Mining Requirements Links

Vincenzo Gervasil*? and Didar Zowghi?

! Dipartimento di Informatica, University of Pisa, Italy
2 School of Software, University of Technology, Sydney, Australia

Abstract. [Context & motivation] Obtaining traceability among require-
ments and between requirements and other artifacts is an extremely impor-
tant activity in practice, an interesting area for theoretical study, and a major
hurdle in common industrial experience. Substantial effort is spent on estab-
lishing such links, and keeping them up to date, in any large project — even
more so when requirements refer to several generations of a product, or to a
product family. [Question/problem] While most research is concerned with
ways to reduce the effort needed to establish and maintain traceability links,
a different question can also be asked: how is it possible to harness the vast
amount of implicit (and tacit) knowledge embedded in already-established
links? Is there something to be learned about a specific problem or domain,
or about the humans who establish traces, by studying such traces?
[Principal ideas/results] In this paper, we present preliminary results from
a study applying different machine learning techniques to an industrial case
study, together with an assessment of how what is learned from pre-existing
traces can affect further product development. [Contribution] Reshaping
traceability data into knowledge can contribute to more effective automatic
tools to suggest candidates for linking, and at the same time provide some
insight into both the domain of interest (e.g., how different writing style and
vocabulary is used in marketing requirements vs. technical requirements) and
about the actual implementation techniques (e.g., how specific user require-
ments are refined into a technical specification).

Keywords: traceability, machine learning, knowledge mining, domain dic-
tionary.

1 Introduction

One of the most widely cited definitions of Traceability in requirements is the one
provided in [4]:

“Requirements traceability refers to the ability to describe and follow the life of
a requirement, in both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent deployment and use,
and through periods of on-going refinement and iteration in any of these phases).”

This definition places particular emphasis on the ability to follow the life of require-
ments, or in other words, on following the links established between requirements and
other artifacts, or among requirements (which, in turn, can include requirements at
different stages of evolution, or business requirements to requirements specifications,
or various requirements in a single requirements document which taken together de-
scribe a single feature, etc.).

The major hurdle to ensure traceability is the effort needed to first establish, then
maintain the links between all those artifacts, while the artifacts themselves undergo
their evolution. It is not surprising then that most research in the area has aimed at
facilitating the establishment of links, typically by providing semi-automatic tools
to that end. In the most common approach, Information Retrieval techniques such
as the Vector Space Model (VSM) or Latent Semantic Indexing (LSI), are used to
identify a set of candidate requirements to be linked, based on the similarity of terms
contained in the two requirements [2, 6, 5].

In this paper we take the dual approach: instead of asking ourselves how to
suggest traceability links, we investigate what can be learned from links that are
already established. The situation where a set of links is already established is in
fact common in industrial practice, especially in large or long-lived projects. In
that context, other factors compound the problem: for example, changing teams
means that links established at different times follow different conventions for what is
relevant; requirements databases being exchanged between organizations (e.g., from
a contractor to the main company, or when actual programming is outsourced outside
of the main company) means that a full set of requirements and links, established
according to unfamiliar principles, are acquired together.

2 Case Study and Experiments

We used a publicly-available dataset of requirements with traceability information,
originally based on the CM-1 project by the NASA Metrics Data Program; the
traceability information was provided and verified by Jane Hayes through the Center
of Excellence for Software Traceability [1]. The dataset comprises 235 high-level
requirements (SRS) which are refined to 220 low-level requirements (DPUSDS); 361
manually-verified links relate the two sets and, so to say, “tell the story” of the
refinement. Notice the 361 links constitute just the 0.7% of all possible pairwise!
links between SRS and DPUSDS, so the linking relationship in the dataset is very
selective. On this dataset we ran two series of experiment, described in the following.

2.1 Using machine learning to infer traces

Most approaches to semi-automatic tracing are based on the assumption that the
appearance of similar terms in different requirements increases the likelihood of them
being related by a link (with [3] and [7] being recent exceptions). This likelihood
is estimated with techniques such as VSM based on tf-idf (term frequency-inverse
document frequency), whereas very common terms contribute less to the similarity
score than highly-specialized ones that only appear in few places. Normally, this
hypothesis is tested by verifying how many suggested links above a certain likelihood
threshold are correct, thus giving rise to the two usual metrics of precision (which
percentage of the suggested links are correct) and recall (which percentage of the
correct links were suggested).

! Although in line of principle traceability relations should be n : m relations, i.e. a set of
elements to another set of elements, in practice most tools and industrial practice have
them as 1 : 1 relations, and their possible grouping is left to the interpretation of the
reader. We will submit to the latter usage here.

We set instead to verify if the hypothesis itself (i.e., that the occurrence of the
same terms in two requirements implies greater link affinity) could be mined from
the available set of correct links. This was obtained through the following procedure:

1. All requirements were tokenized? and stemmed; stopwords where then removed,
thus obtaining a set of 1785 terms that constitute the domain vocabulary em-
ployed in our requirements (only 268 of these appeared in both high-level and
low-level requirements).

