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Abstract   The aim of this study is to present a novel soft computing method to 
assure PID tuning parameters place the system into a stable region by applying the 
gain scheduling method. First the system is identified for each significant opera-
tion point. Then using transfer functions solid structures of stability are calculated 
to program artificial neural networks, whose object is to prevent system from tran-
sitioning to instability. The method is verified empirically under a data set ob-
tained by a pilot plant.  
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1   Introduction 

Continuous research is necessary in the field of process engineering to define new 
methods of regulation, in order to improve current ones [1]. The demand for sys-
tem control applications is driven by the increasingly numerous ranges of possibil-
ities [2, 3] that are nowadays in use or under development. 

This research introduces an artificial neural network (ANN) to prevent control 
system instability that is regulated using gain scheduling with predetermined PID 
(Proportional-Integral-Derivative) coefficients. The method is validated on a labo-
ratory stove. Nevertheless, the vast majority, as many as 90% [4], of control loop 
systems use PID controllers.  

When dealing with non-liner systems, certain specifications have to be equal in 
all areas of operation. The regulator will therefore require different parameters for 
each area. These problems can be reduced by using self-regulating and adaptive 
PID controllers [5]. It should be noted, however, that their implementation can be 
expensive and specific to the type of process that it is meant to regulate, which fur-
ther complicates any general theory on PID controllers. Many of the drawbacks re-
sulting from self-regulating and adaptive PID controllers are alleviated using the 
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well-known Gain Scheduling method [6] considered as part of the family of adap-
tive controllers [5]. Significant system variables that define the point of operation 
have to be selected in order to implement the Gain Scheduling method. It is then 
necessary to choose several regions throughout the entire operating range of the 
plant, in which the behaviour is linear. The controller parameters are then fixed 
which provide similar specifications for the operating range of the plant. 

The system may be stable for controller parameters that are deduced, but it may 
not be stable between the selected points or regions. There is no simple solution to 
this situation, which is usually broken down into constituent parts. This is the rea-
son to propose a Knowledge Base System (KBS) [7] as a possible solution. 

The Gain Scheduling method selects the correct controller parameters, though 
operators often adjust the parameter values with the aim of improving plant specifi-
cations. Sometimes, the parameters they assign may cause instability. The novel 
soft computing method proposed in this research is intended to prevent instability. 
Artificial neural networks are proposed as means of overcoming the problem [9]. 
Essentially this method decides whether PID parameters programmed by human 
operators are valid and whenever the plant to control enters an unstable zone due to 
parameter combinations, the method restores a more stable combination for the op-
eration point in question.  

2   A Novel Soft computing controller topology 

The proposed topology is based on traditional PID. There are many ways to repre-
sent PID controllers, but perhaps the most widely used is given in equation 1, [4]. 
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Where ‘u’ is the control variable and ‘e’ is the control error given by ‘e = SP – 
y’ (difference between ‘SP’, the reference specified by the input and ‘y’, the meas-
urement unit specified by the output). The other terms are the tuning controller pa-
rameters: proportional gain ‘K’, integral gain ‘Ti’ and derivate gain ‘Td’. 

System dynamics change with process operation conditions. Changes in a dy-
namic process may, for instance, be caused by well-known nonlinearities inherent 
in the system. It is possible to modify the control parameters, by monitoring their 
operating conditions and establishing rules. The methodology comprises the fol-
lowing steps: first of all, Gain Scheduling is applied, then the behaviour of the plant 
to control is analyzed at different points of interest, and, finally, rules are estab-
lished to program gains in the controller. It would then be possible to obtain certain 
specifications which remain constant throughout the whole range of operation. In 
the proposed method, it is possible to change the PID parameter values to improve 
the operating conditions, but the possibility of undesirable parameter combinations 
must be prevented. This idea is schematically represented in Figure 1. 
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Fig. 1. Gain Scheduling with proposed topology. 

The idea of Gain Scheduling is to obtain the PID parameters when given the 
operating points. In this case, a new input has been added, with which the operator 
can modify the other parameters taken from knowledge based tuning rules. Figure 
2 shows a basic diagram of the suggested structure for the method in which PID pa-
rameters may be adjusted by the operator. If the input causes system instability, the 
proposed Soft computing topology can commute parameters and program the con-
troller to maintain it within the dynamic range of the plant. 

There is an artificial MLP-type neural network [10] in the proposed system, 
which must be trained to detect the existence of stable parameter combinations. In 
case of instability, the system will revert back to stable values according to the op-
erating work point that was initially programmed. 
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Fig. 2. Multi-Layer Perceptron Neural Network architecture. 

