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Abstract Industrial applications of computer vision sometimes require detection of 
atypical objects that occur as small groups of pixels in digital images. These objects 
are difficult to single out because they are small and randomly distributed. In this 
work we propose an image segmentation method using the novel Ant System-based 
Clustering Algorithm (ASCA). ASCA models the foraging behaviour of ants, which 
move through the data space searching for high data-density regions, and leave 
pheromone trails on their path. The pheromone map is used to identify the exact 
number of clusters, and assign the pixels to these clusters using the pheromone gra­
dient. We applied ASCA to detection of microcalcifications in digital mammograms 
and compared its performance with state-of-the-art clustering algorithms such as 1D 
Self-Organizing Map, k-Means, Fuzzy c-Means and Possibilistic Fuzzy c-Means. 
The main advantage of ASCA is that the number of clusters needs not to be known 
a priori. The experimental results show that ASCA is more efficient than the other 
algorithms in detecting small clusters of atypical data. 

1 Introduction 

Soft-computing methods have been widely used in industrial and environmental 
applications. They usually find application to complex optimization problems for 
which approximate solutions are acceptable within a given error margin. Soft-
computing methods have been successfully applied to knowledge extraction [1], 
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information security [2], manufacturing [3], sustainable building [4], meteorology 
[5], etc. 

In applications of computer vision, image segmentation is an important pre­
processing step. The objective is to partition the image into homogeneous regions 
that share certain visual characteristics. There is therefore a natural tendency to ap­
ply data clustering algorithms to image segmentation. Clustering is a method of 
unsupervised learning because no prior labeling of data is available [6]. 

In computer vision applications such as digital mammography for cancer risk 
analysis, the less representative pixels are the most interesting since they represent a 
variation with respect to healthy tissue. Pixels of high grey-level intensity may indi­
cate the presence of microcalcifications which may be an early sign of breast cancer. 
These microcalcifications are difficult to detect because they appear in groups of just 
a few pixels, which are often merged with larger clusters of high intensity in their 
proximity. 

For the image segmentation method, the ASCA is proposed to group the pixels of 
similar grey-level intensity. The proposed method is based on the Ant System (AS) 
algorithm, which was originally created to solve the traveling salesman problem 
[7]. The AS models the pheromone-laying behaviour of ants for a discrete data 
space, which in our case is a digital image. For the experiments, two types of images 
were used. In these pictures, imperfections can be the result of light reflection over 
the image, or real imperfections that can be used as an aid in medical diagnosis. 
ASCA uses only the intensity level of the grey-level images as a criterion for image 
segmentation. 

The paper is organised as follows. Sect. 2 provides a summary of related lit­
erature. Sect. 3 describes the proposed ASCA algorithm. The image segmentation 
method based on the proposed algorithm is presented together with the experimen­
tal results in Sect. 4. The results are discussed and compared with those obtained by 
the current state-of-the-art clustering algorithms. Finally, in Sect. 5 the conclusions 
are drawn. 

2 Related Work 

In this section, we give an overview of the state-of-the-art clustering algorithms. 
For image segmentation, clustering can be considered a preprocessing step that 
does not include the spatial information of the pixels. Therefore, the goal of the 
clustering process is to group the pixels based on their similarities in order to facil­
itate further knowledge extraction. Kotsiantis and Pintelas [8] define the following 
five categories of clustering algorithms: partitioning methods, hierarchical methods, 
density-based methods, grid-based methods and model-based methods. The swarm-
based algorithms do not explicitly belong to any of the named categories [9]. 

The Self-Organizing Maps (SOM) [10], an Artificial Neural Network (ANN) 
with unsupervised learning, is a widely used clustering algorithm. SOM is useful 
for data classification because of its visualization property. It was applied to pattern 



recognition in satellite images [11], segmentation of colour images [12], but also 
many others. 

A cluster of pixels is usually associated with a prototype as the most represen­
tative pixel also considered the cluster centre. Some clustering methods use this 
centric property to divide iV-dimensional data space, where the partitions are ei­
ther strict, fuzzy or possibilistic. A well-known strict partitioning algorithm is the 
fe-Means [13] which divides a data set into k subsets such that all points in a given 
subset are closest to the same centre. In order to obtain more information about the 
proximity of a data point to a prototype, Bezdek [14] proposed the Fuzzy c-Means 
algorithm (FCM) that calculates a membership degree for each data point in rela­
tion to different clusters. Since several equidistant data with the same membership 
values are not equally representative of the clusters, the Possibilistic c-Means al­
gorithm (PCM) algorithm was proposed in [15], which identified the similarity of 
data with a given number of prototypes using typicality values ranging from (0, 
1). Pal et al. proposed to use both membership degrees and typicality values and 
implemented it in the Fuzzy Possibilistic c-Means (FPCM) algorithm [16]. Another 
improvement was proposed with the Possibilistic Fuzzy c-Means (PFCM) algorithm 
[17] by introducing the control parameters which define the relative importance of 
the membership degrees and the typicality values. 

The clustering performance of the mentioned algorithms is greatly dependent 
on the initial guess of cluster centres and it is time consuming. Various methods 
were proposed to address these issues. One simple implementation of the fe-Means 
algorithm to colour quantization, data compression and image segmentation was 
proposed in [18]. The algorithm stores the multidimensional data points in a kd-tree 
that is computed only once, which results in faster computation. Laia and Liaw [19] 
proposed a modified fe-Means algorithm to speed up the clustering process for larger 
data sets with higher dimension. Some clustering methods were proposed to reduce 
the effect of the initially selected cluster centres [20] or for a more robust and less 
noise-sensitive clustering [21]. 

The sensitivity in detection of the atypical data remains an issue for the state-of-
the-art clustering algorithms. Ojeda et al. [22] propose an image sub-segmentation 
method based on the PFCM algorithm in order to detect small homogeneous regions 
in mammograms. The authors applied a typicality value threshold to delimit a sub­
group containing atypical pixels within the initially detected clusters. The threshold 
value was set manually which is the main drawback of this method. 

Ant clustering algorithms are inspired by the swarming behaviour of natural 
ant colonies. Handl and Meyer [9] roughly classify these algorithms in two main 
groups. The first group mimics the corpse gathering and brood sorting in natural ant 
colonies, where the clustering solution emerges as a result of interactions of ants 
with the environment. The second group of algorithms uses general-purpose ant-
based optimization methods in order to obtain optimal clustering of the given data 
set. There are also algorithms that do not explicitly belong to any of these groups, 
but fall somewhere in between. 



3 Ant System-based Clustering Algorithm 

The novel Ant System-based Clustering Algorithm (ASCA) proposed in this paper 
was inspired by the foraging behaviour of ant colonies in nature. When ants find 
a food source, they leave pheromone trails that attract other ants to follow their 
path. Pheromone trails evaporate over time, so a path that leads to a closer food 
source accumulates more pheromone as it is crossed by ants more frequently. The 
AS algorithm exploits this cooperative behaviour of ant colonies that features indi­
rect communication through the environment. Unlike their biological counterparts, 
the artificial ants move through a discrete space defined with nodes and they have 
memory of the taken path. 

Pheromone trails in the ASCA algorithm are accumulated in nodes in order to 
represent the density of the surrounding data. This differs from what was proposed 
in basic Ant System algorithm where pheromone trails marked the edges that con­
nected the nodes in order to represent the favorite path. The process of pheromone 
accumulation is iterative and creates a pheromone map of the data set we want 
to cluster. Higher data-density areas accumulate more pheromone and they rep­
resent cluster centres. This is used to extract the number of clusters. Gradient of 
the pheromone trail is used to assign every node to a cluster by applying local 
Hill-climbing search [23]. The ASCA algorithm consists of three consecutive parts, 
namely: a) pheromone accumulation, b) local pheromone summing, and c) data la­
beling. 

3.1 Pheromone Accumulation 

In the pheromone accumulation stage, the artificial ants move in iV-dimensional 
data space looking for the high data-density regions. The algorithm starts with an 
initialization step which is followed by the iterative construction of new solutions 
and pheromone update. It involves the following steps: 

1. Initialization: All nodes are initialised with an equal small amount of pheromone, 
To. The population of M ants is created and placed on randomly chosen nodes. 

2. Node transition rule: Ant chooses the next node to move to by applying the 
roulette rule. That is, every node has associated probability with which it is cho­
sen from a set of available nodes. The probability of displacing feth ant from node 
/ to node j depends on the Euclidean distance between the nodes and the amount 
of pheromone trail accumulated in node j , and it is given by: 

pfj = < (i) 

[ 0, otherwise 



where T/ and r¡¡j are the intensity of the pheromone trail on the node j and the 
visibility of the node j with respect to the node /, respectively. The visibility is 
given as the reciprocal value of the Euclidean distance, d¡j, between the nodes / 
and j : r¡¡j = l/d¡j. Ant is not allowed to displace to the nodes it has already vis­
ited. Tabut list contains the nodes visited by the feth ant. The control parameters 
a and ¡5 allow us to bias the decision-making mechanism towards the exploita­
tion of the generated knowledge about the environment or exploration of new 
solutions, respectively. (a,/3 > 0; a,/3 e 9Í.) It can be noticed that the accumu­
lated pheromone trails serve as a colony's external memory where the extracted 
knowledge about the environment is stored. 

3. Pheromone update rule: Once all the ants carry out the transition to other nodes, 
the pheromone update is applied to each node as follows: 

M 

Tj,new = (1 - P ) 1),oU + £ ^ tf (2) 
k=l 

where p is the pheromone evaporation rate (0 < p < 1; p e 9Í), and Axk- is the 
amount of pheromone laid on the node j by the feth ant, and is given by: 

Í
r¡ij, if node j has been visited by feth ant 

(3) 
0, otherwise. 

where r¡¡j is the visibility of the node j from the node / from which the feth ant 
was displaced. 

4. Stopping criterion: The steps 2 and 3 are repeated in a loop and the algorithm 
stops executing when the maximum number of iterations is reached. 

The output is a pheromone matrix where the distribution of pheromone is scarce, 
but the highest concentrations are found around the dense regions of nodes in 
data space. The ants make a probabilistic choice of path, therefore the neighbour­
ing nodes may have significantly different amounts of pheromone deposits (see 
Fig. 1(b)). For this reason, we apply the local pheromone summing. 

3.2 Local Pheromone Summing 

The pheromone trails are locally summed to obtain a smooth pheromone surface to 
which a local gradient-based search will be applied. We define the neighbourhood 
resolution as an iV-dimensional sphere that represents a portion of the Euclidean 
data space, and whose diameter is given by: 

(4) 



(a) Squares data set (b) After pheromone accumulation 
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(c) After pheromone summing (d) After data labeling 

Fig. 1 Clustering result after applying the proposed ASCA algorithm to a Squares data set, which 
consists of four groups of 250 data patterns with normal Gaussian distribution. 

where 7 is the resolution ratio, and {xn,min,Xn,max) is the data space range along 
the rath dimension. For each node /, the pheromone deposits from the neighbouring 
nodes are added to already present pheromone value, T,O, as follows: 

^neigh 

T¡Í = T;o + £ T„ (5) 
n=\ 

where Nnejgk is the number of neighbouring nodes contained within the sphere 
defined in Eq. 4. 

The output of the local pheromone summing process is a smooth (N + 1)-
dimensional surface with pheromone value peaks around the cluster centres (see 
Fig. 1(c)). 

3.3 Data Labeling 

In the final step of the ASCA algorithm, the discrete Hill-climbing gradient-based 
search method is applied to find the local maxima on the pheromone surface. The 



search is performed from each node with the step size defined in Eq. 4. The nodes 
which lead to the same local maximum are grouped in one cluster (see Fig. 1(d)). 
The number of clusters is therefore equal to the number of local maxima. It is impor­
tant to emphasise that the ASCA algorithm extracts the number of clusters from the 
data set, unlike the other algorithms compared that require it to be set in advance. 

4 Experimental Results and Discussion 

In this section the ASCA algorithm is applied to the image segmentation task. The 
proposed method mimics the distributed organization of an artificial ant colony, 
and exploits the pheromone patterns that emerge as a result of local interactions. 
Specifically, the algorithm creates the pheromone mapping of a set of unlabeled 
image pixels in order to cluster them according to their grey-scale intensity level. 
The objective is to detect the atypical pixels, and for this two kinds of images are 
used, the "Splash" image, see Fig. 2(a), and a mammogram, see Fig. 3(a). 

For all the images, the parameters of the algorithm are set to: To = 100, a = 1, 
¡5 = 5, p = 0.05, 7 = 30. The experiments were performed in 3 cycles with 30 itera­
tions. In each cycle, a population of 1000 ants were displaced on randomly chosen 
nodes. The experiments were performed using MATLAB (software MATLAB, ver­
sion R2009b), on a computer with Pentium IV processor at 3.4 GHz, with 2 GB of 
RAM. For the fe-Means and FCM algorithms, the native MATLAB functions were 
used. The settings for the ID-SOM and the PFCM were implemented as proposed 
in [24] and [22], respectively. The results of experiments are shown in Fig. 2, for the 
"Splash" image, and Fig. 3 for a region of interest (ROI) mammogram. 

For the "Splash" image the goal was to detect the pixels of high grey-level in­
tensity that are a result of light reflection. The ASCA algorithm extracted six clus­
ters which was enough to single out the atypical pixels. A comparison was made 
with ID-SOM, fe-Means and FCM algorithms using the same number of clusters. 
The ASCA outperformed ID-SOM, fe-Means and FCM. None of the control al­
gorithms was able to extract the regions of interest. In case of the PFCM, image 
sub-segmentation was applied after the initial segmentation in two pixel groups. 
Because of the limitation of this approach to divide the data space in 2" partitions, 
the segmentation was performed for four clusters as proposed by the authors. Al­
though the PFCM managed to detect the light reflection pixels, some other features 
like the shadow of the splash were not extracted. As a second part of the experiment, 
though not presented here, for each algorithm we incremented the number of clus­
ters until the image segmentation allowed the separation of light reflection pixels. 
We obtained the following results: ID-SOM, 17 clusters; fe-Means, 9 clusters; and 
FCM, 7 clusters. 

In mammography, the goal is to detect the presence of microcalcifications that 
could be an early sign of breast cancer. They appear as small groups of pixels of 
high grey-level intensity and they usually occupy a very small range of values, 
hence they are hard to detect. The ROI mammograms on which the experiments 



Fig. 2 Comparison of the segmentation results for the "Splash" image, 320 x 400 pixels. The 
ASCA extracted six clusters; for the purpose of comparison, other algorithms were set to partition 
the data set in six clusters as well, only in case of PFCM with sub-segmentation the results are 
shown for four clusters because of the limitation of the algorithm to have 2" partitions. 

were performed and the results of image segmentation using 1D-SOM, fc-Means, 
FCM, PFCM and the proposed ASCA are shown in Fig. 3. The ASCA extracted 
three clusters. For comparison, the same number of clusters was used for the seg­
mentation trials based on the 1D-SOM, fe-Means and FCM methods. The image 
segmentation using the latter three algorithms gave poor results as the microcalcifl-
cation pixels could not be isolated. PFCM managed to detect the microcalciflcations 
but with a higher number of clusters (four) than ASCA. Even increasing the number 
of clusters, 1D-SOM, fe-Means and FCM were not able to obtain better segmentation 
results. The output images became over-segmented which prevented the extraction 
of the regions of interest. 

For the ASCA algorithm, image pixels clustering comes as a result of the adap­
tive behaviour of the artificial ant colony. The ants find paths from the peripheral 
regions of a cluster to its centre, and accumulate there higher concentration of 
pheromone. The indirect interaction between the ants via the environment gives dif­
ferent results from what would be obtained by simple data-density calculation. Not 
all high-density regions accumulate equal amounts of pheromone even though their 
local neighbourhood may be similar (e.g. same distance from the nearest neighbour). 
The cluster centres are crossed by more ants from various directions, accumulating 
thus more pheromone than the peripheral regions. 



Fig. 3 Comparison of the segmentation results for a ROI mammogram, 256 x 256 pixels. The 
ASCA extracted three clusters; for the purpose of comparison, other algorithms were set to parti­
tion the data set in three clusters as well, only in case of PFCM with sub-segmentation the results 
are shown for four clusters because of the limitation of the algorithm to have 2" partitions. 

5 Conclusions 

The important feature of the proposed ASCA algorithm is the automatic extrac­
tion of the number of clusters. This is useful for applications where the groups of 
patterns within a data set are not well-defined and need to be detected. The perfor­
mance of the ASCA algorithm was evaluated through experiments on two types of 
images. The proposed method outperformed 1D-SOM, fc-Means, FCM and PFCM 
algorithms in the detection of small, atypical regions of the image, in the overall 
quality of the segmented images, and in terms of the total number of clusters used. 
The resolution ratio y is used to set the sensitivity of the algorithm to the density of 
the data. Future work will include the optimization of the algorithm's parameters, 
namely the resolution ratio y and control parameters a and ¡5, in order to improve 
the adaptability of the algorithm to different data sets. For the task of image pro­
cessing, more features such as spatial information or texture will be used to obtain 
better segmentation results. Also, testing the algorithm on the colour images may 
open a wide range of new applications. 
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