
Secure Automotive On-Board Protocols: A Case
of Over-the-air (OTA) Firmware Updates

Muhammad Sabir Idrees1, Hendrik Schweppe1, Yves Roudier1, Marko Wolf2,
Dirk Scheuermann3, and Olaf Henniger3

EURECOM1, Escrypt GmbH2, Fraunhofer-SIT3

{muhammad-sabir.idrees,hendrik.schweppe,yves.roudier}@eurecom.fr
marko.wolf@escrypt.com,{dirk.scheuermann,olaf.henniger}@sit.

fraunhofer.de

Abstract. The software running on electronic devices is regularly up-
dated, these days. A vehicle consists of many such devices, but is operated
in a completely different manner than consumer devices. Update opera-
tions are safety critical in the automotive domain. Thus, they demand
for a very well secured process. We propose an on-board security archi-
tecture which facilitates such update processes by combining hardware
and software modules. In this paper, we present a protocol to show how
this security architecture is employed in order to achieve secure firmware
updates for automotive control units.

Keywords: Security Protocols; Security Architectures; Secure firmware
updates over the air; Software functionality

1 Introduction

Current research activities in vehicular on-board IT architectures basically fol-
low two key trends: unification of network communication and centralization of
functionality. Recent on-board IT architectures comprise a very heterogeneous
landscape of communication network technologies, e.g., CAN, LIN, FlexRay
and MOST. Internet Protocol (IP) based communication is currently being re-
searched as a technology for unifying the overall interconnection of ECUs in fu-
ture on-board communication systems [17]. In addition, there is a shift towards
multipurpose ECUs and usage of flash memory technology in the microcon-
trollers. Besides these trends in the design of automotive on-board IT architec-
tures, new external communication interfaces, fixed and wireless are becoming
an integral part of on-board architectures. One key factor for this development
is the integration of future e-Safety applications based on V2X communications
(external communications of vehicles, e.g. with other vehicles - V2V, or with the
infrastructure - V2I) [10,3] that have been identified as one promising measure
for increasing the efficiency and quality of operational performance of all vehicles
and corresponding intelligent transportation systems.
Firmware updates are crucial for the automotive domain, in which recalls are a
very costly activity and thus should be avoided where possible. The practicability

2 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

of remotely updating devices has been shown by Google for their Android tele-
phones. With this, they have a powerful tool to immediately react on discovered
security flaws in very short time [21]. In the automotive domain, update intervals
are calculated in quarters of a year and not quarters of a day right now. This
paradigm is about to change and security mechanisms within the car provide the
necessary building blocks. With the arising “always-connected” infrastructure,
it will be possible to perform over-the-air (OTA) diagnosis and OTA firmware
updates (see Fig. 1), for example. This will provide several advantages over hard-
wired access, such as saving time by faster firmware updates, which improves
the efficiency of the system by installing firmware updates as soon as they are
released by the car manufacturer. However, adding new in-vehicle services not
only facilitates novel applications, but also imposes stringent requirements on
security, performance, reliability, and flexibility. As discussed in [11], in-vehicle
components need not only to be extremely reliable and defect free, but also
resistant to the exploitation of vulnerabilities. Although on-board bus systems
are not physically accessible (apart from via diagnostic interfaces), this provides
only a limited degree of security for vehicles that are in wireless communication
with other vehicles and devices (e.g., consumer devices connected to the vehicle).

Fig. 1. Over-the-Air Firmware Updates

As seen in [11,18], attacks on the in-vehicle network have serious conse-
quences for the driver. If an attacker can install malicious firmware, he can
virtually control the functionality of the vehicle and perform arbitrary actions
on the in-vehicle network [14]. Furthermore, since the ECU itself is an untrusted
environment, there exist challenges in how to securely perform cryptographic
operations (i.e., encryption/decryption, key storage). Thus, it does not make
much sense, if the verifier software runs from the same flash as the software to
be verified. In this paper we present a generic firmware update protocol, that
can be used for both, hardwired and remote firmware flashing. The protocol has
especially been designed with respect to the above mentioned functional and

Secure Over-the-air (OTA) Firmware Updates 3

non-functional requirements. Our approach is based on hard security services.
The hardware security measures are required in order to raise the security level
of specific security services, e.g. secure storage of security credentials. We present
a hardware security module design, which protects most critical parts of the ar-
chitecture during firmware updates, such as secure key storage, secure operation
of cryptographic algorithms, etc.

2 Towards Secure On-Board Electronics Network
Architecture: Hardware Security Module

The concept of a security architecture encompasses various technical approaches
where security is introduced at different level of abstraction and based on dif-
ferent mechanisms: i.e., software and hardware based solutions. We believe that
the combination of software and hardware based security solutions provides the
measures for meeting discussed requirements for on-board network architecture.
However, depending on the risk level it should be analyzed, for which use cases
a security level using pure software security mechanisms is sufficient. Based on
the security level identified in [18], we emphasize to employ hardware security
services during firmware updates. The hardware security services, we call these
services the hardware security module (HSM), is primarily used as a root of
trust for integrity measurement and responsible for performing all cryptography
applications including symmetric/asymmetric encryption/decryption, symmet-
ric integrity checking, digital signature generation/verification, and generation
of random numbers.

Fig. 2. HSM Architecture Overview

Considering constraints of current vehicular on-board networks and the trend
towards more centralization of functions, very flexible and scalable on-board
hardware security module is required. The design of the HSM needs to consider
the different available resources on sensors and actuators, ECUs and bus sys-
tems. We have decided to create three different variants of our HSM: The full,
the medium and the light hardware security module. The simplest hardware se-
curity module is designed for sensors/actuators (see Figure 1). On ECU level, a
more complex architecture can be applied (i.e., medium HSM), which e.g. pro-
vides services for managing keys for the on-board system and to protect the ECU
itself. In order to satisfy the performance requirements for signing and verifying
messages for V2I communications (i.e., OTA firmware updates), a very efficient

4 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

asymmetric cryptographic engine is required. Thus, the full HSM architecture is
applied in this case, which provides the maximum level of functionality, security,
and performance. Table 1 presents security features of the different HSM vari-
ants and comparison with other existing HSM approaches. These variants offer
different levels of security functionality. The components of the HSM are divided
into mandatory and optional components because, depending on the use case,
different security requirements have to be fulfilled. The optional components are
represented in figure 2 with dashed lines. Furthermore, It is compliant to the Se-
cure Hardware Extension (SHE) specification proposed by the automotive HIS
consortium [13]. All HSM modules (full to light) are able to understand and
process most SHE commands [4] accordingly.

Table 1. Components of different HSMs.

Security Hardware Security Module - HSM SHE TPM Smart
Features Full Medium Light card
Boot Integrity
protection

Auth & Secure Auth & Secure Auth & Secure Secure Auth None

HW crypto
algorithms
(incl. key
generation)

ECDSA,
ECDH,
AES/MAC,
WHIRLPOOL
/ RSA, SHA1
HMAC

RSA, SHA1,
AES/ MAC

AES/ MAC AES/
MAC

RSA,
SHA1 /
HMAC

ECC, RSA,
AES, 3DES,
MAC, SHA x..

HW crypto
acceleration

ECC, AES,
WHIRLPOOL

AES AES AES None None

Internal CPU Programmable Programmable None None Preset Programmable
RNG TRNG TRNG PRNG w/ext.

seed
PRNG
w/ext. seed

TRNG TRNG

Counter 16x64bit 16x64bit None None 4x32bit None
Internal
NVM

Yes Yes Optional Yes Indirect
(Via
SRK)

Yes

Internal
Clock

Yes w/ext
UTC Sync

Yes w/ext
UTC Sync

Yes w/ext
UTC Sync

No No No

Parallel Ac-
cess

Multiple
sessions

Multiple
sessions

Multiple
sessions

No Multiple
sessions

No

Tamper Pro-
tection

Indirect (pas-
sive, part of
ASIC)

Indirect (pas-
sive, part of
ASIC)

Indirect (pas-
sive, part of
ASIC)

Indirect
(passive,
part of
ASIC)

Yes
(mfr.dep.)

Yes (active, up
to EAL5)

Another aspect associated with the hardware security module is: How is
the HSM integrated with the microcontroller? There are different possibilities
for the realization of an HSM such as, i) HSM in the same chip as the CPU
but with a state machine, and ii) HSM in the same chip as the CPU but
with a programmable secure core. However, each having their advantages and
disadvantages. In our proposed solution, a programmable CPU core is inside the
same chip as the main microcontroller to perform cryptography operations (see
Figure 2). Note that when software-based cryptography implementation is used,
it can be easily modified (possibly not a highly efficient solution) but changing
a state machine requires that hardware to be redesigned and is very expensive.
It is necessary that the HSM be in the same chip as the application CPU and
contains a microprocessor, to protect it from physical tampering.

Secure Over-the-air (OTA) Firmware Updates 5

3 Implementing Security Primitives

In this section we briefly review the hardware interfaces that covers the in-
vocation specification of cryptographic hardware security blocks, higher-level
security functionality and necessary security management functionality (e.g.,
key import/export, signature, and message authentication code) that are re-
quired during OTA firmware update. However, more detail about HSM func-
tional calls/descriptions can be found in [8].

Signature: This function is used for demonstrating the authenticity and in-
tegrity of a message. A valid signature gives a recipient reason to believe that
the message was created by a known sender, and that it was not altered in
transit. For signature generation, a signature generation scheme sig(m)Sk

takes
as input a key k, and message m, outputs a signature σ̂; we write sig(m)Sk

=
{σ̂}Sk

. Where k is the security parameter, outputs a pair of keys (Sk;Vk). Sk
is the signing key, which is kept secret, and Vk is the verification key which is
made public. We also assume that a time stamp (UTC Time) is generated, using
HSM_UTC_TIME(seconds_since_1970, mseconds_fraction) function,
and then also covered by the signature calculation, and write −→m = (m + Ts) to
denote the message and a time stamp whose signature is σ̂. For the signature
verification, ver sig(−→m , σ̂)Vk

→ α function is defined, takes as input the sig-
nature σ̂, the signature verification public key part Vk, and outputs the answer
α which is either succeed (signature is valid) or fail (signature is invalid). As a
precondition, the Vk must be loaded and enabled for verify.

Message Authentication Code – MAC: This function is used to protect
both a message’s data integrity as well as its authenticity, by allowing verifiers
(who also possess the secret key) to detect any changes to the message content.
For generating a MAC as well as the message itself, the notation MAC (m)Mk

=
{m̂}Mk

is used, so that it produces the message itself plus the cryptographic au-
thentication code based on Mk and m. Here, Mk refers to a cryptographic key for
MAC generation and m to the message to be authenticated. In the same way as
for signatures, the use of the time stamp −→m = (m + Ts) is covered by the MAC
calculation. For the verification of a MAC, the notation ver MAC(−→m, m̂)Mk

is
used. Based on the Mk, it is verified whether m̂ corresponds to the message −→m.

Key Creation: This security building block is used for the creation of a key on a
hardware module, using HSM Create_Random_Key function. During creation
all properties of the key are determined and fixed. This includes the crypto-
graphic algorithm to be used, the use and further property use flags indicating
what actions may be done with this key (i.e., sign and verify) as well as the
authorization data needed for key usage. The use_flag parameter indicates
the operations that may be performed with the key. In particular, the following
flags are present:

– sign|verify: Key can be used to generate or/and verify digital signatures
or H/MACs of any data.

– encrypt|decrypt: Key can be used to encrypt or/and decrypt any data.
– secureboot: Can be used to create/verify secure boot references.

6 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

– keycreation: Can be used for creation of new keys, e.g. via key derivation
functions (symmetric) or DH key agreement (asymmetric).

– utcsync: Can be used for synchronizing internal tick counter to UTC.
– transport: Can be used to protect transports of keys (i.e., migrate, swap-

ping, move) between locations, according to individual trnsp_flag [7].

Only the use_flag may explicitly be set by the creator whereas further prop-
erty flags are set inherently. Once created, the key properties are unchangeable.
As output, the function delivers a key handle for later usage of the key.

Key Export: With this function, keys stored on HSM module are transported
to other HSM modules or another external trusted party. During transport,
the key is encrypted (ε (k)Tk

) with a special transport key (Tk) that may be
symmetric or asymmetric. In addition, the authenticity of the key is protected
by a key authenticity code which consists in a MAC or a signature appended
to the encrypted key. The key authenticity code can be explicit symmetric
key enabled with use_flag = verify or an implicit symmetric key derived
from a symmetric transport key or an implicit asymmetric key enabled with
use_flag = verify. The usage of this key authenticity code is mandatory.
As output, the function delivers the encrypted key together with its authenti-
cation code. As an important precondition, the specified transport key must be
loaded and enabled to be used for transport. Furthermore, the transport flag of
the key to be exported must be appropriately marked according to the type of
module managing the transport key.

Key Import: This function is used for importing keys into the HSM module
that was moved to another HSM module or other external trusted party. In this
way, the function provides the opposite to the previously described export func-
tion. The key may be imported either into the non-volatile memory or into the
main memory (RAM) of the HSM module. In the same way as for Key Export,
the use of the key authenticity code is mandatory. As output, the function de-
livers a key handle to reference the key for later usage. As a precondition, the
transport key must be loaded and enabled before. In addition, the authentication
code verification key must be loaded if the key is protected by a signature.

Key Master – KM: We introduce a new functional entity, which we call the
KeyMaster. As there exist multiple variants of the HSM, that support different
cryptographic keys (symmetric/asymmetric), we had to take this into account
for key distribution. The KM is a central element in the establishment of a
session between entities. It holds public key (Pk) and pre-shared keys (Psk) of
the individual ECUs, which are used as transport keys, to establish a secure
session. This functional entity reside on a dedicated ECU or be integrated into
another ECU. There may be more than one KM node in a vehicle and may be
replicated in different locations.

Counter: As a further instrument to control the behavior of hardware secu-
rity modules, the possible use of counters is introduced as an additional secu-
rity building block. The concrete, central task of a counter is freshness enforce-
ment to prevent different kinds of replay attacks. For handling these counters,
the following HSM functions are provided: Create_counter; Read_Counter;

Secure Over-the-air (OTA) Firmware Updates 7

Increment_Counter; and Delete_Counter. As input data, access autho-
rization data needs to be provided which is later necessary to create, increment
or delete the counter.

4 Secure Firmware Update Protocol

In order to provide secure firmware updates, we listed the most desired security
properties (Authentication, Integrity, Freshness, and Confidentiality) to be able
to prevent threats, as identified in [18]. The specified protocol provide means to
satisfy these security requirements. The protocol shows how modules of HSM
are used and how they interact in order to ensure secure firmware is downloaded
and installed securely in the vehicle.

4.1 OTA Update Requirements

Before sketching the protocol, we describe some additional constraints/requirements
responsible for secure firmware updates:

Hardware Security Module in the Diagnostic Tool: As stated in [18],
there are numerous scenarios, where an attacker attacks on the diagnostic tool
(DT) such as, the attacker injects bogus authority keys into the ECU, through
DT, which compromise the overall security of the vehicular on-board architec-
ture. In particular, this means that the DT stores challenges and public strings
for key recovery (i.e., ECU unlock key) and is therefore responsible for the se-
curity of the subsystem. Therefore, this information needs to be stored securely
on the DT-side. An additional advantage of HSM is the resistance against phys-
ical tampering of the DT. Any damage to the HSM changes the behavior and
therefore prevents the extraction of secret key material.

Use of a secure evolution of Common Transport Protocol (CTP): Be-
side a secure V2X communication, a secure on-board communication is also
important due to the large number of interconnected ECUs inside the vehicle
involved in the process of firmware update. Therefore, secure transport protocols
are needed for the exchange of on-board messages. In the on-board bus systems
used, a specific restriction lies in the limited size of data packets. For the CAN
bus, for example, this means that only eight bytes of payload may be transmit-
ted at a time. For this purpose, secure common transport protocols (S-CTP) [7],
extension of common transport protocol defined in [2], are applied to diagnosis
jobs, where typically larger data chunks need to be transmitted.

4.2 Protocol Description

Remote Diagnosis: In the over-the-air firmware update scenario, a service
station using a diagnostic tool (DT) connect remotely, using V2I (Vehicle-to-
Infrastructure) infrastructure, to assess the state of the vehicle (see Figure 1).
To know which version is installed, a diagnosis of the vehicle is required to
have all necessary information such as ECU type, firmware version, and date of
last update. An employee of the station using the diagnosis tool establishes a
secure connection with the vehicle, at the ECU level, in order to determine the
current state of the vehicle. To do so, DT creates a session key Msk (exportable),
by sending a HSM command Create_Random_key and specifies set of allowed

8 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

key properties such as, use_flag = sign|verify, encrypt|decrypt. It
then export the Mk using Pk ccu (Public key of the central communication unit
- CCU) as a transport key (Tk) and transmit it to the vehicle. Here, the central
communication unit is the first receiving entity in the vehicle, responsible for
receiving and distributing V2X messages to the in-vehicle network.
In the vehicle, the CCU, equipped with the Full HSM module and act as a KM
node, receives the connection request. The authorization for the connection is
verified in the CCU. The message −→m is checked for freshness, integrity and the
service station is authenticated. If the check succeeds, CCU-KM import the key
in the HSM. It then export the received Exported Mk with the corresponding
Pk ecu or Psk, depending on the ECU type, and distribute to the target ECU in
order to enable end-to-end communication. This message includes all information
that is necessary to deliver this message to the correct ECU. On the ECU side,
ECU verifies integrity, authenticity and authorization of CCU/DT based on
the policy whether DT is allowed to deliver a message or not. If this is true,
and message is fresh, ECU import the Mk in the HSM. Once Mk key have
been imported, acknowledgment is sent back to the DT (see Algorithm 1). After
this acknowledgment frame, the DT sends, depending on the option chosen by
the employee of the service station, requests to read out diagnosis information
(State/Log information) from the ECU it wants to check.

Algorithm 1 Remote Diagnosis
Require: Signature verification Key Vk of DT, CCU, ECU are pre-loaded
Ensure: Establishing a fresh and authentic session between DT and ECU based on a symmetric

session key Mk, where CCU-KM acts as a Key Master Node.

– DT � HSM: Mk-handle:= create random key (use flag = sign| verify, encrypt| decrypt,
export, use authorization data)
DAT: Exported Mk := key export(Tk-handle = <Pk ccu-handle>, kh=<Mk-handle>)

1. DT → CCU-KM:
{

(Exported Mk, Ts) , {σ̂}Sk dt

}
– CCU-KM � HSM: Mk-handle := key import (Tk-handle =<Sk ccu-handle>, kh=
<Mk-handle>)

– CCU-KM: � HSM:Exported Mk := key export(Tk-handle = <Pk ecu-handle | Psk-
handle>, kh=<Mk-handle>)

2. CCU-KM → ECU:
{

(Exported Mk, Ts) , {σ̂}Sk ccu

}
– ECU � HSM: Mk-handle := key import (Tk-handle = <Sk ecu-handle| Psk-handle>,

kh= <Mk-handle>)

3. CCU-KM ← ECU:
{

(ACK, Ts) , {σ̂}Sk ecu

}
4. DT ← CCU-KM:

{
(ACK, Ts) , {σ̂}Sk ccu

}
Discussion - Advance Notification: Due to legal reasons and to allow for

flexible deployment, we consider that service station sends an advance notifica-
tion of possible firmware updates, if the type is the expected one. This advance
notification is intended to help customers plan for effective deployment of up-
dates, and includes information about the number of new updates being released.
These updates still need to be Approved for install before downloading. The
customer receives this information on the vehicle HMI and can decide about pos-
sible deployment (i.e., Install, Decline, Decide later). Only updates
that have the approval status Install will be downloaded to the vehicle. If
firmware update request is approved for install, it requires that vehicle is stopped
and have access to the V2I infrastructure for receiving firmware data. Disabling

Secure Over-the-air (OTA) Firmware Updates 9

ECU while vehicle is running may cause some serious problems, depending on
the function ECU is responsible for. Thus, we consider some additional checks,
provided by the on-board system, to ensure that vehicle is stopped and have ac-
cess to the infrastruture, before switching the ECU into the re-programming
mode. Furthermore, we assume that V2I infrastructure is available through out
the firmware update process.

ECU Reprogramming Mode: If the type is the expected one, the diag-
nostic tool forces the ECU to switch from an application mode into a repro-
gramming mode by requesting a seed (Na). This seed is required to calcu-
late an ECU specific key value to unlock the ECU for reprogramming. ECU
verifies desired security properties. If it is true, ECU sends a HSM command
SecM_Generate(seed) to generate a seed. It then encrypt the seed ε (Na)Mk

for confidentiality enforcement, calculate a MAC on −→m = (ε (Na)Mk
+ Ts) and

transmit it to the DT. At the same time, the ECU sends a HSM command
SecM_ComputeKey(Na, SecM_key) to compute the key on the HSM with
the aid of the generated Na. As output, the function delivers a SecMkey key
handle, we write SecMkey = Smk, that is used to unlock the ECU.

Algorithm 2 ECU Reprogramming Mode
Require: DT and ECU have established a fresh and authentic connection based on a Mk. Vehicle

is stopped and have access to infrastructure
Ensure: Authentic and confidential exchange of ECU unlock key.

1. DT → ECU:
{

(request seed, Ts) , {m̂}Mk

}
– ECU: � HSM:: SecM Generate(seed)

2. DT ← ECU:
{(
ε (Na)Mk

, Ts
)
, {m̂}Mk

}
– ECU: � HSM:: Smk:= SecM ComputeKey(seed, SecM key)
– DT: � HSM:: Smk:= SecM ComputeKey(seed, SecM key)
– DAT� HSM: Exported Smk := key export(Tk-handle = <Mk-handle>, kh=<Smk-

handle>)

3. DT → ECU:
{

(Exported Smk, Ts) , {m̂}Mk

}
– ECU: � HSM:: SecM CompareKey (key, seed)

4. DT ← ECU:
{

(ACK, Ts) , {m̂}Mk

}
In the diagnostic tool, verifies {m̂}Mk

, decrypt the received seed (ε−1 (Na)Mk
)

and compute the Smk with the aid of the received seed (Na). Once the Smk key
value is computed, it is exported, using Mk as a transport key, and transmitted
to the target ECU. The ECU verifies the {m̂}Mk

and compares the received
Smk key with the self-generated Smk. If the two values are identical, the ECU
switched into unlock state (from application mode to the reprogramming mode)
and send an ACK message to the DT (see Algorithm 2). This message is sent
after the ECU is switched into the unlock state to make sure the switch has
been performed. The information whether a re-programming request has been
received or not shall be stored in non-volatile memory, e.g. EEPROM. Since
switching from the application to the reprogramming mode shall be done via
a hardware reset, all contents of volatile memory will be lost [13]. If the com-
parison failed, the flashloader [13] hold the ECU in locked state. Only in the
unlock state ECU reprogramming is possible.

Firmware Encryption Key Exchange: In this phase we are considering
two possible scenarios of exchanging firmware encryption keys: i) on-line

10 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

solution and ii) off-line solution. In the on-line solution: service sta-
tion has access to an online infrastructure of the manufacturer, it can request the
firmware and as well as firmware encryption key – (SSK). The SSK is a stake-
holder symmetric key pair [7], externally created, with use_flag=decrypt,
key for stakeholder individual usage e.g., software update. Whereas, in the case
of off-line, firmware is encrypted with pre-installed SSK.
Considering current trends and advancements in the automotive industry, on-
line solutions provide more reliability, flexibility and will eventually increase the
security of the on-board network. Sharing firmware encryption key only with
specific ECUs makes an on-line solution more robust and generic from off-line ap-
proaches, where all vehicles share unique symmetric keys, that are pre-installed
in the vehicles. Moreover, considering security levels [18], we argue to specify a
key validity period (short term or long term keys) of the SSK, for an individual
ECU. Both have its advantages and disadvantages. We suggest to use short term
keys for firmware encryption. Short terms keys will expire after a short amount
of time and thus, we see no need for instant revocation, if keys are compro-
mised. This has the advantage that OEMs do not have to go through another
key migration (installing new keys) process, if keys are compromised. Thus, in
the following section we present the on-line solution.

