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Abstract. We consider two standard notions in formal security proto-
col analysis: message deducibility and static equivalence under equational
theories. We present polynomial-time algorithms for deciding both prob-
lems under subterm convergent equational theories and under a theory
representing symmetric encryption with the prefix property. For subterm
convergent theories, polynomial-time algorithms for both problems are
well-known. However, we achieve a significantly better asymptotic com-
plexity than existing approaches. For the prefix theory, we are not aware
of any polynomial-time algorithms for static equivalence.
As an application, we use our algorithm for static equivalence to discover
off-line guessing attacks on the Kerberos protocol when implemented
using a symmetric encryption scheme for which the prefix property holds.
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1 Introduction

Formal methods and associated tools are now well established for analyzing
security protocols. In symbolic approaches, the messages exchanged by agents
are represented by terms in an algebra and properties of cryptographic operators
are formalized equationally. This sets the scene for different analysis approaches.

Message deducibility and static equivalence are two relations, formulated in
the equational setting, with direct applications to security protocol analysis.
Procedures for analyzing the security of cryptographic protocols use algorithms
for deduction [5,6,14,17], and static equivalence has been used to study crypto-
graphic indistinguishability [9] and to model and reason about off-line guessing
attacks [1, 7, 20].

Contributions In this paper, we give new algorithms for deciding both deduc-
tion and static equivalence in two practically relevant cases: subterm convergent
theories and theories for symmetric encryption with the prefix property. Our
algorithms have better asymptotic complexity than existing approaches.
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Our algorithms for the prefix theory are a simple generalization of those for
subterm convergent theories. To the best of our knowledge, no polynomial-time
algorithm for static equivalence under such theories was previously known.

As an application, we analyze the security of the Kerberos protocol against
off-line guessing attacks. Although it was previously known that Kerberos admits
an off-line guessing attack [24], we are able to find numerous new attacks by
considering an implementation with a symmetric encryption scheme for which
the prefix property holds, e.g., if ECB or CBC modes of operation are used.
Identifying such attacks highlights design and implementation issues (such as
message ordering, modes, etc.) that may not appear important. Automating
such analysis requires static equivalence procedures for different theories and
highlights the importance of efficient, automated methods for this task.

Background and Related Work The notions of deduction and static equivalence
that we consider were originally introduced in the context of the pi-calculus [4].

Considerable work has been devoted to proving the decidability of both prob-
lems for a wide range of equational theories. [2] gives polynomial-time algo-
rithms for solving both problems under equational theories generated by sub-
term convergent rewriting systems. For other equational theories there are few
polynomial-time results; however, decidability results exist under fairly general
conditions, e.g., [3, 14–18,22,23,25–27].

Despite the considerable prior work in this area, there have been few im-
plementations of these algorithms, particularly for static equivalence. For some
time, ProVerif [10, 11] was the only tool capable of deciding static equivalence.
General algorithms for deduction and static equivalence have more recently been
implemented by the YAPA [8] and KISS [16] tools. Although the precise set of
equational theories and conditions under which these algorithms terminate is
unclear, they seem able to handle most theories previously studied. We provide
a detailed comparison of our algorithms with those implemented by these tools.

Even less attention has been devoted to improving the efficiency of algorithms
for these problems. Given the interest in tools for solving these problems, com-
plexity issues are not only theoretically interesting but also practically relevant.

Organization In Section 2, we introduce basic definitions and notation. In Section
3, we present our algorithms and their properties. In Section 4, we extend the
methods of Section 3 to handle symmetric encryption with the prefix property.
As a case study, we analyze the security of the Kerberos protocol against off-line
guessing attacks. We draw conclusions in Section 5. For reasons of space and
readability, full proofs are given in the technical report [19].

2 Background and Basic Definitions

Given a function g, we denote by dom(g) and by ran(g) its domain and range,
respectively. When X ⊆ dom(g), we write g[X] for the image of X under g.

We consider signaturesΣ =
⊎
n∈NΣn consisting of a finite number of function

symbols, where Σi contains the functions symbols of arity i. For each f ∈ Σ, the
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function ar:Σ → N returns the arity ar(f) of f . We also fix infinite, disjoint sets
Var and Name of variables and names. Intuitively, names represent fresh data
(such as nonces) and constant symbols (i.e., symbols in Σ0) represent publicly
known constants. We assume that x, y, z ∈ Var and that {xi | i ∈ N} ⊆ Var.

Example 1. The signature ΣDY , representing a Dolev-Yao model with an hash
function h, a pairing function pair, the projections π1 and π2, and symmetric and
asymmetric encryption and decryption, is given by ΣDY = ΣDY1 ∪ΣDY2 , where
ΣDY1 = {h, π1, π2, pub, priv} and ΣDY2 = {encsym, decsym, pair, encasym, decasym}.

The functions pub and priv represent the generation of public and private
keys. We will use the following abbreviations: xpub for pub(x); xpriv for priv(x);

〈x, y〉 for pair(x, y); {P}sK for encsym(P,K); {C}s,−1K for decsym(C,K); {P}K for

encasym(P,K); {C}−1K for decasym(C,K); and 〈x1, . . . , xn〉 for 〈. . . 〈x1, x2〉 . . . , xn〉.

