
HAL Id: hal-03792693
https://hal.science/hal-03792693

Submitted on 30 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engineering Agent Frameworks: An Application in
Multi-Robot Systems

Jérôme Lacouture, Victor Noël, Jean-Paul Arcangeli, Marie-Pierre Gleizes

To cite this version:
Jérôme Lacouture, Victor Noël, Jean-Paul Arcangeli, Marie-Pierre Gleizes. Engineering Agent Frame-
works: An Application in Multi-Robot Systems. 9th International Conference on Practical Applica-
tions of Agents and Multiagent Systems (PAAMS 2011), Apr 2011, Salamanca, Spain. pp.75-85,
�10.1007/978-3-642-19875-5_10�. �hal-03792693�

https://hal.science/hal-03792693
https://hal.archives-ouvertes.fr


Engineering Agent Frameworks:
An Application in Multi-Robot Systems

Jérôme LACOUTURE, Victor NOËL, Jean-Paul ARCANGELI and Marie-Pierre
GLEIZES

Abstract In this paper, we present a novel development process called SPEARAF
(Species to Engineer Architectures for Agent Frameworks) and evaluate its rele-
vance to ease the implementation of Multi-Agent Systems in the context of a multi-
robot project for crisis management. SPEARAF allows to build component-based
architectures for agents and their infrastructure. We show the advantages of us-
ing an architecture-based process to realise an application-specific agent framework
adapted to the requirements of such a system. SPEARAF gives guidelines to enables
the use of architecture-oriented practices for agent implementation.

1 Introduction
The Rosace (Robots and Embedded Self-Adaptive Communicating Systems) project1

aims at developing means to specify, design, implement and deploy a set of mobile
autonomous communicating and cooperating robots and personal devices. The de-
signed system has to be safe, to enable self-healing, to achieve a set of missions
and to self-adapt in a dynamic environment. The main case study considers a crisis
management situation with a control center, Autonomous Ground Vehicles (AGVs),
Autonomous Aerial Vehicles (AAVs) and human actors all carrying mobile com-
municating devices. Rosace promoted solution is the design of a Multi-Agent Sys-
tem (MAS) to manage the self-adaptation/self-management of the robots collective
activities, where each actor (AAV, AGV, control center, human actor. . . ) is repre-
sented by a software agent. The project intends to implement and compare the
following multi-agent strategies for several scenarios: Adaptive Multi-Agent Sys-
tems (AMAS) [6], Bonnet-Torres and Tessier approach [2], and Gascuena et al.
model [4]. In this paper, we focus on the AMAS strategy.

Jérôme LACOUTURE, Victor NOËL, Jean-Paul ARCANGELI and Marie-Pierre GLEIZES
Université de Toulouse, Institut de Recherche en Informatique de Toulouse,
118, route de Narbonne, 31 062 Toulouse Cedex, France
e-mail: {firstname.lastname}@irit.fr

1 http://www.irit.fr/Rosace,737

1



2 Jérôme LACOUTURE, Victor NOËL, Jean-Paul ARCANGELI and Marie-Pierre GLEIZES

Because the development of such systems is complex and time-taking, we pro-
pose SPEARAF, a development process, to design the different entities (AGVs,
AAVs. . . ) using component-based software architectures. It enables us to ease the
development, produce reusable artifacts and easily reuse them, as well as clearly de-
sign architectures supporting evolution while taking into account the requirements
from the different stakeholders involved in the project.

In this paper, we focus on a simplified scenario in order to illustrate SPEARAF:
AGVs with local perception have to rescue victims scattered in a forest on fire. In-
formation about the existence and location of victims arrives dynamically and the
rescue tasks must be self-allocated in a distributed manner by the fleet of AGVs
to adapt to the disturbances (fire spreading, evolution of AGV tasks priorities, res-
cue team reorganisation, communication or material breakdowns, etc.). Based on
these functional requirements, our objective is to build a system to implement and
compare the strategies to solve this problem. We want to run simulations and take
measures w.r.t. a set of metrics to test the feasibility, the consistency and the perfor-
mance of the strategies in a virtual world before deploying it in real conditions (i.e.
with real AGVs). A demo of the final system illustrating this scenario with 5 AGVs
and 18 victims can be found on the website of the project.2

A constraint of the project is to use the provided simulator, called Morse3, also
built in the context of the Rosace project. It provides means to connect a program to a
simulated AGV and control all its functions. We also have identified, with the stake-
holders of the project, the following non-functional requirements for this system:
1. extensibility and reuse: build a prototype for one strategy that can be improved
and extended with new strategies; 2. portability: minimise the effort to port the dif-
ferent strategies from the Morse simulator to real AGVs; 3. abstraction: provide ab-
stract and high-level mechanisms to enable the developers of the strategies to focus
on their expertise domain (functional concerns).