Algorithm 3 Firmware Encryption Key Exchange
Require: On-line access to OEM server and PKI infrastructure
Ensure: Authentic and confidential firmware encryption key exchange between OEM and ECU

1. DT → OEM:
{

(request firmware encryption key, Ts) , {σ̂}Sk dt

}
– OEM:Exported SSK:=key export(Tk-handle=<Pk ecu-handle|Psk-handle>,

kh=<SSK-handle>)
2. DT ← OEM:

{
(Exported SSK, Ts) , {σ̂}Sk oem

}
3. DT → ECU:

{
(Exported SSK, Ts) , {m̂}Mk

}
– ECU: � HSM:: SSK-handle :=key import (Tk-handle =<Sk ecu-handle|Psk-handle>,

kh= <SSK-handle>

4. DT ← ECU:
{

(ACK, Ts) , {m̂}Mk

}

After successful reprogramming access at the ECU level, the DT sends a
request (request_firmware_encryption_key), to the OEM server to get
the firmware encryption key (see Algorithm 3). This request includes information
about the ECU (i.e., ECU type, ECU identification number, firmware version,
etc.). In the OEM side, verifies the authenticity and integrity of the received
message. If this is true, OEM server retrieve the Pk ecu from the Public Key
Infrastructure (PKI), (possibly) maintained by an individual OEM, and export
SSK using Pk ecu as a Tk. This is only feasible if ECU is equipped with full
HSM. In the case of the medium or light HSM-ECUs, the pre-shared key Psk
will be used as a Tk. The OEM server export the SSK and send a signed
message to the DT. As the SSK key blob is encrypted with the ECU key. It is
not possible for the DT to retrieve the firmware encryption key. Next, the DT
transmits the received firmware encryption key to the ECU. The ECU imports
the SSK in the HSM using key_import function. The key_import function
provides the assurance to the ECU that the key is generated by the OEM, by
verify the authentication code send along with the encrypted key, and can only

Secure Over-the-air (OTA) Firmware Updates 11

be decrypted by the specific ECU key. After importing SSK in the ECU-HSM,
ECU sends an acknowledgment about successful import of the SSK key.

Firmware Download: Once the SSK is successfully imported in the ECU-
HSM, the DT sends the received signed and encrypted firmware (Frm) along with

its ECU Configuration Register (ECR) reference: sig (Frm,Ecr, T s)→ σ̂Frm

εnc→
ε
(
σ̂Frm

)
ssk

, from manufacturer, to the Random-Access Memory (RAM) of the
ECU. Following HSM use_flag approach, where multiple key-properties may
be set, only the OEM server can sign and encrypt the firmware, whereas the
receiving ECU can decrypt and verify the received firmware, using the same key
material. The encrypted firmware is downloaded block by block (logical block).
Each of those blocks is divided into segments, which are a set of bytes containing
a start address and a length. The start address and the length of each segment
is sent to the HSM during the segment initialization. For one block, a download
request is sent from the DT to the HSM. HSM initializes the decryption service
and sent an answer to the DT. The download then starts segment by segment.
After sending last firmware segment, DT sends a transfer_exit message to
the ECU (see Algorithm 4).

Algorithm 4 Firmware Download
Require: Signed and encrypted firmware from OEM
Ensure: Authentic, fresh and Confidential firmware downloaded in the ECU

1. DT → ECU:
{(
ε
(
σ̂Frm

)
SSK

, Ts
)
, {m̂}Mk

}
– ECU � HSM: SecM InitDecryption(ε

(
σ̂Frm

)
ssk

)

– ECU � HSM:SecM Decryption(ε−1
(
σ̂Frm

)
ssk

)

2. DT → ECU:
{

(request transfer exit, Ts) , {m̂}Mk

}
– ECU � HSM:SecM DeinitDecryption()

3. DT ← ECU:
{

(ACK, Ts) , {m̂}Mk

}
Firmware Installation and Verification: For an installation of the firmware,
we consider standard firmware installation procedure defined in [13], where each
logical block is erased and reprogrammed. However, before the flash driver can
be used to re-program an ECU, its compatibility with the underlying hardware,
the calling software environment and with prior versions of the firmware has
to be checked. This compatibility check is performed by means of a version in-
formation stored in the HSM monotonic counters. The HSM Read_Counter
function is used to read out the value of a counter. The counter is referenced by
a counter identifier previously increased, after every authentic and successful
installation of the firmware. These monotonic counters are defined to perform
such a checking of its current version against the new firmwares version in order
to prevent the downgrading attack to older firmwares.
For the verification, we defined two step verification process: In the first step, be-
fore re-programming, ECU verifies the signature of the firmware data. This
is verified by using the pre-installed Manufacturer Verification Key MVK. It
proves that the software was indeed released from the OEM. In the second step:
we construct a tiny trusted computing base (TCB) during the installation phase.
We compute an ECR trusted chain at each step of the firmware installation. The
ECR reference is needed to ascertain the integrity/authenticity of the firmware

12 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

data. An Extend_ECR function is defined to build the ECR trusted chain. This
function is used for updating the ECR with a new hash value. The new value is
provided as input and chained with the existing value stored in the ECR, using a
hash update function. As output, the function delivers the updated ECR value.
After a successful installation of the new firmware data, software consistence
check is performed. The check for software dependencies shall be done by means
of a callback routine provided by the ECU supplier. This check is done after re-
programming and before setting the new ECR reference. Next, the Compare_ECR
function is called. This comparison can only be performed after all writing pro-
cedures for the logical block have been finished. This function allows the direct
comparison of the current ECR with a reference ECR value received with the
firmware. It is also possible that the ECR reference may be contained inside
the firmware itself. In this case the flashloader shall call a routine provided
by the ECU supplier to obtain the ECR reference. If the check succeed, HSM
Preset_ECR function is called. This function is used to manage references to
ECR values by ECR indices in the context of secure boot. After successfully
setting the ECR value, HSM (Increment_Counter) function is called to in-
crement the monotonic counter with the new value. In the last step, the actual
hardware reset is executed, the flashloader delete (i.e. overwrite) the routines
for erasing and/or programming the flash memory from the ECU’s RAM [13].
Making sure those routines are not present on the ECU in application mode.
After the reset the application is started.
Discussion - Error Handling: Each function of the HSM returns a status af-
ter its successful or unsuccessful execution. Some functions may deliver further
function specific error codes. The value of the status shows the positive execu-
tion of the function or the reason for the failure. In the case of failure, the flash
process must stop with an error code and the ECU enters the locked state.

5 Related Work
The past decade has seen a tremendous growth in the vehicular communication
domain, yet no comprehensive security architecture solution has been defined
that covers all aspects of on-board communication (data protection, secure com-
munication, secure and tamper proof execution platform for applications). On
the other hand, several projects, namely GST [5], C2C-CC [3], IEEE Wave [22]
and SeVeCOM [20] have been concerned with inter-vehicular communication and
have come up with security architectures for protecting V2X communications.
These proposals essentially aim at communication specific security requirements
in a host-based security architecture style, as attackers are assumed to be within
a network where no security perimeter can be defined (ad-hoc communication).
These proposals consider the car mostly as a single entity, communicating with
other cars using secure protocols.
Mahmud et al. [12] present a security architecture and discuss secure firmware
upload. There are, however, a number of prerequisites and assumptions (i.e.,
sending multiple copies to ensure firmware updates) in order to make secure
firmware update. However, sending multiple copies is not realistic and impose
several constraints on the infrastructure. This proposal does not consider auto-

Secure Over-the-air (OTA) Firmware Updates 13

motive on-board networks, where domains are traditionally separated, due to
functional and non-functional requirements. Kim et.al [9] presents remote pro-
gressive updates for flash-based networked embedded systems. In their solution
a link-time technique is proposed which reduce the energy consumption during
installation. However, no security aspects are mentioned in this proposal.
Nilsson et al. in [15,16] provide a lightweight protocol and verification for secure
firmware updates over the air (SFOTA) in vehicles is proposed. In the SFOTA
protocol, different properties are ensured during firmware update protocol (i.e.,
data integrity, data confidentiality, and data freshness). However, this approach
also imposed several assumptions in order to ensure the secure software up-
load such as an authentication of the vehicle is not considered, keys are stored
securely and single encryption key for each car. Furthermore, no specific exe-
cution platform requirements are put forward by this proposals. For instance,
switching the ECU into reprogramming mode. In [14], key management issues
are discussed while performing software updates. A rekeying protocol is defined
in order to distribute keys with only specific nodes in the group. It also uses the
multicast approach to update the software on a group of node. However, we con-
sider that different firmware are installed on different ECUs, depending on the
ECU functionalities, which makes multicast approach not useful. Furthermore,
as mentioned above, this approach also does not consider execution platform
requirements. It does not discuss about computation attacks, where, attacker
can learn and modify the firmware, during installation phase or simply prevent
to update the counter, for later replay attacks.
Hagai [19] present an approach that takes hardware into account by providing a
secured runtime environment with a so-called Trust Zone on an ARM processor,
the solutions of [1,6] are software based. The so called tools and enablers, which
are low-level and application-level security functions in [1] also cover a number
of on-board automotive use-cases, while leaving the essential link to the external
communication domain uncovered. The most related approach with our work is
Hersteller-Initiative Software – HIS [13]. The flashing process provides by HIS
provides a good basis for the OEMs, but the recommended protocols does not
provide all necessary security functionalities (i.e., freshness). Furthermore, this
process only considers hardwired firmware updates and does not provide any
information about which key is used for firmware encryption, in a very hetero-
geneous landscape of communication network technologies.