As usual, given a set X, T (Σ,X) is the set of Σ-terms over X, i.e., the small-
est set such that X ⊆ T (Σ,X) and f(t1, . . . , tn) ∈ T (Σ,X) for all t1, . . . , tn ∈
T (Σ,X) and all f ∈ Σn. We use the symbol = to denote syntactic equality.
Given t ∈ T (Σ,X), we define the set sub(t) of subterms of t as usual: if t ∈ X,
then sub(t) = {t}; if t = f(t1, . . . , tn) for some f ∈ Σn and t1, . . . , tn ∈ T (Σ,X),
then sub(t) = {t} ∪

⋃n
i=1 sub(ti). We denote by vars(t) = sub(t) ∩ Var the set of

variables occurring in t.
We use the standard notion of substitution as a partial function σ:Var 9

T (Σ,X). We abuse notation by using the same symbol σ for a substitution and
its homomorphic extension to T (Σ,X), where dom(σ) ⊆ X. As usual, we write
tσ instead of σ(t).

A frame is a pair (ñ, σ), written υñ.σ, where ñ ⊆ Name is a finite set
of names and σ:Var 9 T (Σ,Name) is a substitution with finite domain. In-
tuitively, names in ñ represent fresh data generated by agents and thus un-
available to the attacker, while σ represents the messages learned by the at-
tacker by eavesdropping on the network. Given a frame φ = υñ.σ, we define
Tφ = T (Σ, (Name \ ñ) ∪ dom(σ)). We say that terms in Tφ are φ-recipes. The
terms in σ[Tφ] are the concrete terms that the attacker can obtain and we refer
to them as terms constructible from φ.

A rewriting system R over Σ is a set of rewrite rules of the form l→ r, where
l, r ∈ T (Σ,Var). We assume that rewriting systems have only finitely many
rules. Given a rewriting system R, we define the relation →R ⊆ T (Σ,Name) ×
T (Σ,Name) as the smallest relation such that:

– if (l → r) ∈ R and σ: vars(l) → T (Σ,Name) is a substitution, then lσ →R

rσ, and
– if t1, . . . , tn, t

′
i ∈ T (Σ,Name), ti →R t

′
i, and f ∈ Σn, then f(t1, . . . , ti, . . . , tn)

→R f(t1, . . . , t
′
i, . . . , tn).

We drop the R from →R when it is clear from context.
A rewriting system R is convergent if it is terminating and confluent. In

this case, each term t has a unique normal form t↓R ∈ T (Σ,Name). Given a
convergent rewriting system R, we define ≈R ⊆ T (Σ,Name) × T (Σ,Name) as
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the relation such that t ≈R t′ if and only if t↓R= t′ ↓R. Note that we adopt
the usual convention of writing t ≈R t′ instead of (t, t′) ∈ ≈R. It is simple
to check that ≈R is an equational theory (i.e., an equivalence relation closed
under the application of contexts). We call ≈R the equational theory generated
by R. A rewriting system R is subterm convergent if it is convergent and, for
each (l → r) ∈ R, either r ∈ sub(l) or r ∈ T (Σ, ∅) is a term in normal form.
Permitting terms in T (Σ, ∅) on the right-hand side follows [8].

Example 2. The rewriting system RDY over ΣDY , formalizing the standard ca-
pabilities of the Dolev-Yao intruder, is given by

RDY =

{
π1(〈x, y〉)→ x, π2(〈x, y〉)→ y,

{
{x}sy

}s,−1
y
→ x,

{
{x}ypub

}−1
ypriv
→ x

}
.

The rewriting system Rp, given by Rp = RDY ∪ {π1({〈x, y〉}sz)→ {x}
s
z}, repre-

sents a Dolev-Yao attacker in the presence of symmetric encryption satisfying
the prefix property. RDY and Rp are convergent rewriting systems. However,
only RDY is subterm convergent. For readability, we write ≈DY and ≈p instead
of ≈RDY and ≈Rp , respectively.

Our definitions of deduction and static equivalence differ slightly from those
introduced in [4] and used, e.g., in [2, 3, 20]. However, they are equivalent to
the original ones (in particular, our definition of deduction is analogous to the
characterization provided by Proposition 1 of [2]) and fit our methods better.

Definition 1. Given a frame φ, a term t ∈ T (Σ,Name), and an equational
theory ≈, we say that t is deducible from φ under ≈, and write φ `≈ t, if there
is a t′ ∈ σ[Tφ] such that t′ ≈ t.
The equational theories ≈ that we use are those generated by rewriting systems
R; thus, we write φ `R t instead of φ `≈R t.

Definition 2. Given two frames φ = υñ.σ and φ′ = υñ′.σ′ and an equational
theory ≈, we say that φ and φ′ are statically equivalent under ≈, and write
φ ≈s φ′, if Tφ = Tφ′ ( i.e., ñ = ñ′ and dom(σ) = dom(σ′)) and, for all t, t′ ∈ Tφ,
tσ ≈ t′σ if and only if tσ′ ≈ t′σ′.

The corresponding decision problems are defined as expected.

Definition 3 (Deduction Problem). Given a frame φ, an equational theory
≈, and a term t, does φ `≈ t hold?

Definition 4 (Static Equivalence Problem). Given frames φ and φ′ and an
equational theory ≈, does φ ≈s φ′ hold?

Static equivalence is well-suited for modeling off-line guessing attacks [1,7,20].
Suppose that a nonce g has low entropy: for example, g is a human-picked
password. Then, an attacker may choose a small set of bitstrings with a high
probability of containing the bitstring represented by g. The attacker can then
use each of these bitstrings as his guess for the password. The attack is successful
if he can verify which of these guesses is correct. The following definition, in the
spirit of [7, 20], captures this intuition.
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Definition 5. Let ≈ be an equational theory, φ = υñ.σ be a frame, and g ∈
Name be a name. Fix some fresh name w ∈ Name \ (sub(ran(σ)) ∪ {g}) and
define φg and φw by

φg = υ(ñ ∪ {w}).(σ ∪ {xn+1 7→ g}),
φw = υ(ñ ∪ {w}).(σ ∪ {xn+1 7→ w}).

We say that φ allows an off-line guessing attack of g under ≈ if φg 6≈s φw.

Note that this definition is independent of the particular choice of the name w.
Intuitively, the attacker’s guess can be seen as a message in the network. The

attacker does not know beforehand if his guess is correct, but he can check this
if he can distinguish a frame in which xn+1 stands for a random name w from
a frame in which xn+1 stands for the guessed name g. Section 4.1 presents an
application of static equivalence to the study of off-line guessing attacks.

In order to obtain polynomial complexity bounds for our algorithms, we will
work with DAG (directed acyclic graph) representations of terms, as in [2].

Definition 6. Let t ∈ T (Σ,X) be a term. Let V be a set of vertices, λ:V →
Σ ∪X a labeling function, E ⊆ V × V × N a set of edges, and v ∈ V a vertex.

If t ∈ X, then (V, λ,E, v) is a DAG-representation of t if λ(v) = t and
(v, v′, n) /∈ E for all v′ ∈ V and all n ∈ N.

If t = f(t1, . . . , tn), then (V, λ,E, v) is a DAG-representation of t if λ(v) = f ,
there are edges (v, v1, 1), . . . , (v, vn, n) ∈ E such that, for each i ∈ {1, . . . , n},
(V, λ,E, vi) is a DAG-representation of ti, and there are no other edges (v, v′,m) ∈
E for any v′ ∈ V and any m ∈ N.

A tuple T = (V, λ,E) is a DAG-forest if, for all v ∈ V , (V, λ,E, v) represents
some term t ∈ T (Σ,X). If T = (V, λ,E) is a DAG-forest and v ∈ V , we use the
following notions:

– termT (v) is the (unique) term represented by (V, λ,E, v);
– ei,T (v) is the (only) v′ ∈ V such that (v, v′, i) ∈ E;
– inT (v) = {w ∈ V | (w, v, i) ∈ E, for some i};
– outT (v) = {w ∈ V | (v, w, i) ∈ E, for some i};
– leaves(T ) = {v ∈ V | outT (v) = ∅};
– roots(T ) = {v ∈ V | inT (v) = ∅}.

If T has only one root, we may refer to it as a DAG-tree.
Let T = (V, λ,E) be a DAG-forest. If roots(T ) = {v}, we say that T is

a DAG-representation of the term termT (v). When no confusion can arise, we
may abuse notation and use the same symbol for such a DAG-forest and the
term represented by it. T is minimal if there are no distinct vertices v, v′ ∈ V
such that termT (v) = termT (v′). T is in normal form if, for each vertex v in
T , termT (v) is in normal form. A normal form of T is a DAG-forest Tnf such
that, for all v ∈ roots(T ), there is a vertex vnf in Tnf such that termT (v)↓ =
termTnf (vnf), and for each vnf ∈ roots(Tnf), there is a v ∈ roots(T ) such that
termT (v)↓= termTnf (vnf). The minimal normal form of a DAG-forest is unique
up to renaming of vertices.
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Example 3. The diagram

pair
1

||xxxxxx 2

""FFFFFF decsym
1

wwppppppp 2

%%KKKKKKK

x y encsym
1

yyrrrrrrr 2

''OOOOOOOOO x

h
1��

x

y

depicts a DAG-forest containing DAG-representations of the terms 〈x, y〉 and

{{h(y)}sx}
s,−1
x

. Its minimal normal form is shown below.

pair
1

zzuuuuuu 2

$$IIIIII h

1
��

x y

Our complexity results depend on the rewriting system and are stated in
terms of the size of terms and frames. If t ∈ T (Σ,Name) is a term, then the
size |t| of t is 1 if t ∈ X and 1 +

∑n
i=1 |ti| if t = f(t1, . . . , tn). If φ = υñ.σ is a

frame, then the size |φ| of φ is given by |φ| =
∑
x∈dom(σ) |xσ|. If T = (V, λ,E)

is a DAG-forest, we define |T | = |V |. If R is a rewriting system, we define
nvars(R) = max(l→r)∈R |vars(l)|. In order to take advantage of DAGs, we always
assume a random-access machine model in our complexity analysis.

3 Decision Procedures for Subterm Convergent
Rewriting Systems

Throughout this section we assume fixed a subterm convergent rewriting system
R, such that nvars(R) ≥ 1, and a frame φ = υñ.σ, such that σ = {x1 7→ t1,
. . . , xn 7→ tn} and the terms ti are all in normal form. We also fix a set Υ ={
τ1, . . . , τnvars(R)

}
of fresh names, i.e., Υ ∩ (ñ ∪ sub(ran(σ))) = ∅.

3.1 Frame Saturation

In this section, we present our frame saturation algorithm. Frame saturation
is an established technique for deciding both deduction and static equivalence
[2, 8, 16]. Our procedure is less general than those implemented in [8, 16], but it
is more efficient for subterm convergent equational theories. The existence of a
saturation, as defined below, is closely related to the property of local stability
in [3].

Definition 7. We say that t is a φ-recipe (under R) for t′ if t is a φ-recipe and
tσ ≈R t′. We say that a frame φs = υñ.σs is a saturation of φ (under R) if there
is a φ-recipe for each t ∈ ran(σs) and, for all t ∈ Tφ, (tσ)↓ ∈ σs[Tφs ].
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The following simple lemma justifies the usefulness of saturation.

Lemma 1. Let φs be a saturation of φ and t ∈ T (Σ,Name) be a term. Then,
φ `R t if and only if t↓∈ σs[Tφs ].

The first step in our saturation algorithm is to build a forest Tφ,R = (Vφ,R,
λφ,R, Eφ,R) (line 1 in Algorithm 1). Tφ,R is a minimal DAG-forest containing
DAG representations of all terms lσl, where l is the left-hand side of some rewrite
rule (l→ r) ∈ R and σl: vars(l)→ sub(ran(σ))∪Υ is a substitution. We also use
the functions ζ and rw. ζ is such that, for each vertex v ∈ Vφ,R representing a
term t ∈ ran(σ)∪ Υ , ζ(v) is a DAG-representation of a φ-recipe for t. rw is such
that, for each vertex v representing a term lσl as described above, rw(v) is the
(unique) vertex representing rσl. Algorithms for computing Tφ,R, rw and ζ are
given in the technical report [19]. Lemma 2 summarizes their relevant properties.

Lemma 2. The forest Tφ,R = (Vφ,R, λφ,R, Eφ,R) and the functions rw and ζ are
such that:

(1) Tφ,R is minimal, can be obtained in time O(|φ|nvars(R) log2 |φ|), and |Tφ,R| ∈
O(|φ|nvars(R));

(2) rw can be computed in time O(log |φ|);
(3) ζ can be computed in time O(log |φ|); for each v ∈ dom(ζ), |ζ(v)| = 1;
(4) for each s ∈ sub(ran(σ))∪Υ , there is an unique v such that termTφ,R(v) = s;
(5) for each v ∈ dom(rw), termTφ,R(v) →R termTφ,R(rw(v));
(6) for each t ∈ ran(σ) ∪ Υ , there is a v such that termTφ,R(v) = t and v ∈

dom(ζ);
(7) for each v ∈ dom(ζ), termζ(v)(v) is a φ-recipe for termTφ,R(v);
(8) for each rule (l → r) ∈ R and each substitution σl: vars(l)→ sub(ran(σ)) ∪

Υ , there is a unique v ∈ Vφ,R ∩ dom(rw) such that termTφ,R(v) = lσl and
termTφ,R(rw(v)) = rσl.

Our saturation algorithm traverses the forest Tφ,R bottom-up. At each ver-
tex v, whenever a recipe for termTφ,R(v) is found, v is added to the range of
ζ, and ζ(v) is a DAG-representation of a φ-recipe for that term. A recipe is
found if one has recipes ζ(v1), . . . , ζ(vn) for all vertices vi that have an incoming
edge (v, vi, i) from v. If the term represented by v is an instance of the left-
hand side of a rule, then this recipe is also stored under ζ(rw(v)) (note that
termTφ,R(v)→R termTφ,R(rw(v))). Thus, throughout the saturation process, the
function ζ associates each vertex v in its domain to a DAG-representation of a
φ-recipe for termTφ,R(v). Whenever we add a vertex v to the domain of ζ, we
add all vertices v′ with an outgoing edge (v′, v, i) to v to the list of vertices
to visit in the next iteration of the visiting loop. At the end of the process,
a term t ∈ sub(ran(σ)) is deducible from φ if and only if the (unique) vertex
representing that term is in the domain of ζ.

The algorithm also stores the functions σs and ζs. σs is such that φs = υñ.σs
is a saturation of φ, and ζs is such that dom(ζs) = dom(σs) and, for each
x ∈ dom(σs), ζs(x) is a DAG-representation of a φ-recipe for xσs.
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Furthering our abuse of notation, we use the symbol ζs as the substitution
that assigns, to each x ∈ dom(ζs), the term represented by (the DAG-forest)
ζs(x). In this case we use postfix notation and write xζs.

The tree Tφ,R has at most O(|φ|nvars(R)) vertices, and each vertex v ∈ Vφ,R is
visited at most |inTφ,R(v)| times. Thus, the total number of visits to vertices is at

most O(|φ|nvars(R)). By using suitable data structures, we can ensure that each
visit takes at most time O(log2 |φ|). We thus obtain an asymptotic complexity
of O(|φ|nvars(R) log2 |φ|).

We state the algorithm’s properties and complexity in Lemma 3.

Algorithm 1 (Saturating a Frame)
Input: a frame φ = υñ.σ, with σ = {x1 7→ t1, . . . , xn 7→ tn}
Output: a saturation φs = υñ.σs of φ and a function ζs

1: compute Tφ,R = (Vφ,R, λφ,R, Eφ,R), rw, ζ
2: ζs ← {x 7→ ({vx} , {vx 7→ x} , ∅) | x ∈ dom(σ)},

where the vx are such that termTφ,R(vx) = xσ
3: σs ← σ
4: visitnow← leaves(Tφ,R) ∪ (

⋃
v∈dom(ζ) inTφ,R(v)), visitnext← ∅

5: while visitnow 6= ∅
6: for all v ∈ visitnow
7: if λ(v) ∈ X \ ñ and v /∈ dom(ζ) then
8: ζ ← ζ ∪ {v 7→ (v, {v 7→ λ(v)} , ∅)}
9: visitnext← visitnext ∪ inTφ,R(v)

10: if outTφ,R(v) ⊆ dom(ζ) and v /∈ dom(ζ) then
11: let (Vi, λi, Ei) = ζ(ei,Tφ,R(v)) for i ∈ {1, . . . , ar(λφ,R(v))}

12:

ζ ← ζ ∪ {v 7→ (v ∪
⋃ar(λφ,R(v))
i=1 Vi,

{v 7→ λ(v)} ∪
⋃ar(λφ,R(v))
i=1 λi,⋃v

i=1

{
(v, ei,Tφ,R(v), i)

}
∪
⋃ar(λφ,R(v))
i=1 Ei)}

13: if v ∈ dom(rw) and rw(v) /∈ dom(ζ) then
14: ζ ← ζ ∪ {rw(v) 7→ ζ(v)}
15: if termTφ,R(rw(v)) ∈ sub(ran(σ))
16: then choose x ∈ Var \ dom(σs)
17: σs ← σs ∪

{
x 7→ termTφ,R(rw(v))

}
18: ζs ← ζs ∪ {x 7→ ζ(rw(v))}
19: visitnext← visitnext ∪ inTφ,R(rw(v))
20: else visitnext← visitnext ∪ inTφ,R(v)
21: return ζs, φs = υñ.σs

Lemma 3. Algorithm 1 terminates in time O(|φ|nvars(R) log2 |φ|).
φs is a saturation of φ (under R), dom(ζs) = dom(σs), and, for each x ∈

dom(σs), ζs(x) ∈ Tφ and ζs(x) is a DAG-representation of a φ-recipe for xσs
with size |ζs(x)| ∈ O(|φ|).

For each v ∈ dom(ζ), there is a φs-recipe t for termTφ,R(v) such that ζ(v) =
tζs is a φ-recipe for termTφ,R(v). If termTφ,R(v) ∈ σs[Tφs ], then v ∈ dom(ζ).
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3.2 Decision Procedure for Deduction

In light of Lemma 1, to solve the deduction problem under R for a frame φ and
a term t, it suffices to compute t↓R and the saturated frame φs = νñ.σs (using
Algorithm 1) and then decide whether t↓R∈ σs[Tφs ]. In the technical report [19]
we show that the complexities of these three computations are, respectively,
O(|t| log2 |t|), O(|φ|nvars(R) log2 |φ|), and O(|t||φ|2). Theorem 1 sums up these
observations.

Theorem 1. Given a frame φ and a term t, the complexity of deciding whether
φ `R t is at most O(|t| log2 |t|+ |t||φ|2 + |φ|nvars(R) log2 |φ|).

3.3 Decision Procedure for Static Equivalence

Throughout this section, Tφ,R is as described in the previous sections, φs and ζs
are as output by Algorithm 1, and φ′ = νñ.σ′ is a frame such that dom(σ′) =
dom(σ) = {x1, . . . , xn}. We assume that dom(σs) = {x1, . . . , xms} and that σs
is an extension of σ. Υ will be used as in the previous section.

Algorithm 2 summarizes our procedure for deciding static equivalence. Note
that some of the operations performed by this algorithm must use the DAG-
representation of terms to ensure polynomial-time complexity. For simplicity,
we refer to the technical report [19] for the exposition of such details.

Algorithm 2 (Decision Procedure for ≈sR)
Input: two frames φ = υñ.σ and φ′ = υñ.σ′

such that dom(σ) = dom(σ′) = {x1, . . . , xn}
Output: true if φ ≈sR φ′ and false otherwise

1: compute Tφ,R, ζ, rw, ζs and φs
2: choose a permutation π: {1, . . . ,ms} → {1, . . . ,ms}

such that 1 ≤ i < j ≤ ms ⇒ |xπ(i)σs| ≤ |xπ(j)σs|
3: for each k ∈ {1, . . . ,ms}, let
φs,k = υñ.

