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Abstract V
alidation of Remote Sensing Content-Based Information Retrieval (RS-

CBIR) systems requires innovative strategies due to the scarcity of labelled
data. CBIR systems validation by means of precision/recall measures based
on either user feedback or a-priori known categories, are hard to apply to
RS-CBIR systems. We propose to apply a data-driven (unsupervised) qual-
ity assessment strategy analogous to the DAMA strategy applied for the
validation of classi�cation methods used in thematic mapping. The strategy
is intended for quality assessment when little or no ground truth is available.
The proposed strategy deals with the RS-CBIR validation problem by giving
a quantitative and qualitative evidence of the relative (subjective) quality of
RS-CBIR systems without need of a-priori knowledge. We apply the pro-
posed strategy to validate a Hyperspectral CBIR system.

1 Introduction

Modern imaging sensors continuously deliver enormous amounts of Earth
Observation data, which couldn't be systematically exploited for a lack of ap-
propriate methodology and analytical techniques. For instance, the German
Aerospace Center (DLR) expects to launch along year 2014 a hyperspectral
satellite mission, the Environmental Mapping and Analysis Program (En-
MAP) [11], wich will generate a huge amount of hyperspectral data. Content
Base Image Retrieval (CBIR) systems are relevant to the geosciences be-
cause they provide automated tools to explore and understand the contents
of large and highly complex images [17, 9, 7]. There have been several ef-
forts along this decade to develop CBIR tools for remote sensing images.
The main focus has been multispectral and synthetic aperture radar (SAR)

Grupo de Inteligencia Computacional, UPV/EHU, www.ehu.es/ccwintco

1



2 Miguel Angel Veganzones, Manuel Graña

images [8, 15, 16, 6, 5]. Exploitation of the spectral information provided by
hyperspectral sensors by CBIR systems has not been deeply pursued although
there are some instances in the literature[10, 14, 19].

In previous works [18] we dealt with the validation of the Hyperspectral
CBIR system proposed in [19] using synthetic hyperspectral images. In this
paper we consider the case of scarce ground truth knowledge about the data.
We overcome the lack of available benchmark datasets whose data samples
are divided into well de�ned categories. Such reliable benchmarks do not ex-
ist yet for RS-CBIR systems validation. We propose a methodology similar
to [1] to we asses the problem of CBIR systems validation in a Remote Sens-
ing (RS) context. The work in [1] deals with the quality of thematic maps
produced by competing unsupervised classi�cation algorithms, that must be
applied because of the lack of ground truth data. Their data-driven quality
map assesment (DAMA) technique is an alternative to the supervised clas-
si�cation building techniques that are useless when little or no ground truth
are available. Similar to DAMA, our methodology creates a reference truth
by the application of clustering algorithms on the image data. This reference
truth validates the performance of the hyperspectral CBIR system. We ap-
ply the proposed quality assessment strategy to test the Hyperspectral CBIR
system introduced in [19].

Section 2 and 3 give a brief overview of the Hyperspectral CBIR system
and the DAMA strategy respectively. In section 4 we introduce the common
quality measures used for CBIR systems validation, and we explain our pro-
posed DAMA extension strategy for RS-CBIR validation. Section 5 provides
a sample experiment of applicability over the Hyperspectral CBIR system.
Finally we provide some conclusions in section 6.

2 Hyperspectral CBIR system

We describes here the Hyperspectral CBIR system introduced in [19]. A dis-
similarity function between two hyperspectral images, s (Hα, Hβ) is de�ned
on the basis of the distances between their corresponding set of endmembers
Eα and Eβ . Let it be Eα =

{
eα1 , e

α
2 , . . . , e

α
pα

}
the set of endmembers induced

from the hyperspectral image Hα in the database, where pα is the number
of induced endmembers from the α-th image. Given two images, Hα, Hβ , we
compute the following matrix whose elements are the distances between the
endmembers of each image:

Dα,β = [di,,j ; i = 1, . . . , pα; j = 1, . . . , pβ ] , (1)

where di,j is any de�ned distance between the endmembers eαi , e
β
j ∈ Rq; i.e.

the Euclidean distance, deuc, or the Angular distance, also know as Spectral
Angle Mapper (SAM) distance in remote sensing applications, dsam:
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deuc (e1, e2) =

√√√√ q∑
k=1

(e1,k − e2,k)2 (2)

dsam (e1, e2) = cos−1

 ∑q
k=1 (e1,k · e2,k)√∑q

k=1 (e1,k)
2
√∑q

k=1 (e2,k)
2

 (3)

Then, the dissimilarity between two hyperspectral images,Hα, Hβ , is given
as a function of the distance matrix (1) by the following equation:

s (Hα, Hβ) = (mr +mc) (|pα − pβ |+ 1) (4)

where mr and mc are the mean of the vectors of minimal values, minr and
minc, of the distance matrix, Dk,l, computed by rows and columns, respec-
tively. The value of mr represents the degree of inclusion of the set Eα in
Eβ , that is a meassure of how the materials presented in the image Hβ are
presented in the image Hβ . In the same way, the value of mc represents the
degree of inclusion of the set Eβ in Eα. The factor (|pα − pβ |+ 1) of 4 pe-
nalizes the di�erence on the number of materials found in each image pα, pβ .
Note that the endmember induction algorithm can give di�erent number of
endmembers for each image. The proposed dissimilarity function can cope
with this asymmetry avoiding the combinatorial problem of trying to decide
which endmembers can be matched and what to do in case that the number
of endmembers is di�erent from one image to the oher.

3 The DAMA strategy

DAMA is a data-driven thematic map quality assessment strategy suitable
for comparative purposes when competing discrete mapping products are
provided with little or no ground truth knowledge. It exploits a large num-
ber of implicit reference samples extracted from multiple reference cluster
maps generated from unlabelled blocks of the input RS image, that are clus-
tered separately to detect genuine, but small, image details at the cost of
little human supervision. Thus, the output consists of unsupervised relative
quantitative indexes (unsupervised map quality measures, in contrast to tra-
ditional supervised map accuracy measures) of labelling and segmentation
consistency between every competing map and the set of multiple reference
cluster maps.

The goal is to compute labelling and segmentation indexes of the consis-
tency between a map x generated from a digital input image z, and multiple
cluster maps generated from z without employing any prior knowledge. The
procedure consists of three steps:
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1. Locate across raw image z several blocks of unlabelled data, {szi ⊆ z, i = 1, . . . , Q},
using no prior knowledge and with a minimum of human intervention.
These unlabelled candidate representative raw areas, szi , have to satisfy
some heuristic constraints: (a) be su�ciently small so that it is easy to
analyze it by clustering algorithms, and (b) contain at least two of the
cover types of interest according to photo-interpretation criteria. Each
land cover type must appear in one or more blocks, and the set of blocks
should be su�ciently large to provide a statistically valid dataset of in-
dependent samples and to be representative of all possible variations in
each land cover.

2. Each block szi is subject to clustering separately, generating Q indepen-
dent so-called multiple reference cluster maps, {x∗i , i = 1, . . . , Q}.

3. Estimate the labelling (class) and segmentation (spatial) agreement be-
tween each reference cluster map x∗i and the portion of the test map, xi
corresponding to the block.

4. Combine independently the spatial and agreement �delity results col-
lected by submaps according to empirical (subjective) image quality cri-
teria.

4 RS-CBIR validation

4.1 CBIR quality assessment

Evaluation metrics from information retrieval �eld have been adopted to
evaluate CBIR systems quality. The two most used evaluation measures are
precision and recall. Precision, p, is the fraction of the retrieved images that
are relevant to the query. Recall, q, is the fraction of retrieved relevant images
respect to the total number of relevant images in the database according to
a priori knowledge. If we denote T the set of returned images and R the set
of all the images relevant to the query, then

p =
|T ∩R|
|T |

(5)

r =
|T ∩R|
|R|

(6)

Precision and recall follow an inverse relationship as function of the number
of retrieved images, named scope. Precision falls while recall increases as
the scope increases. Results are usually summarized as precision-recall or
precision-scope curves.

The main handicaps for the evaluation of RS-CBIR systems is the lack of
ground truth knowledge (categories) and the users di�culties to evaluate the
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retrieved images giving a positive/negative feedback. The former is due to the
expensive, tedious and error prone groundtruth gathering process, and it is a
well known problem in RS classi�cation [2]. The later is an speci�c problem
of CBIR systems in a Remote Sensing context. This kind of images are not
easily interpreted by visual inspection, what implies that RS-CBIR feedback
retrieval requires domain-speci�c skills and new interaction methodologies
yet to be developed.

Our proposed RS-CBIR validation strategy inspired on DAMA overcomes
these problems by giving a quantitative and qualitative measure of RS-CBIR
performance using only the RS data inherent structures.

4.2 Proposed validation strategy

A CBIR system model is a tuplaM = 〈D,φ, d, ψ〉, where D is a dataset with
n images, D = {xi}ni=1, φ(x) is a feature extraction process which maps any
image x onto a feature space Φ; a disimilarity function, d : Φ×Φ→ R+, which
is a distance function measuring the disimilarity between two images de�ned
on their features; and, an optional retrieval feedback process, ψ, which allows
the user to provide a feedback to the CBIR system to improve the data search
process.

The input to a CBIR system is an user's query, q. This is usually done
by providing one or more sample images. Then, the response of the CBIR
system modelM to the query q is a ranked list, fM (q) = {xi1 , . . . , xin}, of
the images in D, where I = {i1, . . . , in} is a permutation of the set of image
indices, i = 1, . . . , n, such that the returned images are ordered by increasing
disimilarity relative to the query, d (q, xi1) < d (q, xi2) < · · · < d (q, xin). The
number of images returned to the user is limited by the scope s, 0 < s ≤ n, of
the query, so only the �rst s images, {xi1 , . . . , xis}, on the ranked list fM (q)
are returned.

We propose to build the groundtruth of a potential query by a clustering
process. Thus, the groundtruth modelled by a clustering process is a ranked
list given by

fM (qi) =
{
xi1 , . . . , xik , xik+1

, . . . , xin
}

(7)

where qi = {xi} is the query, images {xi1 , . . . , xik} belong to the same
cluster Cq as the query image qi, and images

{
xik+1

, . . . , xin
}
belong to any of

the remaining clusters Cj . The set of all the queries, Q = {qi}ni=1, represents
a simulated family of queries whose groundtruth is given by a clustering
process.

We can take advantage of this to provide precision and recall measures in
absence of ground truth data or a-priori categorization, which is the com-



6 Miguel Angel Veganzones, Manuel Graña

Algorithm 1 Proposed RS-CBIR validation strategy
1. Perform a clustering over the dataset D of n images to obtain a clustering map c =
{c1, . . . , cn} where ci indicates the cluster Cj ∈ [1, p], patch i belongs to.

2. For each image, xi ∈ D, select the image as the query q, and calculate the ranked list
fM (q) = {xi1 , . . . , xin} returned by the CBIR system.

3. Being s the query scope, the set of returned images T and the set of all the images
relevant to the query R are given by:

T = {xi1 , . . . , xis} (8)

R =
{
∪ci=jxi; q ∈ Cj

}
(9)

4. Now the precision and recall can be calculated by substituting (8),(9) in equations
(5),(6). The average of the precision and recall measures estimated by all the queries
qi, i = 1, . . . , n, is a quality assesment of the RS-CBIR systemM response respect to
the family of queries Q = {qi}ni=1 on D.

mon scenario in RS-CBIR. Algorithm (1) describes the proposed validation
strategy.

5 Experiment and results

Here we apply the proposed RS-CBIR validation strategy to assess the per-
formance of the Hyperspectral CBIR system introduced in [10]. For doing
that, we applied the Hyperspectral CBIR over a scene taken by the HyMap
sensor, kindly provided by the German Aerospace Center (DLR). The scene
is a big image of 2878 × 512 pixels and 125 spectral bands. Twelve bands
corresponding to water absorption bands have been removed, remaining 113
bands. The image has been captured over the DLR facilities in Oberpfa�en-
hofen (Germany), and consist mainly of vegetation and �elds, in addition to
the DLR facilities and some small towns buildings.

We built six datasets by cutting the scene in patches of increasing sizes,
from 8× 8 pixels (23040 patches) to 256× 256 pixels (24 patches). For each
dataset we performed several clusterings on the average radiance of each
patch sample by means of the ELGB clustering algorithm [12, 13], setting
di�erent values of the number of clusters, k = 2, . . . , 7. The ELGB is an
enhanced k-means clustering algorithm which has a strong robustness against
initial condition variations. Such robustness is needed for the generalization of
the validation results. For each dataset and cluster, the mean and standard
deviation were calculated in order to purge those patches away from two
times the standard deviation (eliminating ambiguous samples and making
the dataset more simple). Complexity grows with the number of clusters k,
as the number of image samples belonging to the relevant cluster decreases.
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Each clustering is assumed to be the ground truth of the expected response
to a simulated family of queries, against which the RS-CBIR must compete.

Figures 1-6 show the precision-recall curves estimated by our proposed val-
idation strategy. Each �gure corresponds to an experiment over each dataset,
and shows a precision-recall curves for each of the di�erent complexities, given
by the number of clusters k. We can see a decrease on the performance of
the Hyperspectral CBIR system as the complexity of the simulated queries,
given by the number of clusters k, increases. It also can be observed that
the precision-recall curves are similar for the di�erent datasets, for which
we can conclude that the size of the images does not a�ect signi�cantly the
performance of the Hyperspectral CBIR system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Recall

A
v
e
ra

g
e
 P

re
c
is

io
n

 

 

k=2

k=3

k=4

k=5

k=6

k=7

Fig. 1 Precision-recall results for 8× 8 pixels dataset
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Fig. 2 Precision-recall results for 16× 16 pixels dataset
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Fig. 3 Precision-recall results for 32× 32 pixels dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Recall

A
v
e
ra

g
e
 P

re
c
is

io
n

 

 

k=2

k=3

k=4

k=5

k=6

k=7

Fig. 4 Precision-recall results for 64× 64 pixels dataset
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Fig. 5 Precision-recall results for 128× 128 pixels dataset
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Fig. 6 Precision-recall results for 256× 256 pixels dataset

6 Conclusions

There is a big need of new strategies to validate RS-CBIR systems that could
successfully overcome the lack of ground truth data. We have developed a
methodology for RS-CBIR systems quality assessment, inspired in the DAMA
strategy for unsupervised segmentation quality assessment in remote sensing
images. Our methodology works when little or no ground truth data are
available. We show an example of its applicability to test a Hyperspectral
CBIR system.

Further work will address other soft-computing [4, 3] approaches to the
problem.
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