In order to apply a Multi-Layer Perceptron (MLP) network, an interesting and in-
formative data set must be chosen. To that end, solid stability and instability struc-
tures were applied, in order to delimit both states in absolute terms. These struc-
tures are defined by PID controller parameters along with their stability/instability 
(both states do not coexist) points that have to be placed into three axes of a three-
dimensional graphic. Abundant literature exists on robust stability problems that 
describe this concept [11, 12]. The volume consists of parameter combinations (K, 
Ti and Td) of the controller for a stable system. If the structure was unstable, then 
the volume would consist of the parametric controller combinations for an unsta-
ble system. 

3   A case study: empirical verification of the proposed method 

An empirical verification of the proposed novel method was performed on a small 
pilot plant (figure 3) in which the temperature is controlled. Temperature depends 
on the following parameters: T1(t) is the temperature measure outside the stove, V 
is the air volume in the stove, SP(t) is the set point for the desired temperature, 
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T2(t) is the measure temperature in the recipient, u(t) is the signal control to oper-
ate the heating element, Kv and Kt are constants relating to features of the heating 
element properties and the temperature sensor respectively. 

    
Fig. 3. Photograph and schematic diagram of the real plant. 

The pilot plant used for these experiments consists of a stove, with an air stream 
(Fig.3), which will be controlled to maintain a constant temperature inside. It is a 
non-linear system among others due to heating element. 

The regulator is a virtual controller that takes signals from the plant through a 
data acquisition card, which is fed into the Simulink Matlab software. As a set 
point signal, the plant receives the required temperature inside and adjusts the 
power applied to regulate the input flow into the tank. 

3.1   System operation conditions which define a Soft Computing 
Knowledge Base System (KBS) 

The operation conditions of the system are infinite; certain values must therefore 
be chosen. Coherent estimates values are necessary to achieve good results and it 
makes no sense to obtain parameters for multiple cases. One approach is to choose 
a reasonable amount of equidistant values and observe the parametrical changes in 
each case. An opportunity arises to define new intermediate values if there are 
substantial changes from one value to another. 

Certain characteristics of the stove such as its air volume remain constant. In 
this case the only term that defines the operation conditions or gains adjustment 
rules of the controller is the outside temperature. It should be highlighted that cer-
tain changes may occur under field conditions, such as variations in pressure, nois-
ier communications, dirty system components, humidity, distance between control 
and actuators or sensors. Taking into account the pilot plant and the value ranges 
that may be taken from the temperature inside, ten different operating conditions 
(ranges) were established: (10ºC-15 ºC), (15 ºC -20 ºC), …, (55 ºC -60 ºC). As it 
will be seen in the final results, the chosen range of temperatures filling values will 
be sufficient to cover the entire operating range of the system. 

3.2   Obtaining the controller parameters for each operation point 

A hysteresis block could be selected to obtain the regulator parameters of the dif-
ferent working points, in parallel with the PID controller, before applying the Re-
lay Feedback method. 
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The Relay Feedback method is an alternative to the Ziegler-Nichols closed loop 
[13], for the empirical location of the critical gain (Kc) and the period of sustained 
oscillation (Tc) of the system. The method, developed by Aström and Hägglud [5], 
fixed the system in its oscillation state. Its implementation scheme is shown in Fig-
ure 4. The Relay Feedback has the advantage that an adjustment can be made to the 
set point at any time. 

 
Fig. 4. Diagram of Relay-Feedback with relay and PID controller option. 

This system oscillation has a period with approximately the same value as the 
period in the Ziegler-Nichols method. A relay with hysteresis centered on the zero 
value with an amplitude d and a hysteresis window width of h is recommended for 
the general method. 

3.3   Procedures carried out 
Obtaining certain parameters: Tc and Kc. As this particular case study is work-
ing with a slow system, there is no need to implement the hysteresis cycle men-
tioned in the above explanation of the Relay Feedback with a window. Instead, a 
simple comparator is enough (h=0 and d=0.5). The offset for this case is not ne-
cessary because it would be zero. When the system is in operation and sufficient 
time has elapsed, oscillation is stabilized and periodic. It is then necessary to pay 
attention to the final zone, and with the expressions for the Relay Feedback me-
thod, the extracted parameters are Tc and Kc.  

Obtaining the initial PID controller parameters. With the parameters that have 
been obtained in the previous step, it is possible to get the controller parameters to 
apply direct formulas, thereby achieving the three terms of the regulator: (K, Ti 
and Td). In this system, they will have to be obtained from load disturbance crite-
rion, after which the Ziegler-Nichols closed loop method is applied [4]. 

Controller fine tuning. When the results are unsatisfactory, subsequent manual 
fine-tuning may occasionally be needed after having obtained the parameters with 
the relay feedback method. This is a delicate adjustment which should not at any 
point saturate the output controller. A compromise has to be found, without the 
proportional component (K) being excessive, that would cause a rapid response in 
the output and little overoscillation, which would apparently be ideal. However, 
under these conditions the heating element will be in a state of constant power, 
which will lead to its deterioration within a short period of time. In conclusion, it 
is necessary to search for gradual outputs, without saturation or sudden changes. 
Obtaining the parameters for each case, taking into account all the aspects com-
mented on above, the criteria for the fine-tuned controller parameters in each case 
are minimum overoscillation and maximum speed for the restrictions presented in 
the preceding paragraphs. So, this leads to the parameters shown in Table 1. 
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Table 1.  PID parameters values for each operating range. 

Level K Ti Td  Level K Ti Td 
10Cº - 15Cº 8.1 18 4.2  35Cº - 40Cº 7.5 21 4.2 
15Cº - 20Cº 8.5 21 4.3  40Cº - 45Cº 7.9 21 4.3 
20Cº - 25Cº 8.0 19 4.5  45Cº - 50Cº 7.7 20 4.3 
25Cº - 30Cº 8.1 17 4.3  50Cº - 55Cº 7.4 19 4.0 
30Cº - 35Cº 8.9 18 4.7  55Cº - 60Cº 7.1 19 4.1 

Neural Network implementation. Different Multi-Layer Perceptron (MLP) [8] 
network was applied for each operation condition range in this research, in order 
to detect parameter values that lead to system instability. Firstly, it was necessary 
to obtain the transfer function for each operating point under consideration. To do 
so, the system identification was obtained at each point by applying an ARX (Au-
to-Regressive models with eXogenous inputs) method [14] using the Matlab Iden-
tification Toolbox. Other identification methods used were AR (AutoRegressive 
model) and ARMAX (AutoRegressive Moving Average model with eXogenous 
inputs model) but the best results were achieved with ARX for the plant used in 
the experiment (Table 2 shows the Fit between the real plant and the model, and 
the final prediction error (FPE) that provides a measure of model quality). 

Stability structures were then obtained, and the Neural Network architecture 
was trained with those same points. A neural network was obtained for all operat-
ing points. The number of neurons in its intermediate layer fluctuated between 7 
and 10. The structure was adopted after rigorous testing with different numbers of 
neurons in the hidden layer (tests were conducted with 5 to 12 neurons in the in-
termediate layer) for every neural network. 

The activation transfer functions of the hidden layer are hyperbolic tangent 
types. Other activation functions were probed, although the best results (best error 
percentage) for each operation point in all the ANNs were achieved with the hyper-
bolic tangent function (Table 3). In the output layer, a hard limit transfer function 
was applied to indicate whether the parameters programmed by human operator are 
valid or whether it is necessary to apply corresponding stored parameters to the op-
eration point. 

Table 2.  Comparison of identification method parameters (Fit and Final Prediction Error 
(FPE)). 

Transfer func-
tion range 

AR ARX ARMAX 
Fit(%) FPE Fit(%) FPE Fit(%) FPE 

10Cº - 15Cº 43.2 > 10e-6 74.2 < 10e-6 60.1 < 10e-6
15Cº - 20Cº 46.2 > 10e-6 75.1 < 10e-6 61.2 < 10e-6
20Cº - 25Cº 48.3 > 10e-6 75.0 < 10e-6 62.4 < 10e-6
25Cº - 30Cº 45.7 > 10e-6 74.7 < 10e-6 63.2 < 10e-6
30Cº - 35Cº 47.7 > 10e-6 75.3 < 10e-6 63.8 < 10e-6
35Cº - 40Cº 47.3 > 10e-6 76.6 < 10e-6 63.1 < 10e-6
40Cº - 45Cº 46.2 > 10e-6 76.1 < 10e-6 64.4 < 10e-6
45Cº - 50Cº 49.9 > 10e-6 77.5 < 10e-6 65.1 < 10e-6
50Cº - 55Cº 50.1 > 10e-6 76.5 < 10e-6 61.2 < 10e-6
55Cº - 60Cº 52.2 > 10e-6 77.6 < 10e-6 62.1 < 10e-6
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Table 3.  Comparison between ANN activation transfer functions (Linear, Log-Sigmoid, 
Tan-Sigmoid) in hidden layer (best error (E%) and number of neurons in middle layer 
(Ne)). 

