Skip to main content

Bilateral Teleoperation for Linear Force Sensorless 3D Robots

  • Conference paper
Book cover Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 89))

Abstract

It is well known that for bilateral teleoperation, force feedback information is needed. In this paper, we propose a control approach for bilateral teleoperation with uncertainties in the model of the slave robot and which does not use force sensors for haptic feedback. The controller design is based on a cyclic switching algorithm. In the first phase of the cyclic algorithm, we estimate the environmental force acting on the slave robot and in the second phase a tracking controller ensures that the position of the slave robot is tracking the position of the master robot. A stability analysis of the overall closed-loop system is presented and the approach is illustrated by means of an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lawrence, D.: Stability and transparency in bilateral teleoperation. IEEE Transactions on Robotics and Automation 9, 624–637 (1993)

    Article  Google Scholar 

  2. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: A historical survey. Automatica 42, 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yokokohji, Y., Yoshikawa, T.: Bilateral control of master-slave manipulators for ideal kinematics coupling formulation and experiment. IEEE Transactions on Robotics and Automation 10, 605–620 (1994)

    Article  Google Scholar 

  4. White, M.T., Tomizuka, M., Smith, C.: Improved track following in magnetic disk drives using a disturbance observer. IEEE Transactions on Mechatronics 5, 3–11 (1998)

    Article  Google Scholar 

  5. Fujiyama, K., Katayama, R., Hamaguchi, T., Kawakami, K.: Digital controller design for recordable optical disk player using disturbance observer. In: Proceedings of the International Workshop on Advanced Motion Control, pp. 141–146 (2000)

    Google Scholar 

  6. Iwasaki, M., Shibata, T., Matsui, N.: Disturbance-observer-based nonlinear friction compensation in table drive system. IEEE Transactions on Mechatronics 4, 3–8 (1999)

    Article  Google Scholar 

  7. Komada, S., Machii, N., Hori, T.: Control of redundant manipulators considering order of disturbance observer. IEEE Transactions on Industrial Electronics 47, 413–420 (2000)

    Article  Google Scholar 

  8. Kempf, C.J., Kobayashi, S.: Disturbance observer and feedforward design for high-speed direct-drive position table. IEEE Transactions on Control System Technology 7, 513–526 (1999)

    Article  Google Scholar 

  9. Eom, K.S., Suh, I.H., Chung, W.K.: Disturbance observer based path tracking of robot manipulator considering torque saturation. Mechatronics 11, 325–343 (2000)

    Article  Google Scholar 

  10. Güvenc, B.A., Güvenc, L.: Robustness of disturbance observers in the presence of structured real parametric uncertainty. In: Proceedings of the American Control Conference, pp. 4222–4227 (2001)

    Google Scholar 

  11. Ryoo, J.R., Doh, T.Y., Chung, M.J.: Robust disturbance observer for the track-following control system of an optical disk drive. Control Engineering Practice 12, 577–585 (2004)

    Article  Google Scholar 

  12. Chen, X., Komada, S., Fukuda, T.: Design of a nonlinear disturbance observer. IEEE Transactions on Industrial Electronics 47, 429–436 (2000)

    Article  Google Scholar 

  13. Liu, C.S., Peng, H.: Disturbance observer based tracking control. Journal of Dynamic Systems, Measurement and Control 122, 332–335 (2000)

    Article  Google Scholar 

  14. Eom, K.S., Suh, I.H., Chung, W.K., Oh, S.R.: Disturbance observer based force control of robot manipulator without force sensor. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3012–3017 (1998)

    Google Scholar 

  15. Ohishi, K., Miyazaki, M., Fujita, M., Ogino, Y.: H ∞  observer based force control without force sensor. In: Proceedings of International Conference on Industrial Electronics, Control and Instrumentation, pp. 1049–1054 (1991)

    Google Scholar 

  16. Ohishi, K., Miyazaki, M., Fujita, M., Ogino, Y.: Force control without force sensor based on mixed sensitivity H  ∞  design method. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1356–1361 (1992)

    Google Scholar 

  17. Alcocer, A., Robertsson, A., Valera, A., Johansson, R.: Force estimation and control in robot manipulators. In: Proceedings of the 7th Symposium on Robot Control (SYROCO 2003), pp. 31–36 (2003)

    Google Scholar 

  18. Kröger, T., Kubus, D., Wahl, F.M.: Force and acceleration sensor fusion for compliant manipulation control in 6 degrees of freedom. Advanced Robotics 21, 1603–1616 (2007)

    Article  Google Scholar 

  19. Garcia, J.G., Robertsson, A., Ortega, J.G., Johansson, R.: Sensor fusion for compliant robot motion control. IEEE Transations on Robotics 24, 430–441 (2008)

    Article  Google Scholar 

  20. Lichiardopol, S., van de Wouw, N., Nijmeijer, H.: Boosting human force: A robotic enhancement of a human operator’s force. In: Proceedings of International Conference on Decision and Control, pp. 4576–4581 (2008)

    Google Scholar 

  21. Jiang, Z.P., Mareels, I.M.Y., Wang, Y.: A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica 32, 1211–1215 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nešić, D., Teel, A.R., Sontag, E.D.: Formulas relating \(\mathcal{KL}\)-stability estimates of discrete-time and sampled-data nonlinear systems. Systems & Control Letters 38, 49–60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gielen, R., Olaru, S., Lazar, M., Heemels, W.P.M.H., van de Wouw, N., Niculescu, S.I.: On polytopic approximations as a modeling framework for systems with time-varying delays. Automatica (2010) (accepted)

    Google Scholar 

  24. Jiang, Z.P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica 37, 857–869 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lichiardopol, S., van de Wouw, N., Nijmeijer, H. (2011). Bilateral Teleoperation for Linear Force Sensorless 3D Robots. In: Cetto, J.A., Ferrier, JL., Filipe, J. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19539-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19539-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19538-9

  • Online ISBN: 978-3-642-19539-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics