codes within the BytecodeDispatch trunk. 

The last trunk ExceptionHandling contains code fragments related with exception 
handling. Each trunk occupies a number of NAND flash pages. In fact, the total size 
of BytecodeFetching and LookupTable is about 1200 bytes (compiled with 
arm-elf-gcc-3.4.3), which is almost small enough to fit into two or three 
512-bytes-page. Figure 6 shows the size distribution of bytecode handlers. The 
average size of a bytecode handler is 131 bytes, and there are 79 handlers smaller than 
56 bytes. In other words, a 512-bytes-page could gather 4 to 8 bytecode handlers. The 
inter-handler execution flow dominates the number of cache misses generated by the 
interpreter. This is the reason that our approach tries to rearrange bytecode handlers 
within the BytecodeDispatch trunk. 

 

Fig. 5. The organization of the interpreter at assembly level 



 

Fig. 6. Distribution of Bytecode Handler Size (compiled with gcc-3.4.3) 

4 Analyzing Control Flow 

4.1 Indirect Control Flow Graph 

Static branch-prediction and typical code placement approaches derive the layout of a 
program from its control flow graph (CFG). However, the CFG of a VM interpreter is 
a special case, its CFG is a flat spanning tree enclosed by a loop. The CFG does not 
provide information to distinguish the temporal order between each bytecode handler. 
If someone wants to improve the program locality by observing the dynamic 
execution order of program blocks, the CFG is apparently not a good tool to this end. 
Therefore, we propose a concept called “Indirect Control Flow Graph” (ICFG); it uses 
the real bytecode instruction sequences to construct the dual CFG of the interpreter. 
Consider a simplified virtual machine with 5 bytecode instructions: A, B, C, D, and E, 
and use the virtual machine to run a very simple user applet. Consider the following 
short alphabetic sequence as the instruction sequence of the user applet: 

A-B-A-B-C-D-E-C 
Each alphabet in the sequence represents a bytecode instruction. In Figure 7, the 

graph connected with the solid lines is the CFG of the simplified interpreter. By 
observing the flow in the CFG, the program flow becomes: 

[Dispatch] – [Handler A] – [Dispatch] – [Handler B]… 



 

Fig. 7. The CFG of the simplified interpreter 

It is hard to tell the relation between handler-A and handler-B because the loop 
header hides it. In other words, this CFG cannot easily present which handler would 
be invoked after handler-A is executed. The idea of the ICFG is to observe the 
patterns of the bytecode sequences executed by the virtual machine, not to analyze the 
structure of the virtual machine itself. Figure 8 expresses the ICFG in a readable way, 
it happens to be the sub-graph connected by the dashed directed lines in Figure 7. 

 

Fig. 8. An ICFG example. The number inside the circle represents the size of the handler. 

4.2 Tracing the Locality of the Interpreter 

As stated, the Java applications that a KVM runs dominate the code locality of the 
interpreter. Precisely speaking, the incoming Java instruction sequence dominates 
code locality. Therefore, the first step to exploit the code locality is to consider the 
bytecode sequences executed by the virtual machine. Consider the previous example 
sequence, the order of accessed NAND flash pages is supposed to be: 

[BytecodeFetching]–[LookupTable]–[A]–[BytecodeFetching]–[LookupTable]– 
[B]–[BytecodeFetching]–[LookupTable]–[A]… 



Obviously, memory pages containing BytecodeFetching and LookupTable are 
much often to appear in the sequence than those containing BytecodeDispatch. As a 
result, pages containing BytecodeFetching and LookupTable are favorable to last in 
the cache. Pages holding bytecode handlers have to compete with each other to stay in 
the cache. Thus, we induced that the order of executed bytecode instructions is the 
key factor impacts cache misses. 

Consider an extreme case: In a system with three cache blocks, two cache blocks 
always hold memory pages containing BytecodeFetching and LookupTable due to the 
stated reason. Therefore, there is only one cache block available for swapping pages 
containing bytecode handlers. If all the bytecode handlers were located in distinct 
memory pages, processing a bytecode instruction would cause a cache miss. This is 
because the next-to-execute bytecode handler is always located in an uncached 
memory page. In other words, the sample sequence causes at least eight cache misses. 
Nevertheless, if both the handlers of A and B are grouped to the same page, cache 
misses will decline to 5 times, and the page access trace becomes: 

fault-A-B-A-B-fault-C-fault-D-fault-E-fault-C 
If we extend the group (A, B) to include the handler of C, the cache miss count 

would even drop to four times, and the page access trace looks like the following one: 
fault-A-B-A-B-C-fault-D-fault-E-fault-C 

Therefore, the core issue of this study is to find an efficient code layout method 
partitioning all bytecode instructions into disjoined sets based on their execution 
relevance. Each NAND flash page contains one set of bytecode handlers. We propose 
partitioning the ICFG reaches this goal. 

Back to Figure 8, the directed edges represent the temporal order of the instruction 
sequence. The weight of an edge is the transition count for transitions from one 
bytecode instruction to the next. If we remove the edge (B, C), the ICFG is divided 
into two disjoined sets. That is, the bytecode handlers of A and B are placed in one 
page, and the bytecode handlers of C, D, and E are placed in the other. The page 
access trace becomes: 

fault-A-B-A-B-fault-C-D-E-C 
This placement causes only two cache misses, which is 75% lower than the worst 

case! The next step is to transform the ICFG diagram to an undirected graph by 
merging reversed edges connecting same vertices, and the weight of the undirected 
edge is the sum of weights of the two directed edges. The consequence is actually a 
variation of the classical MIN k-CUT problem. Formally speaking, we can model a 
given graph G(V, E) as: 

 Vi – represents the i-th bytecode instruction. 
 Ei,j – the edge connecting i-th and j-th bytecode instruction. 
 Fi,j – number of times that two bytecode instructions i and j executed after each 

other. It is the weight of edge Ei,j. 
 K – number of expected partitions. 
 Wx,y – the inter-set weight. ∀ x ≠ y, Wx,y= ΣFi,j where Vi ∈ Px and Vj ∈ Py. 

The goal is to model the problem as the following definition: 
Definition 1. The MIN k-CUT problem is to divide G into K disjoined partitions {P1, 
P2,…,Pk} such that ΣWi,j is minimized. 



4.3 The Mathematical Model 

Yet there is an additional constraint in our model. It is impractical to gather bytecode 
instructions to a partition regardless of the sum of the program size of consisted 
bytecode handlers. The size of each bytecode handler is distinct, and the code size of 
a partition cannot exceed the size of a memory page (e.g. NAND flash page). Our aim 
is to distribute bytecode handlers into several disjoined partitions {P1, P2,…,Pk}. We 
define the following notations: 

 Si – the code size of bytecode handler Vi. 
 N – the size of a memory page. 
 M(Pk ) – the size of partition Pk . It is ΣSm for all Vm∈ Pk . 
 H(Pk ) – the value of partition Pk . It is ΣFi,j for all Vi , Vj ∈ Pk . 

Our goal is to construct partitions that satisfy the following constraints. 
Definition 2. The problem is to divide G into K disjoined partitions {P1, P2,…,Pk}. 
For each Pk that M(Pk) ≤ N such that Wi,j is minimized, and maximize ΣH(Pi ) for all 
Pi ∈ {P1, P2,…,Pk}. 

This rectified model is exactly an application of the graph partition problem, i.e., 
the size of each partition must satisfy the constraint (size of a memory page), and the 
sum of inter-partition path weights is minimal. The graph partition problem is 
NP-complete [16]. However, the purpose of this paper was neither to create a new 
graph partition algorithm nor to discuss difference between existing algorithms. The 
experimental implementation just adopted the following algorithm to demonstrate our 
approach works. Other implementations based on this approach may choose another 
graph partition algorithm that satisfies specific requirements. 
Partition (G) 

1. Find the edge with maximal weight Fi,j among graph G, while the Si + Sj ≤ N. 
If there is no such an edge, go to step 4. 

2. Call Merge (Vi , Vj ) to combine vertices Vi and Vj. 
3. Remove both Vi and Vj from G, go to step 1. 
4. Find a pair of vertices Vi and Vj in G such that Si + Sj ≤ N. If there is not a pair 

satisfied the criteria, go to step 7. 
5. Call Merge (Vi , Vj ) to combine vertices Vi and Vj. 
6. Remove both Vi and Vj out of G, go to step 4. 
7. End. 

The procedure of merging both vertices Vi and Vj is: 
Merge (Vi , Vj ) 

1. Add a new vertex Vk to G. 
2. Pickup an edge E connects Vt with either Vi or Vj . If there is no such an edge, 

go to step 6. 
3. If there is already an edge F connects Vt to Vk. 
4.  Then, add the weight of E to F, and discard E. 
5.  Else, replace one end of E which is either Vi or Vj with Vk. 
6. End. 

Finally, each vertex in G is a collection of several bytecode handlers. The 
refinement process is to collect bytecode handlers belonging to the same vertex and 
place them into one memory page. 



5 The Process of Rewriting the Virtual Machine 

Our approach emphasizes that the arrangements of bytecode handlers affects cache 
miss rate. In other words, it implies that programmers should be able to speed up their 
programs by properly changing the order of the “case” sub-clauses in the source files. 
Therefore, this study tries to optimize the virtual machine in two distinct ways. The 
first approach revises the order of the “case” sub-clauses in the sources of the virtual 
machine. If our theory were correct, this tentative approach should show that the 
modified virtual machine performs better in most test cases. The second version 
precisely reorganizes the layout of assembly code blocks of bytecode handlers, and 
this approach should be able to generate larger improvements than the first version. 

5.1 Source-Level Rearrangement 

The concept of the refining process is to arrange the order of these “case” statements 
in the source file (execute.c). The consequence is that after translating the rearranged 
source files, the compiler will place bytecode handlers in machine code form in 
meditated order. The following steps are the outline of the refining procedures. 
A. Profiling. Run the Java benchmark program on the unmodified KVM. A custom 
profiler traces the bytecode instruction sequence, and it generates the statistics of 
inter-bytecode instruction counts. Although we can collect some patterns of 
instruction combinations by investigating the Java compiler, using a dynamic 
approach can capture further application-specific patterns. 
B. Measuring the size of each bytecode handler. The refining program compiles the 
KVM source files and measures the code size of each bytecode handler (i.e., the size 
of each ‘case’ sub-clause) by parsing intermediate files generated by the compiler. 
C. Partitioning the ICFG. The previous steps collect all necessary information for 
constructing the ICFG. Then, the refining program partitions the ICFG by using a 
graph partition algorithm. From that result, the refining program knows the way to 
group bytecode handlers together. For example, a partition result groups (A, B) to a 
bundle and (C, D, E) to another as shown in Figure 8. 
D. Rewriting the source file. According to the computed results, the refining 
program rewrites the source file by arranging the order of all “case” sub-clauses 
within the interpreter loop. Figure 9 shows the order of all “case” sub-clauses in the 
previous example. 

 
switch ( opcode ) { 

case B:  …; 
case A:   …; 
case E:  …; 
case D:  …; 
case C:  …; 

} 

Fig. 9. The output of rearranged case statements 



5.2 Assembly-Level Rearrangement 

The robust implementation of the refinement process consists of two steps. The 
refinement process acts as a post processor of the compiler. It parses intermediate 
files generated by the compiler, rearranges program blocks, and generates optimized 
assembly codes. Our implementation is inevitably compiler-dependent and 
CPU-dependent. Current implementation tightly is integrated with gcc for ARM, but 
the approach is easy to apply to other platforms. Figure 10 illustrates the outline of the 
processing flow, entities, and relations between each entity. The following paragraphs 
explain the functions of each step. 
A. Collecting dynamic bytecode instruction trace. The first step is to collect 
statistics from real Java applications or benchmarks, because the following steps will 
need these data for partitioning bytecode handlers. The modified KVM dumps the 
bytecode instruction trace while running Java applications. A special program called 
TRACER analyzes the trace dump to find the transition counts for all instruction 
pairs. 

 

Fig. 10. Entities in the refinement process 

B. Rearranging the KVM interpreter. This is the core step and is realized by a 
program called REFINER. It acts as a post processor of gcc. Its duty is to parse 
bytecode handlers expressed in the assembly code and organize them into partitions. 
Each partition fits into one NAND flash page. The program consists of several sub 
tasks described as follows. 
(i) Parsing layout information of the original KVM. The very first thing is to 
compile the original KVM. REFINER parses the intermediate files generated by gcc. 
According to structure of the interpreter expressed in assembly code introduced in 



§3.2, REFINER analyzes the jump table in the LookupTable trunk to find out the 
address and size of each bytecode handler. 
(ii) Using the graph partition algorithm to group bytecode handlers into 
disjoined partitions. At this stage, REFINER constructs the ICFG with two key 
parameters: (1) the transition counts of bytecode instructions collected by TRACER; 
(2) the machine code layout information collected in the step A. It uses the 
approximate algorithm described in §4.3 to divide the undirected ICFG into disjoined 
partitions. 
(iii) Rewriting the assembly code. REFINER parses and extracts assembly codes of 
all bytecode handlers. Then, it creates a new assembly file and dumps all bytecode 
handlers partition by partition according to the result of (ii). 
(iv) Propagating symbol tables to each partition. As described in §3.2, there are 
several symbol tables distributed in the BytecodeDispatch trunk. For most RISC 
processors like ARM and MIPS, an instruction is unable to carry arbitrary constants 
as operands because of limited instruction word length. The solution is to gather used 
constants into a symbol table and place this table near the instructions that will access 
these constants. Hence, the compiler generates instructions with relative addressing 
operands to load constants from the nearby symbol tables. Take ARM for example, its 
application binary interface (ABI) defines two instructions called LDR and ADR for 
loading a constant from a symbol table to a register [17]. The ABI restricts the 
maximal distance between a LDR/ADR instruction and the referred symbol table to 
4K bytes. 

Besides, it would cause a cache miss if a machine instruction in page X loads a 
constant si from symbol table SY located in page Y. Our solution is to create a local 
symbol table SX in page X and copy the value si to the new table. Therefore, the 
relative distance between si and the instruction never exceeds 4KB neither causes  
cache misses when the CPU tries to load si.  
(v) Dumping contents in partitions to NAND flash pages. The aim is to map 
bytecode handlers to NAND flash pages. Its reassembled bytecode handlers belong to 
the same partition in one NAND flash page. After that, REFINER refreshes the 
address and size information of all bytecode handlers. The updated information helps 
REFINER to add padding to each partition and enforce the starting address of each 
partition to align to the boundary of a NAND flash page. 

6 Evaluation 

In this section, we start from a brief introduction of the environment and conditions 
used in the experiments. The first part of the experimental results is the outcome of 
source-level rearranged virtual machine. Those positive results prove our theory 
works. The next part is the experiment of assembly-level rearranged virtual machine. 
It further proves our refinement approach is able to produce better results than the 
original version. 



6.1 Evaluation Environment 

Figure 11 shows the block diagram of our experimental setup. In order to mimic real 
embedded applications, we have implanted Java ME KVM into uClinux for ARM7 in 
the experiment. One of the reasons to use this platform is that uClinux supports FLAT 
executable file format which is perfect for realizing XIP. We ran KVM/uClinux on a 
customized gdb. This customized gdb dumped memory access traces and performance 
statistics to files. The experimental setup assumed there was a specialized hardware 
unit acting as the NAND flash memory controller, which loads program codes from 
NAND flash pages to the cache. It also assumed all flash access operations worked 
transparently without the help from the operating system. In other words, modifying 
the OS kernel for the experiment is unnecessary. This experiment used “Embedded 
Caffeine Mark 3.0” [15] as the benchmark. 

Embedded 
Caffeine Mark J2ME API

K Virtual Machine (KVM) 1.1
uClinux Kernel

GDB 5.0/ARMulator
Windows/Cygwin

ARM7 / FLASH

ARM7 / ROM

Java / RAM

Intel X86
 

Title Version 
arm-elf-binutil 2.15 
arm-elf-gcc 3.4.3 
uClibc 0.9.18 
J2ME (KVM) CLDC 1.1 
elf2flt 20040326 

Fig. 11. Hierarchy of simulation environment 

There are several kinds of NAND flash commodities in the market: 512-bytes, 
2048-bytes, and 4096-bytes per page. In this experiment, we model the cache 
simulator after the following conditions: 
1. There were four NAND flash page size options: 512, 1024, 2048 and 4096. 
2. The page replacement policy was full associative, and it is a FIFO cache. 
3. The number of cache memory blocks varied from 2, 4 … to 32. 

6.2 Results of Source-Level Rearrangement 

First, we rearranged the “case” sub-clauses in the source codes using the introduced 
method. Table 1 lists the raw statistics of cache miss rates, and Figure 12 plots the 
charts of normalized cache miss rates from the optimized KVM. 

Each of the four columns is the result from a special kind of KVM. The “original” 
column refers to statistics from the original KVM, in which bytecode handlers were 
arranged in machine code order. The second column “optimized” is the result from 
the KVM refined with our approach. The improvement ratio is a comparison between 
the original and the optimized KVM. The experiment assumed the maximal cache 
size is 64K bytes. For each NAND flash page size, the number of cache blocks starts 
from 4 to (64K / NAND flash page size). 

