Skip to main content

Development of a Low-Pressure Fluidic Servo-Valve for Wearable Haptic Interfaces and Lightweight Robotic Systems

  • Conference paper

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 89))

Abstract

This document presents a low-pressure servo-valve specifically designed for haptic interfaces and lightweight robotic applications. The device is able to work with hydraulic and pneumatic fluidic sources, operating within a pressure range of (0 − 50 ·105 Pa). All sensors and electronics were integrated inside the body of the valve, reducing the need for external circuits. Positioning repeatability as well as the capability to fine modulate the hydraulic flow were measured and verified. Furthermore, the static and dynamic behavior of the valve were evaluated for different working conditions, and a non-linear model identified using a recursive Hammerstein-Wiener parameter adaptation algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayward, V.: Experimental Robotics III. In: Design of a hydraulic robot shoulder based on a combinatorial mechanism, vol. 200. Springer, Heidelberg (1994)

    Google Scholar 

  2. Jacobsen, S.C., Smith, F.M., Backman, D.K., Iversen, E.K.: High performance, high dexterity, force reflective teleoperator ii. In: Proc. ANS Topical Meeting on Robotics and Remote Systems (1991)

    Google Scholar 

  3. Yoshinada, H., Yamazaki, T., Suwa, T., Naruse, T.: Design and control of a manipulator system driven by seawater hydraulic actuator. In: Second Int. Symposium on Measurement and Control in Robotics (ISMCR), pp. 359–364 (1992)

    Google Scholar 

  4. Pons, J.L. (ed.): Wereable Robots: Biomechatronixs Exoskeletons. Wiley, Chichester (2008)

    Google Scholar 

  5. Folgheraiter, M., Bongardt, B., Albiez, J., Kirchner, F.: A bio-inspired haptic interface for tele-robotics applications. In: IEEE International Conference on Robotics and Biomemetics (ROBIO 2008), Thailand, Bangkok (2008)

    Google Scholar 

  6. Folgheraiter, M., Bongardt, B., Albiez, J., Kirchner, F.: Design of a bio-inspired wearable exoskeleton for applications in robotics. In: International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2009), Portugal, Porto (2009)

    Google Scholar 

  7. Folgheraiter, M., de Gea, J., Bongardt, B., Albiez, J., Kirchner, F.: Bio-inspired control of an arm exoskeleton joint with active-compliant actuation system. Applied Bionics and Biomechanics 6, 193–204 (2009)

    Article  Google Scholar 

  8. Folgheraiter, M., Schmidt, B.B.S., Fernandéz, d.G., Albiez, Kirchner, F.: Design of an arm exoskeleton using an hybrid motion-capture and model-based technique. In: IEEE International Conference on Robotics and Automation ICRA 2009, Kobe, Japan, May 12–17 (2009)

    Google Scholar 

  9. Raibert, M., Blankespoor, K., Nelso, G., Playter, R.: The BigDog Team: Bigdog, The rough-terrain quaduped robot. Technical report, Waltham, MA 02451 USA (2008)

    Google Scholar 

  10. Kazerooni, H., Steger, R., Huang, L.: Hybrid control of the berkeley lower extremity exoskeleton (bleex). The International Journal of Robotics Research 25, 561–573 (2006)

    Article  Google Scholar 

  11. Kahn, M.: Optimal Control of a Hydraulic Arm. PhD thesis, Stanford University M.E Dept (1969)

    Google Scholar 

  12. Moog Inc. Sub miniature servovalve e024. Technical report (2009), http://www.moog.com/

  13. Landau, I.D., Zito, G.: Digital Control Systems. Springer, Heidelberg (2006)

    Google Scholar 

  14. Guo, F.: A New Identification Method for Wiener and Hammerstein System. PhD thesis, Karlsruhe University (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Folgheraiter, M. et al. (2011). Development of a Low-Pressure Fluidic Servo-Valve for Wearable Haptic Interfaces and Lightweight Robotic Systems. In: Cetto, J.A., Ferrier, JL., Filipe, J. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19539-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19539-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19538-9

  • Online ISBN: 978-3-642-19539-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics