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Abstract. Solving linear systems is an important problem for scientific com-
puting. Exploiting parallelism is essential for solving complex systems, and this
traditionally involves writing parallel algorithms on top of a library such as MPI.
The SPIKE family of algorithms is one well-known example of a parallel solver
for linear systems.
The Hierarchically Tiled Array data type extends traditional data-parallel ar-
ray operations with explicit tiling and allows programmers to directly manip-
ulate tiles. The tiles of the HTA data type map naturally to the block nature
of many numeric computations, including the SPIKE family of algorithms. The
higher level of abstraction of the HTA enables the same program to be portable
across different platforms. Current implementations target both shared-memory
and distributed-memory models.
In this paper we present a proof-of-concept for portable linear solvers. We imple-
ment two algorithms from the SPIKE family using the HTA library. We show that
our implementations of SPIKE exploit the abstractions provided by the HTA to
produce a compact, clean code that can run on both shared-memory and distributed-
memory models without modification. We discuss how we map the algorithms to
HTA programs as well as examine their performance. We compare the perfor-
mance of our HTA codes to comparable codes written in MPI as well as current
state-of-the-art linear algebra routines.

1 Introduction

Computer simulation has become an important tool for scientists and engineers to pre-
dict weather, forecast prices for financial markets, or test vehicle safety. Increasing the
performance of these simulations is important to improve the accuracy of the prediction
or to increase the number of tests that can be performed. One way to achieve this per-
formance improvement is the parallelization of the kernels that lie at the core of many
of these simulations and that solve systems of equations or perform signal transfor-
mations. Today many different types of computing platforms can be used to run these
parallel codes, such as the new ubiquitous multicore, large clusters of machines where
each node is typically a multicore, and the accelerators or clusters of accelerators like
the Cell Processor or GPUs. However, the many available options for parallel execution



have increased the difficulty of the programmer’s task as they usually must rewrite their
computations with a different programming model for each different type of computing
platform.

Programmer productivity can be improved with a programming model that produces
one portable code that can target several different types of parallel platforms. We believe
portable codes can be obtained by using high level abstractions that hide the details of
the underlying architecture from the programmers and allow them to focus on the cor-
rect implementation of their algorithms. However, one does not want to raise the level
of abstraction so high that programmers sacrifice control over performance. The Hier-
archically Tiled Array (HTA) is a data type that uses abstractions to allow programmers
to write portable numerical computations. HTA uses tiling as a high-level abstraction to
facilitate the specification of the algorithms, while allowing the programmer to control
the performance of their programs.

In this paper we show a proof-of-concept for high-performance computations that
are portable across both shared-memory and message-passing. We present several ver-
sions of SPIKE, a parallel solver for linear banded systems, implemented using the
HTA data type. We show that our implementations exploit the abstractions provided
by the HTA to produce compact, clean code. Our experimental results show that the
same code provides competitive performance when running on message-passing and
shared-memory platforms.

The rest of this paper is organized as follows. Section 2 describes the SPIKE family
of algorithms for solving banded systems of equations. Section 3 describes the Hierar-
chically Tiled Array data type used in our implementations. Section 4 describes how we
actually implement several different SPIKE algorithms using HTAs. Section 5 presents
the performance of our SPIKE implementations using both the shared-memory and
distributed-memory runtimes and compares them to other libraries. Section 6 discusses
related work and Section 7 summarizes our work.

2 SPIKE

Linear solvers are an important class of numerical computation. Many important prob-
lems are sparse. It is well known that the desired data structure to represent sparse
systems influences the performance of solvers for this type of linear system. These
computations do not use dense arrays but rather only store the elements of a matrix that
may be non-zero. Such storage mechanisms reduce not only the memory footprint but
can also reduce the amount of computation needed by only performing computation on
relevant elements. The SPIKE family of algorithms [15] is one such parallel solver for
banded linear systems of equations.

Consider a linear system of the form Ax = f , where A is a banded matrix of order n
with bandwidth much less than n. One can partition the system into p diagonal blocks.
Given p = 4, the partitioned system is of the form,
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where each Ai is a banded matrix of order n/p. The matrices Bi and Ci are of order
m where the bandwidth of the original matrix A is 2m+1. Only the A, B, and C blocks
need to be stored for this type of sparse matrix.

Let the block diagonal matrix D = diag(A1, ..., A4). If one were to left-multiply
each side of the above by D−1, one would obtain a system of the form:

S =

I

I

I

I
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V3
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W4
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g1

g2

g3

g4

However, instead of computing D−1, one can compute, as seen below, the blocks
of V and W , or, the spikes by solving a system of equations. The spikes have the same
width, m, as the B and C tiles in the original system.

Ai

[
Vi,Wi

]
=





0 Ci

. 0

. .
0 .
Bi 0




(1)

Solving the original system Ax = f now consists of three steps.

1. Solve (1)
2. Solve Dg = f
3. Solve Sx = g

The solution of the system Dg = f yields the modified RHS for the system in the
third step. Notice that each blocks of D are independent and thus can be computed in
parallel. Solving the third system can be further reduced by solving the system Ŝx̂ = ĝ,
which consists of the m rows of S directly above and below the boundaries between the
I tiles. The spikes, f , and g can also be partitioned so that we have:
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The reduced system thus takes the following form:
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Finally, once the solution to the reduced system has been directly computed sequen-
tially, we will have the values of x(b)s and x(t)s. The rest of x can then be computed as
follows:






x′
1 = g′1 − V ′

1x
(t)
2 ,

x′
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j x
(t)
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jx
(b)
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x′
p = g′p −Wpx

(b)
p−1.

(3)

Thus the SPIKE algorithm can be broken down into the following steps:

1. Factorize the diagonal blocks of A.
2. Compute the spikes using the factorization obtained in the previous step and com-

pute the right hand side. Solve (1) and Dg = f .
3. Form and solve the reduced system.
4. Compute the rest of x.

2.1 SPIKE Variants

The original SPIKE algorithm explained above has many variants. These variants target
systems of equations with certain properties in order to reduce the amount of computa-
tion performed. They also increase the amount of parallelism available during different
stages of the algorithm. In this paper we focus on two variants that use a truncated
scheme to solve the reduced system. The truncated scheme is useful for systems that
are diagonally dominant. In diagonally dominant systems, the values in the spikes far
from the diagonal are likely to be very close to zero and therefore contribute little to
the solution. Consequently, the truncated scheme treats these values as zero and only
computes the m ×m portion of the spikes close to the diagonal, specifically, V (b) and
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W (t). This is accomplished by either using the LU or UL factorization computed for
the blocks of the diagonal.

The two variants we present are called TU and TA, and both implement the truncated
scheme. LU factorization of Ai is used to solve the bottom tips, V (b)

i , of the spikes
and the UL factorization of Ai is used to solve for the top tips, W (t)

i , of the spikes.
The difference between TU and TA lays in the decomposition of the work. In the TU
scheme, the original matrix is partitioned into as many blocks as there are processors.
Figure 1 shows this partitioning for the case with 4 processors. In this figure B̂i and Ĉi

are
[
0 . . . 0 Bi

]T and
[
Ci 0 . . . 0

]T as in equation 1.

A =
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A3

A4
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B2
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f =

f 1 P1 : LU A−1
1 B̂1 A−1

1 f1

f 2 P2 : LU,UL A−1
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−1
2 B̂2 A−1

2 f2

f 3 P3 : LU,UL A−1
3 Ĉ3, A

−1
3 B̂3 A−1

3 f2

f 4 P4 : UL A−1
4 Ĉ4 A−1

4 f4

Factorization Spikes RHS

Fig. 1: Spike TU Partitioning

The TA scheme arises from the fact that the factorization step dominates execution
time. TA is similar to TU with the exception that it partitions the matrix in a different
fashion. Instead of each processor computing both LU and UL for a block since some
blocks must compute two spikes, each processor now computes either LU or UL for a
block but not both in order to compute a single spike. Note that this scheme partitions
the matrix into fewer blocks than the TU scheme does, but results in better load balance
for the computation of the spikes. Figure 2 shows this partitioning for 4 processors using
B̂i and Ĉi which are extended as above.
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A1

A2
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B1
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C2
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P1 : LU A−1
1 B̂1 A−1

1 f1f 1
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2 Ĉ2
–

f 3
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3 Ĉ3 A−1
3 f3

Factorization Spikes RHS

Fig. 2: Spike TA Partitioning

5



Both versions of the algorithm compute the W (t), V (b), and g tips that are needed
for the truncated reduced system, shown in Figure 3. This system will be block diagonal
and has one less block than the original system. Thus when solving with p processors
TU will have p − 1 blocks in the reduced system while TA will have (p + 2)/2 − 1
blocks in the reduced system. Thus the TU version will have more parallelism than the
TA version in this stage of the computation. Unlike the original SPIKE algorithm, the
reduced system for truncated schemes can be solved in parallel via a direct scheme
where each block has the following form:

[
Im V (b)

j

W (t)
j+1 Im

][
x(b)
j

x(t)
j+1

]
=

[
g(b)j

g(t)j+1

]
(4)
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W
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2

Im

Im V
(b)
2
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(t)
3
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Im V
(b)
3

W
(t)
4

Im

g(b)1

g(t)2

g(b)2

g(t)3

g(b)3

g(t)4

Fig. 3: Data sources for TU reduced with 4 blocks

Finally the solution to the original system is recovered by solving:

Ajxj = fj −





0
...
0
Bj




x(t)
j+1 −





Cj

0
...
0




x(b)
j−1 (5)

This can be done in parallel with either the LU or UL factorization of Aj . Here
again the TU version has more parallelism the the TA version.
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3 Hierarchically Tiled Arrays

The Hierarchically Tiled Array [4, 9, 3], or HTA, data type extends earlier work on data
parallel array languages with explicit tiling. An HTA object is a tiled array whose el-
ements can be either scalars or tiles. HTAs can have several levels of tiling, allowing
them to adapt to the hierarchical nature of modern machines. Figure 4 illustrates two
examples of how HTAs can exploit hierarchical tiling. For example, tiles in the outer-
most level are distributed across the nodes in a cluster; then, the tile in each node can
be further partitioned among the processors of the multicore node.

Cluster Memory 
Hierarchy

Cluster 
Node

L2

Multicore L1

Cache Register

Fig. 4: Hierarchical Tiling

The HTA data type makes tiles first class objects that are explicitly referenced and
extends traditional Fortran 90 style array operations to function on tiles. Figure 5 illus-
trates the ways in which HTAs can be indexed. HTAs permit indexing of both tiles and
scalars. We use () to refer to tiles and [] to refer to elements. This way, A(0,0) refers to
the top left tile of HTA A and A(0,1) [0,1] refers to the element [0,1] of the top right
tile of HTA A. Also, HTAs support the triplet array notation in order to index multiple
scalars and/or tiles, as shown in Figure 5 when accessing the two bottom tiles of A by
using A(1, 0:1). Scalars can also be accessed in a flattened fashion that ignores the tiling
structure of the HTA, as shown in the example when accessing the element A[0,3]. This
flattened notation is useful for tasks such as initializing data.

! !

!

!"#$%&

!'#$#(

)*+,-.//,00

1+.22,3,4-
.//,00

!'#$5("#$5& 6789*4-
.//,00

!'5$-#:5(

;*<=+*>*,4-0732.?

Fig. 5: HTA Indexing

HTAs provide several data parallel operators to programmers. One example is element-
by-element operations such as adding or multiplying two arrays. HTAs also provide
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support for operations such as scans, reductions, matrix multiplication, and several
types of transpositions of both tiles and data. Communication of data between tiles
is usually expressed through array assignments, but can also be expressed with special
operations such as transpositions or reductions.

The HTA also provides a map operator that applies a programmer-specified function
to the corresponding tiles of a set of HTAS. On a parallel platform these functions may
be executed in parallel. This way, the A.hmap(func1()) will invoke func1() on
all the tiles of HTA A. If another HTA B is passed as an argument of hmap, then
func1() will execute on the corresponding tiles of both HTAs, A and B.

HTA Programs thus consist of a sequence of data parallel operators applied to HTAs
that are implicitly separated by a barrier. These programs appear sequential to the pro-
grammer as all parallelism is encapsulated inside the operators. Numbers and sizes of
tiles are chosen both to control the granularity of parallelism and to enhance locality.

The HTA data type has been implemented as libraries for both C++ and MATLAB.
The C++ library currently supports two platforms: distributed-memory built on top of
MPI and shared-memory built on top of Intel’s Threading Building Blocks. These mul-
tiple backends allows programmers to write one code using HTAs that can run on either
multicores or clusters.

4 Implementing SPIKE with HTAs

An implementation of the SPIKE family of algorithms is available in the Intel Adaptive
Spike-based Solver[1], or SpikePACK. It is implemented using MPI and Fortran. We
choose to implement several SPIKE algorithms using HTAs for two reasons. First, writ-
ing SPIKE using HTAs would allow programmers to write one portable code that can be
run on both shared-memory and distributed-memory target platforms. Second, the HTA
notation allows for an elegant, clean implementation of the algorithms. An HTA SPIKE
would more closely resemble the high-level mathematical expression of the algorithms
than Fortran+MPI. Communication takes the form of simple array assignments between
tiles.

We have implemented the TU and TA variants of SPIKE with HTAs. The tiles of
the HTAs map to the blocks of the banded linear system. The bands of the system are
stored inside the tiles using the banded storage format used by LAPACK. Since the code
makes extensive use of LAPACK routines such as DGBTRF and DGBTRS to factorize
and solve banded systems, we modified the HTA library to support column-major data
layout due to the Fortran origins of these routines. The HTA library is written in C++
and originally only supported row-major layout.

The blocks of the bands, spikes, and reduced system are all represented as HTA ob-
jects. Each of these collections of blocks can be viewed as an array of tiles. The storage
for the blocks of the band is overwritten to store the LU or UL factorizations of each
block. The storage for the B and C blocks is likewise overwritten to contain the tips of
the spikes. The number of partitions used by the algorithm for a given number of pro-
cessors directly determines the tiling of the HTA objects. The algorithm is represented
as a sequence of data parallel operations. The semantics state that each data parallel op-
eration is followed by an implicit barrier. This allows the programmer to reason about
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the algorithm sequentially as the parallelism is thus encapsulated inside of the data par-
allel operators. The data parallel operations often are represented as hmap operations.
This is the mechanism through which we apply LAPACK kernels in parallel across all
the tiles of an HTA. Our implementations also use the array operations provided by
the HTA library to construct the reduced system. When coupled with HTA’s first class
tile objects, array operations enable programmers to write simple, compact statements
that can communicate a range of data from one set of tiles to another. This contrasts
with a Fortran+MPI approach where it is difficult to separate the algorithm from the
implementation.

Porting the programs from one platform to another is accomplished by simply
changing the header file for the library. In order to target MPI, one includes htalib mpi.h.
In order to target TBB, one includes htalib shmem.h.

4.1 TU

Figure 6 presents the core of our implementation. We use a simplified notation to rep-
resent triplets. Recall that TU partitions the matrix into as many blocks as processors.
The HTAs LUA and ULA initially are identical and contain the diagonal blocks of the
system. The LU and UL factorizations of these blocks are performed in-place and in
parallel by the hmap operators used in lines 3-4. The off-diagonal blocks, B and C, that
will contain the spike tips are stored in the HTA BC. Each tile of this HTA contains
space for both the “left” (W (t)) and “right” (V (b)) spikes associated with each block.
The spike tips are computed in line 7 using the LU and UL factorizations computed
previously. The whole right-hand side (RHS) stored in g for the system is then updated
in line 10 using the LU factorization of the diagonal blocks.

The reduced system, shown in Figure 3, can be formed now that the spikes and
updated RHS have been computed. Lines 13-16 make use of HTA array assignments to
construct the reduced system by copying the spike tips into the appropriate sections of
each block of the reduced system. The HTAs REDUCED and BC are indexed using () and
[] operators and triplet notation. The first () is shorthand for selecting every tile of the
HTA REDUCED. For the HTA BC, we select different ranges of tiles for each statement.
The [] operator is used to index a range of elements inside of a tile. The RHS of the
reduced system is formed similarly in lines 19-20. Note that the array assignments used
to form the reduced system imply communication. Once the reduced system has been
formed, it may be solved in parallel as its blocks are independent. This is accomplished
by calls to the hmap operator on lines 23 and 25.

Having solved the reduced system, the RHS of the original system is updated in
lines 28-33. This is accomplished by array assignments and another call to hmap that
performs matrix-vector multiplications in parallel. Once the RHS has been updated with
the values computed from the reduced system, the rest of the solution is obtained in line
36.

Our implementation of the TU scheme slightly deviates from the SpikePACK im-
plantation of the algorithm in two ways. First, the first and last partitions need only
compute LU or UL, respectively. The inner partitions must compute both LU and UL
in order to compute the tips of the left and right spikes. The first and last partitions only
have either a right or a left spike and do not need to compute both. However, we chose
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to have the first and last partitions compute a fake spike in order to avoid special cases
when computing the spikes. We compute both LU and UL for all partitions where as
the SpikePACK only computes the LU for the first and the UL for the last as needed by
the algorithm. Secondly the SpikePACK implementation uses a nonuniform distribu-
tion with larger partitions for the first and last partitions to balance the load since they
are only computing one factorization. Since we compute two factorizations for every
partition, our implementation uses a uniform size distribution.

1 . . .
2 / / f a c t o r i z e b l o c k s o f A
3 LUA. hmap ( f a c t o r i z e l u a ( ) ) ;
4 ULA. hmap ( f a c t o r i z e u l a ( ) ) ;

6 / / c a l c u l a t e t h e s p i k e t i p s W( t ) and V ( b ) from Bs and Cs
7 BC . hmap ( s o l v e b c ( ) , LUA,ULA ) ;

9 / / up da t e r i g h t hand s i d e
10 g . hmap ( s o l v e l u a ( ) ,LUA ) ;

12 / / form t h e reduced s y s t e m
13 REDUCED ( ) [ 0 : m−1,m:2∗m−1] =
14 BC ( 0 : num blocks −2)[0 :m−1 ,0:m−1];
15 REDUCED ( ) [m:2∗m−1 ,0:m−1] =
16 BC ( 1 : num blocks −1)[0 :m−1,m:2∗m−1];

18 / / form t h e reduced s y s t e m RHS
19 g r e d u c e d ( ) [ 0 : m−1] = g ( 0 : num blocks −2)[ b l o c k s i z e−m: b l o c k s i z e −1];
20 g r e d u c e d ( ) [m:2∗m−1] = g ( 1 : num blocks −1)[0 :m−1];

22 / / f a c t o r i z e t h e reduced s y s t e m
23 REDUCED. hmap ( f a c t o r i z e ( ) ) ;
24 / / s o l v e t h e reduced s y s t e m
25 g r e d u c e d . hmap ( s o l v e ( ) ,REDUCED ) ;

27 / / Update RHS w i t h t h e v a l u e s from t h e s p i k e s as r = r − Bz − Cz
28 fv = r ( 0 : num blocks −2); f r h a l f = g r e d u c e d ( ) [ 0 : m−1];
29 B . hmap ( dgemv ( ) , fv , f r h a l f ) ;
30 r ( 0 : num blocks −2) = fv ;
31 fw = r ( 1 : num blocks −1); f r h a l f = g r e d u c e d ( ) [m:2∗m−1];
32 C . hmap ( dgemv ( ) , fw , f r h a l f ) ;
33 r ( 1 : num blocks −1) = fw ;

35 / / S o l v e t h e upda ted s y s t e m
36 r . hmap ( s o l v e l u a ( ) ,LUA ) ;
37 . . .

Fig. 6: HTA SPIKE TU

4.2 TA

The implementation of the TA variant is structurally similar to our implementation of
TU. Figure 7 presents the core of our implementation of TA. The algorithm consists
of array assignments and calls to the hmap operator. The main difference from TU is
that each processor now computes either the LU or the UL factorization for a block
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but not both. The TU variant partitions the matrix into one block per processor, and
some processors must compute two spikes. TA has each processor compute only one
spike. Consequently TA partitions the matrix into fewer blocks for a given number of
processors than TU as shown in Figure 2. Whereas TU stored the diagonal blocks in the
HTAs LUA and ULA, TA stores the appropriate blocks in the HTA DIAGS. Note that
DIAGS can contain two copies of the same block of A since the same block is needed
to compute two different spikes for the inner blocks. An additional HTA, DIAG MAP,
is used to set flags that indicate whether each tile needs to perform the LU or the UL
factorization for its block. This can be seen in line 3 for the factorization and line 7 for
the computation of the spike tips. The HTA TOSOLVERHS is used to refer to part of
DIAGS as that HTA can contain multiple factorizations for each block. TOSOLVERHS,
seen on line 4, contains only one factorization for each block of the matrix and is used
to update the right hand side on lines 9 and 35. This is also matched with a map that
indicates the type of factorization contained in the tile. Forming and solving the reduced
system proceeds almost identically to the implementation of TU. Note that there is less
parallelism available in this phase of TA than in TU due to partitioning the system into
fewer blocks.

1 . . .
2 / / f a c t o r i z e t h e A b l o c k s
3 DIAGS . hmap ( f a c t o r i z e d i a g ( ) , DIAG MAP ) ;
4 TOSOLVERHS = DIAGS ( 0 : num blocks −1);

6 / / compute t h e s p i k e t i p s from Bs and Cs
7 BC . hmap ( s o l v e b c ( ) , DIAG MAP , DIAGS ) ;
8 / / g e n e r a t e m o d i f i e d r i g h t hand s i d e
9 g . hmap ( s o l v e r h s ( ) , TOSOLVERHS MAP, TOSOLVERHS ) ;

11 / / form t h e reduced s y s t e m
12 REDUCED ( ) [ 0 : m−1,m:2∗m−1] =
13 BC ( 0 : num blocks −2)[0 :m−1 ,0:m−1];
14 REDUCED ( ) [m:2∗m−1 ,0:m−1] =
15 BC( num blocks −1:2∗num blocks −3)[0 :m−1 ,0:m−1];

17 / / form t h e reduced s y s t e m r i g h t hand s i d e
18 g r e d u c e d ( ) [ 0 : m−1] = g ( 0 : num blocks −2)[ b l o c k s i z e−m: b l o c k s i z e −1];
19 g r e d u c e d ( ) [m:2∗m−1] = g ( 1 : num blocks −1)[0 :m−1];

21 / / f a c t o r i z e t h e reduced s y s t e m
22 REDUCED. hmap ( f a c t o r i z e ( ) ) ;
23 / / s o l v e t h e reduced s y s t e m
24 g r e d u c e d . hmap ( s o l v e ( ) ,REDUCED ) ;

26 / / Update RHS w i t h t h e v a l u e s from t h e s p i k e s as r = r − Bz − Cz
27 fv = r ( 0 : num blocks −2); f r h a l f = g r e d u c e d ( ) [ 0 : m−1];
28 B . hmap ( dgemv ( ) , fv , f r h a l f ) ;
29 r ( 0 : num blocks −2) = fv ;
30 fw = r ( 1 : num blocks −1); f r h a l f = g r e d u c e d ( ) [m:2∗m−1];
31 C . hmap ( dgemv ( ) , fw , f r h a l f ) ;
32 r ( 1 : num blocks −1) = fw ;

34 / / S o l v e t h e upda ted s y s t e m u s i n g t h e LU and UL as needed
35 r . hmap ( s o l v e r h s ( ) , TOSOLVERHS MAP, TOSOLVERHS ) ;
36 . . .

Fig. 7: HTA SPIKE TA
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5 Experimental Results

In order to evaluate the performance of our HTA implementations of the two spike vari-
ants, we conducted several experiments. We compare the performance of our implemen-
tations to both the SPIKE implementations in the Intel R©Adaptive Spike-Based Solver
version 1.0 and the sequential banded solvers found in the Intel R©Math Kernel Library
version 10.2 Update 5. The numbers reported are speedups over the sequential MKL
routines, DGBTRF and DGBTRS. All code was compiled with the Intel R©compilers icc
and ifort version 11.1 Update 6, and all MPI programs were run using mpich2. The
shared-memory HTA library runs on TBB version 2.2 Update 3.

In all cases several different systems of equations were tested and the results were
similar. We present one for each algorithm. Tests were run on a four socket 32-core
system using Intel R©Xeon R©L7555 processors running at 1.86 GHz. The system has 64
gigabytes of memory installed and on a cluster at University of Massachusetts with 8
compute nodes each with two Intel R©Xeon R©X5550 processors running at 2.66 GHz
connected with InfiniBand. In testing we experienced large variations in the execution
time of all programs due to the use of a shared system. To control for this all tests were
run 8 times and the minimum execution time is reported.

5.1 TU

We present the test for a matrix of order 1048576 with a bandwidth of 513 here. This
size was chosen in order to partition the matrix into blocks of uniform size. Figures 8a
and 8c plot the speedups over sequential MKL for TU running on HTAs for shared-
memory run on the 32-core shared memory system, HTAs for distributed-memory, and
the Intel SpikePACK run on both the shared memory system and the cluster.

We believe that our performance advantage comes from implementation differ-
ences. SpikePACK uses larger blocks for the first and last partitions to attempt to mini-
mize any load imbalance when computing factorizations and the spikes. However, this
creates imbalance when retrieving the solution to the whole system after the reduced
system has been solved since the retrieval for the outer blocks will require more time
than the retrieval for inner blocks. As the number of processors increases, the retrieval
becomes a larger portion of the total execution, and this imbalance is magnified.

It is also important to note that the performance of the HTA codes on shared-
memory is almost identical with both the mpi and tbb backend. While at first this result
surprised us, it is indeed what we should expect. The amount of computation is large, so
the overheads of each runtime system are minimal. The ideal tiling structure may differ
from one platform to the next, but a given tiling ought to perform similarly on the same
system regardless of the backend.

5.2 TA

We present the test for a matrix of order 1093950 with a bandwidth of 513 here. This
size was again chosen to partition the matrix into blocks of uniform size. Recall that the
TA scheme partitions the matrix into fewer blocks than the TU scheme for a given num-
ber of processors. TU assigns one block of the matrix per processor while TA assigns
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one spike calculation per processor. The results of these tests are presented in Figures 8b
and 8d which again shows speedup over sequential MKL for the three implementations.
Each version tends to outperform TU and scales reasonably with increasing processors.
However, SpikePACK begins to outperform the HTA implementations after 16 proces-
sors.

The performance difference seen in this case is due to the differences in the com-
munication patterns between the HTA versions and the SpikePACK version. In the
SpikePACK version of the algorithm, care is taken so that only one of the tips needs to
be communicated to build the reduced system. This produces an irregular distribution
of data. In cases where the number of partitions is small, distribution does not have a
large impact but as the number of partitions grow the impact becomes more significant.

We believe that this behavior could implemented in the HTA versions of TA in two
ways. First, the version of the library built on top of MPI provides support for user-
defined distributions. These distributions could map the tiles of the spikes, RHS, and
reduced system in such a way that minimizes communication between processors. The
HTA library for shared-memory currently has no analog. This limitation is inherent
in many libraries for shared-memory programming as they do not expose mechanisms
to bind a thread to a particular core. The second way through which we could mimic
SpikePACK’s performance is through changing our implementation of the algorithm.
By storing the blocks of the reduced system in a different order, we could more closely
align the respective tiles of the spikes and RHS with the appropriate tiles of the reduced
system. However, this complicates the implementation as the programmer becomes re-
sponsible for maintaining the mapping of the blocks of the reduced system to their
locations in the HTA’s tiling structure. We chose to initially focus on implementing a
simple, elegant solution that closely maps to the algorithm.

6 Related Work

Implementing the SPIKE algorithms on top of the Hierarchically Tiled Array exploits
both the portability and explicit tiling of the HTA programming model. Tiling has been
extensively studied to improve performance of scientific and engineering codes [2, 11,
13, 17] for parallel execution [16] and as a mechanism to improve locality [17]. How-
ever, most programming languages do not provide any support for tiles. In languages
such as C or Fortran, either the programmer needs to write the code to support tiled
computations or the programmer must rely on the compiler to generate them.

Languages such as HPF [10, 12] or UPC [5] include support to specify how an array
should be tiled and distributed among the processors, but the resulting tiles are only
accessed directly by the compiler, and the programmer must use complex subscript
expressions. Others like Co-Array Fortran [14] allow the programmer to refer to tiles
and portions of them, but their co-arrays are subject to many limitations. Thus, the main
difference of these languages with HTAs is that HTA Tiles are first class objects that are
explicitly referenced, providing programmers with a mechanism for controlling locality,
granularity, load balance, data distribution, as well as communication.

Sequoia [8] makes uses hierarchies of tasks to control locality and parallelism. Data
is partitioned to create the parameters for the next level of tasks. In Sequoia, tasks
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Fig. 8: Speedups over Sequential MKL
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communicate by passing parameters to children tasks and by accepting return values
from them. HTA on the other hand, is data centric so that tiling is associated with
each object and parallel computation follows the tiling. This, combined with the array
notation of HTAs, simplifies the notation when programming algorithms that use tiled
objects. Furthermore, the HTA semantics does not require insulation of the operation
on tiles and therefore subsumes that of Sequoia.

Many Partitioned Global Address Space, or PGAS, languages aim to provide sup-
port for writing a single program that can run on many different platforms. Examples
of these languages include X10 [7], UPC [5], Chapel [6], and Titanium [18]. These
languages exploit locality by using distribution constructs or directives as hints to the
compiler on how to partition or map the “global” array to the different threads. However,
programmers cannot directly access these tiles and can only use flat element indexes to
access the data (which is similar to our flattened notation). The explicit tiles of HTA
programs increase programmability because they represent better the abstraction that
the programmer has of how data are distributed. Programming using flat indexes forces
the programmer to recover the implicit tiling structure of the data when data communi-
cation is required.

7 Conclusions

In this paper we have shown through the implementation of two variants from the
SPIKE family of algorithms that the Hierarchically Tiled Array data type facilitates
portable parallel programming and increases productivity. Tiles facilitate the mapping
of block algorithms to code and result in programs that can run without modifications
on both shared-memory and distributed-memory models.

Our experimental results show that the performance of the same HTA code when
running on both shared-memory and distributed-memory models achieve almost identi-
cal performance, and are competitive to the reference Intel library implemented on top
of MPI. In addition, our codes show that the features provided by the HTA result in pro-
grams that are both clean and compact and closely resemble the algorithm description
of the problem.
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