ANN range 
linear logsig tansig 

ANN range 
linear logsig tansig 

E% Ne E% Ne E% Ne E% Ne E% Ne E% Ne 
10Cº - 15Cº 18 7 10 6 2 7 35Cº - 40Cº 20 8 13 7 0 8 
15Cº - 20Cº 20 8 11 7 2 7 40Cº - 45Cº 19 8 11 7 1 9 
20Cº - 25Cº 21 8 13 6 1 8 45Cº - 50Cº 19 7 16 8 1 9 
25Cº - 30Cº 22 7 15 6 0 8 50Cº - 55Cº 21 7 14 8 0 10 
30Cº - 35Cº 24 8 12 8 0 9 55Cº - 60Cº 22 8 12 9 0 9 

Once this configuration had been selected, the different characteristics of the 
training carried out with back-propagation learning would be set. The training steps 
were fixed at ranges of 400 to 700 epochs, with an average error below 1% at the 
end of the training. The MLPs were trained off-line, although their performance 
was verified on line. 

4   Method assembly and results verification 

The method was run in the Matlab/Simulink environment. A National Instruments 
data acquisition card (model USB-6008 12-bit 10 KS /s Multifunction I/O) was 
chosen for operations at the plant. This card is automatically recognized by Mat-
lab/Simulink. The diagram of the process is implemented in Simulink (Figure 5). 

 
Fig. 5. System implemented in Simulink. 

There are two ways of fixing the set point for the laboratory tests on the plant: 
the first is to generate a sequence of repeating values; the second is to set its value 
using an external voltage (Analog Input block diagram). 

The reading of the temperature in the stove is performed by an LM35 tempera-
ture sensor conditioned with a continuous analogue output of between 0 and 10 
volts. It is connected to one of the inputs of the data acquisition card in differential 
mode (Analog Input1). The next step is to develop the previously described con-
troller; creating the output diagram blocks in Simulink (figure 6). 

Temperature Input

External Reference

Repeating
Sequence

Stair

MS

In1 Out1

KBS_Neuro_Robust_PID

Analog
Output

Analog Output

Analog
Input

Analog Input1

Analog
Input

Analog Input
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Fig. 6. Implementation of the controller. 

Figure 6 shows the implementation of the parameters selection process of a PID 
controller, whose values are the outputs of the multiport switch element. Its inputs 
depend on the temperature read by the temperature sensor through analog input 2 
on the data acquisition card and the parameters that are manually programmed by 
the operator. There are 10 blocks (Range Blocks) in the above diagram (Fig. 6), one 
for each range level (i.e. 25Cº to 30Cº). Their internal layout is shown in figure 7, 
where additionally, inside each Range Block there is a further block (subsystem2) 
that contains the scheme on the right, which is the topology of figure 2 imple-
mented in Simulink (Matlab). 

 
Fig. 7. Range Block internal scheme and Subsystem2 contents. 

The pins In1 and Out1 (Fig 6) are the KBS_Soft_Computing_PID block pins in 
figure 5, which send a control signal to one of the analog outputs of the data acqui-
sition card, to take direct action on the heating element.  

In this way, the Controller will select the most appropriate parameters for the 
work point for which it is running. When an operator modifies the parameters, they 
are evaluated by the system and if there is a risk of system instability, the parame-
ters are automatically replaced by other ones more appropriate for the operation of 
the work point, in such a way that they guarantee the system stability. Thus, this 
technique is presented as an improvement over the two previously mentioned con-
trol techniques: gain scheduling and robust control. The former has a fixed dy-
namic, which the operator is unable to change, while the latter can change the dy-
namic, but fails to assure optimal responses. In addition, it is very difficult to 
maintain similar specifications over all operational ranges in non-linear systems. 
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The improvement may be added to other techniques that investigate leak failures in 
the control systems fields. 

5   Conclusions 
A new method for a Soft computing control system is presented in this study that 
retains the advantages offered by the conventional PID system on which it is 
based, as well as the possibility of applying it to non-linear systems while main-
taining invariable specifications throughout the operational range. Moreover, it is 
set up to ensure that manual modifications to the controller parameters made by an 
operator to input particular specifications, for whatever reason, will at no time lead 
to control system instability. 

The novel proposal in this research is an option to take into account in non-
linear systems that function throughout the range of operation, and that can be di-
vided into zones with linear behaviour in which control of the PID regulator is fea-
sible. It is therefore an alternative to different types of self-adjusting controllers. 
Multiple tests of the proposed Soft computing method on the laboratory plant 
which involved tests on the different work points yielded satisfactory results. The 
system is robust when an operator introduces dangerous parameter combinations in 
order to change operating specifications. It has to be said that the technique func-
tioned very satisfactorily, considering the size of the stove. 
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