The result showed that the optimized KVM outperforms than the other in most 
cases. There is 95% improvement in the best case. Looking at the charts, the curves of 
normalized cache miss rates (i.e., optimized_miss_rate / original_miss_rate ) tend to 



be concave. It means the improvement for the case of eight pages is greater than the 
one of four pages. It benefits from the smaller “locality” of the optimized KVM. 
Therefore, the cache could hold more localities, and this is helpful in reducing cache 
misses. After touching the bottom, the cache is large enough to hold most of the KVM 
program code. As the cache size grows, the numbers of cache misses of 
configurations converge. 

However, the miss rate at 1024 bytes * 32 blocks is an exceptional case. This is 
because our approach rearranges the order of bytecode handlers at source level, and it 
cannot enforce the predicted and the real start address and code size of a bytecode 
handler to be the same. Therefore, it causes the cache miss rates to increase. 

 

Fig. 12. The charts of normalized cache-miss rates from the source-level refined virtual 
machine. The x-axis is the size of the cache memory ( number_of_blocks * block_size ). 



Table 1. Normalized cache miss rates generated from source-level modified virtual machines. 

512 Bytes/Blk Miss Count 1024 Bytes/Blk Miss Count 
# Blks Improve. Original Optimized # Blks Improve. Original Optimized 

4 9.39% 25,242,319 22,871,780 4 42.58% 15,988,106 9,180,472 
8 42.25% 11,269,029 6,508,217 8 46.58% 5,086,130 2,717,027 
16 17.94% 2,472,373 2,028,834 16 73.10% 486,765 130,921 
32 47.84% 145,005 75,632 32 -8.63% 23,395 25,413 
64 3.75% 11,933 11,485 64 9.35% 3,230 2,928 
128 1.91% 2,507 2,459   
Total Access 567,393,732 567,393,732 Total Access 567,393,732 567,393,732 

        

2048 Bytes/Blk Miss Count 4096 Bytes/Blk Miss Count 
# Blks Improve. Original Optimized # Blks Improve. Original Optimized 

4 78.05% 10,813,688 2,373,841 4 59.33% 4,899,778 1,992,734 
8 95.51% 2,341,042 105,157 8 82.82% 422,512 72,580 
16 63.08% 68,756 25,388 16 22.37% 8,995 6,983 
32 4.98% 4,294 4,080   
Total Access 567,393,732 567,393,732 Total Access 567,393,732 567,393,732 

6.3 Results of Assembly-Level Rearrangement  

 
Fig. 13. The chart of normalized cache-miss rates from assembly-level rearranged virtual 
machines. The x-axis is the size of the cache memory ( number_of_blocks * block_size ). 

The last experiment proved the theory should work but with a few exceptions. The 
assembly-level rearrangement method is a remedy. We tuned four versions of KVM; 
each of them suited to one kind of page size. All the experimental measurements are 



compared to those from the original KVM. Table 2 is the highlight of experimental 
results and shows the extent of improvement of the optimized versions as well. 

In the test case with 4KB/512-bytes per page, the cache miss rate of the tuned 
KVM is less than 1%, in contrast to the cache miss rate of the original KVM that is 
greater than 3%. In the best case, the cache miss rate of the tuned KVM is 96% lower 
than the value from the original one. Besides, in the case with only two cache blocks 
(1KB/512-bytes per page), the improvement is about 50%. It means tuned KVMs 
outperform on devices with limited cache blocks. 

Figure 13 is the chart of the normalized miss rates. The envelope lines of these 
charts are tending to be concave. In the conditions that the amounts of cache blocks is 
small, the cache miss rates of the tuned KVM decline faster than the rates of the 
original version, and the curve goes downward. Once there is enough cache blocks to 
hold the entire locality of the original KVM, the tuned version gradually loses its 
advantages, and the curve turns upward. 

In both experiments, the normalized miss rate curves are tending to be concave. 
We conclude this is a characteristic of our approach. 

Table 2. Experimental cache miss counts. Data of 21 to 32 blocks are omitted due to being less 
relevant. 