2. From each term ¢ in the vocabulary, two features were derived, one for the
occurrence of ¢ in a high-level requirement (named t¢z) and one for the similar
occurrence in a low-level requirement (named tr,), giving in total 3570 features.

3. Each requirement was then transformed into a vector of features, with each
feature having the tf-idf value of the corresponding term. Higher values indicate
higher significance, with 0 indicating a non-occurring term.

4. From these vectors was derived a set of classification cases by joining one high-
level requirement and one low-level requirement, and adding a classification of
link or nolink based on whether that particular pair was a true link in the
original dataset, or not. To facilitate application of the machine learning algo-
rithms, the set was composed of 722 classification cases, half each for link and
nolink. Notice that this alters the statistical features of the set (we have 50%
links compared to 0.7% in the original dataset); this issue will be discussed later.

5. Finally, the dataset was used to train and test two different classifiers, in a 10-
fold cross-validation scheme, and both the structure of the classifiers obtained,
and the evaluation of their performances, were analyzed.

2.2 Using traces to infer domain thesaurus

In the second experiment, we considered whether the existing traces could suggest
stronger affinity between different terms, and weaker affinity between the same terms,
compared to the basic hypothesis of VSM that affinity coincides with identity (i.e.,
only the occurrence of the same term contributes to estimating the probability of a
link).

To this end, we derived an affinity score a for each pair of terms (py,qr) as
follows:

a(pm,qr) = ZS(P’ Q) - (t(pm, P) +t(qr,Q))
P,Q
where P is a high-level requirement, @ is a low-level requirement, s(P, Q) is +1 if
P and @ are linked or —1 otherwise, and #(r, R) is the tf-idf value for term r in
requirement R. For the purpose of this particular experiment, we do not concern
ourselves with scaling the values based on document size, since we are considering a
single dataset.

With the formula above, terms that occur particularly often in linked require-
ments pairs, and not commonly in unlinked requirements, would have positive affin-
ity; neutral terms would have an affinity close to 0; negative affinity indicates that
those terms tend to appear more frequently in unlinked requirements.

2 A purely alphabetic tokenizer was used; this simplistic choice had the effect of breaking
up acronyms such as “DPU-1553", “DPU-BOOT”, “BIT_-DRAM” which would normally
be considered a single term. On the other hand, cases such as “write/read/compare” were
correctly split.

VSM precision

VSM recall - - - -

J48 o

B Bayes ———

trivial —-—---
J48 aff precision

Bayes aff recall - - - -

0.5] e trivial|

0.4 - | .]
0.3 N N |
0.2 . . |

0 1 il I, 1 -
0 0.2 0.4 0.6 0.8 1

Fig. 1. Compared performances of VSM, Naive Bayesian, J48, trivial and affinity classifiers
on predicting links for the CM-1 case study.

The null hypothesis is that pairs (¢g,t;) should have high affinity, meaning that
the occurrence of the same term in a high-level and a low-level requirement is an
indication that they should be linked. In contrast, pairs (pg,qr) with high affinity,
where p # ¢, indicate that p and ¢ are strictly related terms, despite being different.

3 Results and discussion

We tested two classifiers from the WEKA [8] collection, a Naive Bayesian classi-
fier and the J48 decision-tree classifier (based on the C4.5 algorithm). The former
obtained 60.5% precision and 60.1% recall, whereas the latter obtained 67.6% for
both, which in the given conditions is a 17.6% improvement over the 50% a trivial
classifier would obtain (e.g., one that classifies all pairs as link, or as nolink, or
at random). This figure should be compared with the one obtained by traditional
VSM, which for our case is 86.5% at a threshold of 0.04 (see Figure 1). Notice again
that these figures are somewhat artificial, in that in common practice, the number
of non-links is often a hundredfold greater than the number of links, whereas in our
sample they were forcibly set equal.

As Figure 1 shows, VSM is a clear winner over both Naive Bayesian and J48.
However, the 17.6% improvement the latter has over the trivial classifier was ob-
tained without recourse to the VSM hypothesis that occurrence of the same terms in
two requirements imply greater link affinity. In fact, direct inspection of the decision
tree learned by the J48 classifier shows very few instances in which the appearance
of the same term in both high-level and low-level requirements is a crucial factor for
the classification decision. This observation suggests that further improvements over
VSM can be obtained by harnessing the models mined by training the classifiers.

The good performance of VSM can also be described via the affinity scores of
identical pairs, e.g. a(ty,tr). Indeed, based on the results of our second experiment

a(lpa,qr) |[>0|=0{<0| N
identical pairs|89%|4% | 7% 268
all pairs|45%]| 6% |48%|134531
Table 1. Distribution of affinity for identical pairs and for all pairs.

a(tu,tr) a(pr,qr) with p # g
90.620| bity bity, 124.779|booty| dramp
84.640 ssip ssiz, 114.231|boot g bity,

77.838| ccmpy ccemy, |[113.881|boot g |bootstrapyr,
73.437| drampyg dramy |[[112.550| cscy dramy,
71.521 icug icur, 97.982|boot x| eepromyp,
59.682| errory errory, 97.419|boot gy testr

-6.962| allocater |allocater, || -54.900| dpug datar,
-7.360|software g [softwarer || -57.036| dpug dpar,
-28.600| cscy cscr, -60.287|boot i datar,
Table 2. Best and worst affinity scores for identical and non-identical pairs of terms.