{
xπ(1) 7→ xπ(1)σs, . . . , xπ(k) 7→ xπ(k)σs

}
4: for all k ∈ {1, . . . ,ms}
5: if xπ(k)σs ∈ σs[Tφs,k−1

] then
6: choose t ∈ Tφs,k−1

such that xπ(k)σs = tσs
7: if xπ(k)ζsσ

′ 6≈R tζsσ′ then return false
8: for all v ∈ dom(rw)
9: then if (ζ(v))σ′ 6≈R (ζ(rw(v)))σ′

10: then return false
11: Repeat once lines 1–10, exchanging φ and φ′

12: return true

The first loop (lines 4–7) tests whether syntactical equality between terms
yielded by two distinct φ-recipes under φ implies that these two recipes yield
equationally equal terms under φ′. The condition in lines 8–10 tests whether
there are two recipes representing instances of the left and right-hand sides of a
rule under φ but that do not represent equal terms (modulo R) under φ′. If either
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of the two loops outputs false then the two frames are not statically equivalent.
Otherwise, we conclude that all equalities (between recipes, modulo R) satisfied
by φ are also satisfied by φ′. Repeating the procedure, exchanging the roles of φ
and φ′, allows one to decide whether φ ≈sR φ′. The correctness of this procedure
and its complexity analysis are provided by Theorem 2.

Theorem 2. Algorithm 2 decides whether φ ≈sR φ′ in time

O((|φ|+ |φ′|)3 log2(|φ|+ |φ′|) + (|φ|+ |φ′|)nvars(R)+1 log2(|φ|+ |φ′|)).

O((|φ|+ |φ′|)3) is an upper bound for the complexity of the first loop (lines
4–7) of Algorithm 2; O((|φ|+ |φ′|)nvars(R)+1 log2(|φ|+ |φ′|)) is an upper bound
for the complexity of the second (lines 8–10).

4 The Prefix Theory

We now investigate how our methods can be extended to deal with theories
resulting from other convergent rewriting systems. In particular, we examine
the system Rp presented in Example 2, which represents symmetric encryption
with the prefix property. Encryption modes designed to encrypt large messages
using block ciphers often have the prefix property, namely ECB and CBC. Al-
though the decidability of this theory has been studied [14], we are not aware of
polynomial-time results for static equivalence.

As before, we assume here that φ = υñ.σ is a frame, with σ = {x1 7→ t1, . . . ,
xn 7→ tn}, and fix a set Υ = {τ1, τ2, τ3} of fresh names (note that nvars(Rp) = 3,
since |vars(π1({〈x, y〉}sz))| = 3).

We begin by defining p-subterms, which extend the usual notion of subterm.

Definition 8. Let t ∈ T (ΣDY ,Name). We define the set of p-subterms of t
inductively as follows:

– if t ∈ Name, then subp(t) = {t};
– if t = {〈t1, t2〉}st3 for some t1, t2, t3 ∈ T (Σ,Name), then subp(t) = {t, t3} ∪

subp({t1}st3) ∪ subp(〈t1, t2〉);
– if t = f(t1, . . . , tn) for some f and some t1, . . . , tn and t 6= {〈t′1, t′2〉}

s
t′3

for

all t′1, t
′
2, t
′
3 ∈ T (Σ,Name), then subp(t) = {t} ∪

⋃n
i=1 subp(ti).

We extend this definition to sets of terms as usual.

Our algorithms for the prefix theory use a forest Tφ,p analogous to the tree
Tφ,R used for subterm convergent theories. The construction process is also sim-
ilar. We first compute the substitution σnf = {x1 7→ t1 ↓, . . . , xn 7→ tn ↓}.
Then, we build a minimal DAG-forest Tφ,p containing DAG-representations of
all terms lσl, where l is the left-hand side of a rewrite rule (l → r) ∈ R and
σl: vars(l)→ subp(ran(σ))∪Υ . The functions rwp and ζp are defined analogously
to rw and ζ for the tree Tφ,R. Tφ,p satisfies properties analogous to those given
in Lemma 2, after replacing some critical instances of sub by subp. A summary
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of these properties and details of the construction can be found in the technical
report [19].

Let Algorithm 1p be Algorithm 1 after replacing R by Rp, Tφ,R by Tφ,p, and
sub by subp in line 15. Algorithm 1p computes a saturated frame under Rp. Our
algorithms for deduction and static equivalence also work for the prefix theory.
We summarize these results in the following theorems. Note, in our complexity
analysis, that nvars(Rp) = 3. Hence, the complexity of our algorithms is not
affected by the fact that Rp is not subterm convergent.

Lemma 4. Algorithm 1p terminates in time O(|φ|3 log2 |φ|).
φs is a saturation of φ (under Rp), dom(ζs) = dom(σs), and, if x ∈ dom(ζs),

then xζs is a DAG-representation of a φ-recipe for xσs with size |xζs| ∈ O(|φ|).
For each v ∈ dom(ζ), there is a φs-recipe t for termTφ,p(v) such that ζ(v) =

tζs is a φ-recipe for termTφ,p(v). If termTφ,p(v) ∈ σs[Tφs ], then v ∈ dom(ζ).

Theorem 3. Given a frame φ and a term t, the complexity of deciding whether
φ `Rp t is at most O(|t| log2 |t|+ |t||φ|2 + |φ|3 log2 |φ|).

Theorem 4. Algorithm 2 decides whether φ ≈sRp
φ′ in time

O((|φ|+ |φ′|)4 log2(|φ|+ |φ′|)).

4.1 Off-line Guessing Attacks on a Version of Kerberos

We now present multiple off-line guessing attacks on a version of Kerberos. Most
of our attacks rely on the prefix property. Kerberos is known to be insecure
against off-line guessing attacks — e.g., [24] describes an attack relying only on
standard properties of symmetric encryption that is also captured by our model.
However, our formal analysis of its security when implemented with a symmetric
encryption scheme satisfying the prefix property is novel.