512 Bytes/Blk Miss Count 1024 Bytes/Blk Miss Count 
# Blks Improve. Original Optimized # Blks Improve. Original Optimized 

2 48.94% 52106472 25275914 2 38.64% 29760972 17350643 
4 50.49% 34747976 16345163 4 69.46% 21197760 6150007 
6 71.19% 26488191 7249424 6 78.15% 13547700 2812730 
8 80.42% 17709770 3294736 8 88.11% 8969062 1013010 
10 78.02% 12263183 2560674 10 96.72% 6354864 197996 
12 89.61% 9993229 986256 12 96.02% 3924402 148376 
14 95.19% 6151760 280894 14 92.97% 1735690 115991 
16 95.63% 4934205 204975 16 90.64% 1169657 104048 
18 94.37% 3300462 176634 18 75.11% 380285 89934 
20 90.48% 1734177 156914 20 58.30% 122884 48679 

Total Access 548980637 521571173 Total Access 548980637 521571046 
        

2048 Bytes/Blk Miss Count 4096 Bytes/Blk Miss Count 
# Blks Improve. Original Optimized # Blks Improve. Original Optimized 

2 40.74% 25616314 14421794 2 62.32% 14480682 5183539 
4 78.17% 14733164 3055373 4 86.32% 7529472 978537 
6 80.10% 8284595 1566059 6 93.27% 2893864 185037 
8 93.80% 4771986 281109 8 74.91% 359828 85762 
10 95.66% 2297323 94619 10 33.39% 88641 56096 
12 81.33% 458815 81395 12 -89.68% 25067 45173 
14 54.22% 96955 42166 14 0.08% 16547 15708 
16 52.03% 62322 28403 16 -33.81% 7979 10144 
18 24.00% 26778 19336 18 -17.08% 5484 6100 
20 10.08% 18390 15710 20 -24.69% 3536 4189 

Total Access 548980637 521570848 Total Access 548980637 521570757 
 



7 Conclusion 

In this study, we present a refinement process to distribute bytecode handlers into 
logical partitions that can map to pages of NAND flash memory. The technique we 
used to profile the virtual machine analyzes not only the CFG of the interpreter but 
also the patterns of bytecode instruction streams, since we observe the input sequence 
drives the program flow. From this point of view, we conclude it is a kind of graph 
partition problem. 

We use two different approaches in the experiments. By modifying either source 
codes or assembly codes, the refined KVMs effectively cause lower cache misses than 
the unmodified version. The success in source code modification even implies that 
our technique can help programmers to write efficient programs without the 
knowledge of modifying compiler-backend. Certainly, the assembly-level (or 
machine-code-level) rewriting tool is definitely the best solution, which provides the 
ultimate performance.  

The most important of all, the refined virtual machine performs well on the device 
with limited cache memory blocks. Consider the case of 8KB/512-bytes per page, the 
cache miss rate of the tuned KVM is 0.6%. Compare to the 3.2% of the original 
KVM, this is a significant improvement. Undoubtedly, if the cache size is large, the 
miss rate will not be an issue. However, our approach can ensure that the KVM 
generates lower cache misses at smaller cache sizes. This technique also enables SOC 
to integrate a small block of embedded cache RAM and still execute the KVM 
efficiently. 

Comparing our improvement on the KVM interpreter with JIT (dynamic 
compilation) is an interesting issue. The outcome of JIT is usually good so that it 
seems the effort on improving interpreter is in vain. However, a JIT VM usually 
consumes huge amount of memory that a small-scaled embedded device cannot 
afford, it is still worthwhile to refine the interpreter VM. The experimental results in 
[18] by Anderson Faustino da Silva et al. suggest that an interpreter VM is between 3 
to 11 times slower than a JIT VM. However, by taking timing parameters of real 
NAND flash memory and DRAM into our formula, the performance boost by our 
improvement helps an interpreter VM runs as faster as a JIT VM. 

Actually, our approach is not exclusively for interpreters. Our investigation shows 
our approach is applicable to the part of translating bytecodes to native codes in a JIT 
VM. We left this issue for future development. 

Furthermore, our systematic method can apply to any program with the following 
two properties. First, its program flow branches to a large number of sibling 
sub-blocks, i.e., a big “switch… case… case…” compound statement in the 
interpreter. Second, the input data patterns drive the execution flows of those sibling 
sub-blocks, so that we can plot an ICFG to capture the dynamic trace. In practice, our 
approach can apply to other virtual machines, like Microsoft .NET Common 
Language Runtime, or an XML-driven processing program besides KVM. 
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