(see Table 1), almost 90% of the terms had a positive affinity with themselves. It is
thus clear that VSM, where it is assumed that all terms have positive affinity with
themselves, provides a good approximation of the real traces.

Still, better can be done by mining the affinity scores from trace data, and using
those to refine the results of VSM. In fact, not only 11% of the terms did not
satisfy VSM’s underlying assumption (and their use in predicting traces was thus
detrimental), but a large number of non-identical pairs had even higher affinity scores
than the identical pairs. For example, Table 2 lists the highest and lowest affinity
scores in our case. On one side, it is interesting to note how most terms shown are
domain-specific acronyms; these tend to characterize most strongly the subject of
a requirement. In contrast, most common terms (e.g., state, command, application,
routine, etc.) tend to have neutral affinity scores (i.e., closer to 0). On the other side,
it can be observed how the affinity of certain non-identical pairs (e.g., booty with
DRAM,, bity, bootstrapy,, EEPROM}) is higher than that of identical pairs. It
turns out that using affinity scores instead of cosine similarity on the tf-idf vectors,
in our case we have a remarkable maximum of 95.7% simultaneous precision and
recall, vs. 86.5% for VSM (Figure 1).

Another interesting observation is that from affinity data we can obtain some
insight into the domain, and into the refinement principles that led from high-level to
low-level requirements. For example, the aforementioned relationships surrounding
booty, are embodied in a low-level requirement about specific operations to be
performed at boot time:

On boot, the bootstrap tests and clears DRAM, and then proceeds to load the DPU
FSW from EEPROM and executes it. The DPU FSW then loads configuration
information from EEPROM (which establishes various operational defaults) and
spawns the various DPU FSW tasks.

It is not unreasonable then to expect that any low-level requirement mentioning
writing into EEPROM can have an effect at next boot, and hence should be linked

to high-level requirements discussing boot time operations. It is interesting to note
that, although the term “boot” appears directly in the low-level requirement above,
a(boot g,booty,) is only 46.07, which is a much weaker indication of a link than that
provided by the presence of DRAM, EEPROM, etc.

4 Conclusions

In this preliminary study, we have identified some of the information that can be
mined from requirements traces, showing that “there is life beyond VSM”. In our
case study, we harnessed two such sources of information: (i) the decision tree gener-
ated by the J48 machine-learning algorithm, and (ii) the affinity measure we defined
above. In both cases, the additional knowledge gained could be used to help famil-
iarize with an unknown domain, to shed some light on refinement decisions, to un-
derstand linking policies, or — in the end — to obtain a more accurate semi-automatic
linking of new or changed requirements based on previous history.

In further pursuing this line of research, we will investigate how the various
techniques we employed behave on data with a more realistic distribution (namely,
with less than 1% of all possible pairs of requirements linked), a study which is
rendered difficult by the substantial computational power needed to process large
datasets, and will test how to best integrate the affinity measures we mined from
the data, in order to improve the results from well-established techniques.

Acknowledgements. The authors would like to thank Jane Hayes for her help in accessing
the data and inspiration with this work. This material is based upon work supported by
the National Science Foundation under Grant No. 0811140.

References

—_

Center of excellence for software traceability. http://www.traceabilitycenter.org/.

2. J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova. Best practices
of automated traceability. IEEE Computer, 40(6), June 2007.

3. J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker. A machine learning
approach for tracing regulatory codes to product specific requirements. In Proc. of the
32nd Int. Conf. on Software Engineering, pages 155-164. ACM, May 2010.

4. O. Gotel and A. Finkelstein. An analysis of the requirements traceability problem.
In Proc. of the First Int. Conf. on Requirements Engineering, pages 94-101. IEEE CS
Press, 1994.

5. A. Marcus and J. I. Maletic. Recovering documentation-to-source-code traceability links
using latent semantic indexing. In Proc. of the 25th Int. Conf. on Software Engineering,
pages 125-137, 2003.

6. J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. Speeding up requirements
management in a product software company: Linking customer wishes to product re-
quirements through linguistic engineering. In Proc. of the 12th IEEE Int. Requirements
Engineering Conf. IEEE CS Press, 2004.

7. H. Sultanov and J. H. Hayes. Application of swarm techniques to requirements engi-
neering: Requirements tracing. In Proc. of the 18th IEEE Int. Requirements Engineering
Conf., pages 211-220. IEEE CS Press, September 2010.

8. Weka 3: Data mining software in Java. http://www.cs.waikato.ac.nz/ml/weka/.