Kerberos Variant The version of Kerberos we consider is adapted from [12].
We present a short description of the protocol, in standard notation.

1. A → KAS: 〈A,KAS, T1〉
2. KAS → A:

{
〈{〈A,TGS,KA,TGS, T2〉}sKKAS,TGS

,KA,TGS,TGS, T2〉
}s

KA,KAS

3. A → TGS: 〈{〈A,TGS,KA,TGS, T2〉}sKKAS,TGS
, {〈A, T3〉}sKA,TGS

,B〉

4. TGS → A:
{
〈KA,B,B, T4, {〈A,B,KA,B, T4〉}sKB,TGS

〉
}s

KA,TGS

5. A → B: 〈{〈A,B,KA,B, T4〉}sKB,TGS
, {〈A, T5〉}sKA,B

〉
6. B → A: {T5}sKA,B

A is a name (e.g., of a client of a single-sign-on service). KAS is the Kerberos au-
thentication server. TGS is the ticket-granting server. B is some service provider.
KA,KAS (respectively KKAS,TGS, KB,TGS) is a long-term key shared between A
and KAS (respectively between KAS and TGS and between B and TGS). KA,TGS
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(respectively KA,B) is a short-term key shared between A and TGS (respectively
between A and B), freshly generated for each session by KAS (respectively by
TGS). Finally, T1, . . . , T5 are timestamps. Note that for our purposes, it suffices
to view them as freshly generated nonces, even if this representation is imprecise.

The only difference between the protocol presented and the model of Ker-
beros (version IV) presented in [12] is that, in the term sent in step 2, the
encryption {〈A,TGS,KA,TGS, T2〉}sKKAS,TGS

is the first (instead of the last) term in

the encrypted tuple. Although this may may appear to be a small and harmless
change, it gives rise to guessing attacks if a symmetric encryption scheme with
the prefix property is used. It is interesting to note that one of our attacks relies
on the double encryption used in version IV of the protocol. Version V eliminates
the double encryption and thereby prevents this attack.

The signature Σker we use is obtained by simply adding the set Σ0 = {A,B,
KAS,TGS} of agent names to the signature ΣDY . We assume that {Ti | i ∈ N} ⊆
Name. We also represent the long-term keys KA,KAS,KKAS,TGS ∈ Name and the
short-term keys KA,TGS,K

′
A,TGS ∈ Name (corresponding to the keys generated

by KAS for use between A and TGS in two distinct sessions) as names.

The Attacker’s Knowledge We consider an attacker who eavesdrops on
two different protocol sessions, both executed between an agent A and the
server KAS. For simplicity, we assume that the attacker stores only the sec-
ond message of each session. This is enough to present our off-line guessing
attacks. We represent the attacker’s knowledge by the frame φ = υñ.σ, where

ñ =
{
KA,TGS,K

′
A,TGS,KA,KAS,KKAS,TGS, T1, T2

}
and

σ = { x0 7→
{
〈{〈A,TGS,KA,TGS, T1〉}sKKAS,TGS

,KA,TGS,TGS, T1〉
}s
KA,KAS

,

x1 7→
{
〈
{
〈A,TGS,K ′A,TGS, T2〉

}s
KKAS,TGS

,K ′A,TGS,TGS, T2〉
}s
KA,KAS

}.

We are interested in determining whether this frame allows an off-line guess-
ing attack of KA,KAS. This is a (potentially) weak key, since it is often chosen by
human users or derived from such a key. We take g = KA,KAS and w = a0 and,
throughout our example, we work with the frames φg = υñ′.σg and φw = υñ′.σw,
where ñ′ = ñ ∪ {a0}, σg = σ ∪ {x2 7→ KA,KAS}, and σw = σ ∪ {x2 7→ a0}.

Saturation of φw and φg In [19] we present tables with the results of satu-
rating the frames.

Off-line Guessing Attacks to Kerberos It is clear that φw 6≈sRp
φg. Thus,

Kerberos allows an off-line-guessing attack of KA,KAS. In fact, an attacker has
multiple pairs of recipes t, t′ ∈ Tφg that he can use to validate his guess; we
present a few illustrative examples in Table 1. Note that, of the four attacks
presented, all but Attack 1 rely on the prefix property of the encryption scheme.
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Table 1. (Sample) Off-line Guessing Attacks to Kerberos

Attack t t′

1 π2(π1({x0}s,−1
x2

)) TGS

2
{
〈{π1(x0)}s,−1

x2
, π2({x0}s,−1

x2
)〉
}s

x2

x0

3 〈{π1(π1(x0))}s,−1
x2

,TGS〉 π1({x0}s,−1
x2

)

4 π1(π1(π1(π1(π1({x0}s,−1
x2

))))) π1(π1(π1(π1(π1({x1}s,−1
x2

)))))

Only Attack 4 relies on the fact that we use version IV instead of version V and
exchange the order of the messages of the original Kerberos protocol.

How feasible are these attacks in practice? First of all, CBC encryption mode
uses a random initialization vector. To prevent Attack 4 it is enough that the
initialization vectors used in the two messages are not the same (even if they are
public). This can be captured in our model by representing symmetric encryption
as a function encsym with three arguments (an initialization vector, the message,
and the key) and writing the rewriting rule representing the prefix property as

π1(encsym(IV , 〈M1,M2〉,K))→ encsym(IV ,M1,K).