6 Conclusion

We have presented a firmware update protocol for a new security architecture
that is deployed within the vehicle. We showed how a root of trust in hardware
can sensibly be combined with software modules. These modules and primitives
have been applied to show how firmware updates can be done securely and over-
the-air, while respecting existing standards and infrastructure. In contrast to
existing approaches, the protocols presented in this paper show the complete
process, which involves service provider, vehicle infrastructure as well as manu-
facturer and workshop. By using secure in-vehicle communication and a trusted
platform model, we show how to establish a secure end-to-end link between man-

14 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

ufacturer, workshop and vehicle. Despite the fact that a trusted platform model
poses certain constraints, such as cryptographic keys bound to a boot configura-
tion, we showed how the protocols presented take these constraints into account
by updating platform reference registers used during the boot phase of an ECU.

Acknowledgments
This work has been carried out in the EVITA (E-safety Vehicle InTrusion protected
Applications) project, funded by the European Commission within the Seventh Frame-
work Programme, for research and technological development.

References

1. H. Bar-El. Intra-vehicle information security framework. In Proceedings of the 7th
escar Conference, Düsseldorf, Germany, 2009.

2. M. Busse and M. Pleil. Data exchange concepts for gateways. Technical Report
Deliverable D1.2-10, EASIS Project, 2006.

3. C2C-CC. Car2Car Communication Consortium. http://www.car-to-car.org/.
4. R. Escherich, I. Ledendecker, C. Schmal, B. Kuhls, C. Grothe, and F. Scharberth.

SHE – Secure Hardware Extension - Functional Specification Version 1.1.
5. GST. Global systems for telematics, EU FP6 project. http://www.gst-forum.org/.
6. A. Hergenhan and G. Heiser. Operating Systems Technology for Converged ECUs.

Embedded Security in Cars, 2008.
7. S. Idrees and et al. Secure On-Board Protocols Specification. Technical Report

Deliverable D3.3, EVITA Project, 2010.
8. B. Weyl and et al. Secure On-board Architecture Specification. Technical Report

Deliverable D3.2, EVITA Project, 2010.
9. J. Kim and Pai H Chou. Remote progressive firmware update for flash-based

networked embedded systems. ISLPED’09, pages 407–412, 2009.
10. T. Kosch. Local Danger Warning based on Vehicle Ad-hoc Networks: Prototype

and Simulation. In WIT 2004, pages 3–7, 2004.
11. K. Koscher and et.al. Experimental Security Analysis of a Modern Automobile.

In Proc. of the 31st IEEE Symposium on Security and Privacy, May 2010.
12. S.M. Mahmud, S. Shanker, and I. Hossain. Secure software upload in an intelli-

gent vehicle via wireless communication links. In Proc. IEEE Intelligent Vehicles
Symposium, pages 588–593, 2005.

13. T. Miehling, P. Vondracek, M. Huber, H. Chodura, and G. Bauersachs. HIS
flashloader specification version 1.1. Technical report, HIS Consortium, 2006.

14. D.K Nilsson and et.al. Key management and secure software updates in wireless
process control environments. WiSec 08, 2008.

15. D.K. Nilsson and U.E. Larson. Secure Firmware Updates Over the Air in Intelligent
Vehicles. In Proc. ICC Workshops, 2008.

16. D.K. Nilsson, Lei Sun, and T. Nakajima. A Framework for Self-Verification of
Firmware Updates Over the Air in Vehicle ECUs. In GLOBECOM Workshops 08.

17. M. Rahmani and et.al. A novel network architecture for in-vehicle audio and video
streams. In IFIP – BcN, 2007.

18. A. Ruddle and et al. Security Requirements for Automotive On-Board Networks
based on Dark-side Scenarios. Technical Report Deliverable D2.3, EVITA Project.

19. Towards a secure automotive platform. White paper, secunet, 2009.
20. SeVeCOM. Secure Vehicle Communication. http://www.sevecom.org/.
21. A. Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, and Shlomi Dolev. Google

Android: A State-of-the-Art Review of Security Mechanisms, 2009.
22. IEEE WAVE. Wireless Access in Vehicular Environments, IEEE standard 1609.2.

	Secure Automotive On-Board Protocols: A Case of Over-the-air (OTA) Firmware Updates
	Introduction
	Towards Secure On-Board Electronics Network Architecture: Hardware Security Module
	Implementing Security Primitives
	Signature:
	Message Authentication Code – MAC:
	Key Creation:
	Key Export:
	Key Import:
	Key Master – KM:
	Counter:

	Secure Firmware Update Protocol
	OTA Update Requirements
	Hardware Security Module in the Diagnostic Tool:
	Use of a secure evolution of Common Transport Protocol (CTP):

	Protocol Description
	Remote Diagnosis:
	ECU Reprogramming Mode:
	Firmware Encryption Key Exchange:
	Firmware Download:
	Firmware Installation and Verification:

	Related Work
	Conclusion