Attack 4 does not arise in this model.
Furthermore, consider the recipes t and t′ given in Attack 4. We have tσg =

t′σg = {〈A,TGS〉}sKKAS,TGS
. However, in practice, all that the attacker can do

is obtain an encryption of the first block of the plaintext. Thus, this attack is
only feasible if the first encrypted block is equal in both messages. If the size
of the first encrypted block is smaller than the encryption of 〈A,TGS〉, then the
attack succeeds. Otherwise, its success depends on whether and how padding
techniques are applied: if the rest of the first block is padded with a sequence
of 0’s, then the two blocks are equal and the attack succeeds. If the rest of
the first block is padded with a random sequence of freshly generated bits or
used for storing the encryption of KA,TGS, then the attack fails. Finally, note
that Attack 2 (respectively 3) is only feasible if the encryption of the first three
(respectively two) elements of the tuple occupies disjoint encryption blocks from
the encryption of the last one (respectively two) elements. Note that modeling
such details would fall outside of the scope of the theories we consider.

The relevance of details such as initialization vectors, block length, and
padding techniques in the study of off-line guessing attacks has been previ-
ously pointed out [13]. We believe that it is an important challenge for symbolic
methods to be able to reason about these kinds of possible weaknesses.

5 Related Work and Conclusion

Our algorithms compare favorably to previously existing algorithms. [2] presents
the first proof that deduction and static equivalence under subterm convergent
equational theories can be decided in polynomial-time. However, efficiency is not
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their main concern and it is not surprising that our algorithms has a much better
asymptotic complexity. For example, for the theory ≈DY , the complexities of our
algorithms areO(|t| log |t|+|φ|2|t|+|φ|2 log2 |φ|) andO((|φ|+|φ′|)3 log2(|φ|+|φ′|))
for deduction and static equivalence (respectively), whereas our best estimates
for the complexity of the algorithms in [2] are O(|φ|10+|φ|2|t|+|t|4) and O((|φ|+
|φ′|)15) for the same problems.

The complexity of the YAPA tool [8] is not polynomial, as it uses a straight-
forward representation of terms, as opposed to DAGs. Furthermore, our satura-
tion technique is also more efficient: in YAPA, for each (n, p, q)-decomposition
of the left-hand side of a rewrite rule and each assignment of the first n + p
parameters to recipes in the frame, it may be necessary to compute the normal
form of a term t. We are not aware of any general algorithms for this task that
have a better complexity than O(|t|4) (see discussion below). If we denote by
Y (R) the greatest value of n+p for all (n, p, q)-decompositions of rewriting rules
in R, we obtain a complexity of O(|φ|Y (R)+4) for YAPA’s saturation procedure;
this is significantly worse than the complexity of O(|φ|nvars(R) log2 |φ|) achieved
by our algorithm (note that nvars(R) ≤ Y (R) in general). For the rewriting
system RDY we obtain an estimated complexity of O(|φ|7) for the saturation
procedure in YAPA and O(|φ|2 log |φ|) for ours. Note that this estimate assumes
that DAGs are implemented; the exact implementation of DAGs and the algo-
rithms to compute normal forms may affect the complexity of the procedure.
It may also be possible to provide better bounds on the number of recipes for
which we need to perform this reduction to a normal form.

Our saturation procedure is also more efficient than that implemented by the
KISS tool. In this tool, the rule Narrowing generates a number of deduction facts
for each rewriting rule in R. If we denote by K(R) the maximum number of side
conditions in deduction facts generated by any rewriting rule in R, we again have
nvars(R) ≤ K(R) in general: for example, K(RDY) = 3. The terms in these side-
conditions must then be instantiated (via the rule F− Solving) with terms that
are heads of some deduction fact. There are at least O(|φ|) such terms, which
implies that the saturated frame may have O(|φ|K(R)) deduction facts. Testing
the premise of the rules F-Solving, E-Solving, and Unifying requires selecting two
deduction facts from the frame and performing an operation with linear-time
complexity. Since there are O(|φ|2K(R)) such pairs, we obtain a complexity of at
least O(|φ|2K(R)+1). For the rewriting system RDY , this amounts to a complexity
of O(|φ|7) for KISS, in contrast to the complexity of O(|φ|2 log2 |φ|) for our
algorithms. Here it may also be possible to improve this complexity bound, for
example by limiting the number of pairs of rules that must be tested.

Finally, we note that all the algorithms discussed here require deciding the
equality of two terms t and t′ under the equational theory. Our algorithms rely
on the subterm convergence of the rewriting system to perform this task with
complexity O((|t|+ |t′|) log(|t|+ |t′|)). This constitutes a marked advantage over
algorithms for more general rewriting systems, for which we are not aware of
any algorithm improving the complexity of O((|t|+ |t′|)4) achieved in [2].
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As future work we plan to implement our algorithms. We also plan to study
how our approach can be adapted to other equational theories. The simplicity of
extending our methods to the prefix theory suggests that it may be possible to
generalize our approach for a much larger class of equational theories, possibly
improving upon existing complexity results for the two decision problems, when
such results exist.
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