In the following, we discuss related works before presenting the process and
applying it for our use case. Then we evaluate the process and conclude.

2 Related Works
In this section, we focus on existing approaches that can help the design of MAS
with similar properties than the studied use case. Existing design methods [7] do
provide guidance to develop MAS by identifying agents and environment as well
as designing their behaviours and interactions. Their objectives are to design the
functionality of the system and to realise the system itself. Other works such as [3]
or Malaca [1] proposes to use component-based and aspect-oriented software engi-
neering to build agent architectures and their crosscutting concerns. In the robotic
community, several works tackle the building of robot architectures using compo-
nents, such as YARP, OROCOS, Orca or more recently GenoM3.

In most of these approaches, we are missing a way to build specific types of
agents for the specific problem and application we are building, without resting on

2 http://www.irit.fr/Rosace,1196
3 http://morse.openrobots.org



Engineering Agent Frameworks: An Application in Multi-Robot Systems 3

a generic agent model such as the FIPA one. Moreover, we want to be able to build
specific architectures depending on the chosen strategy instead of using a predefined
one such as goal-oriented or subsumption architecture. The other approaches that
enable reuse and extensibility doesn’t give the possibility of abstracting specific
types of agents: they at most focus on the component and mechanisms level, if not
only the behaviour level.

3 Engineering Architectures for Species of Agents: SPEARAF

In this section, we present SPEARAF (Species to Engineer Architectures for Agent
Frameworks), a development process based on [8].

To complete existing design methods that focus on designing the functionality of
a MAS, SPEARAF promotes the engineering of application-specific frameworks for
the development of multi-agent applications. It enables to take into account the non-
functional requirements expressed by the developers of a MAS in order to help them
to focus on the functionality of the system. Such frameworks provide what we call
“species of agents”: species define sets of agents with common structural charac-
teristics. In the context of Rosace, there can be a species of agents representing AGVs
and another one for those representing AAVs. Also, agents in the different strategies
presented Sect. 1 differ from their individual behaviours but share the same struc-
tural elements such as GPS, camera or radio that makes them member of the species
of AGVs. A subspecies is a species that derives from a parent species after evo-
lution (i.e. refinement and possibly modification). By defining species, the idea is
to provide specific types of agents that fit functional requirements. Developers can
rely on species both when designing and implementing a MAS, they don’t need to
deal with operational concerns and can focus on the agent’s functional behaviours.

Species of agents are realised by component-based software architectures and
building them happens in two steps: 1. identifying a species of agent for the ap-
plication and 2. assembling and reusing software components in architectures to
create a framework for the species. Moreover, we differentiate two roles in the pro-
cess: a) creation of the framework by the framework developer and b) use of this
framework to develop the MAS by the framework user. Indeed, when program-
ming the MAS, hotspots in the frameworks can be instantiated (possibly with sub-
architectures) by the framework user to specify the behaviour of the agents using
a set of agent-oriented and application-specific programming primitives defined by
the framework developer. In practice, the architectures are defined using the MAKE
AGENTS YOURSELF4 tool that supports SPEARAF using model-driven engineering
and editors while the frameworks are implemented with JAVA.

On top of the classical objectives of architecture and component-based software
engineering such as modifiability, abstraction, testability or reuse of produced arti-
facts (architectures or components), SPEARAF focuses on concerns specific to MAS
development by providing guidelines to build the frameworks. Moreover, it enables
the use of software architectures for the development of the behaviours of a pro-
duced framework, thus giving all the advantages of such practices in all the devel-
opment of the whole application.

4 http://www.irit.fr/MAY



4 Jérôme LACOUTURE, Victor NOËL, Jean-Paul ARCANGELI and Marie-Pierre GLEIZES

4 Application: Engineering Architecture for Species of AGVs

In this section, we detail the SPEARAF development process by applying it to the
Rosace use case and we show how it enables us to architecture, design and implement
a solution to the requirements expressed previously. As we will show, SPEARAF
proposes to build the architecture of the species of agents but it also enables to take
care of the infrastructure to execute them, however, we will not address this second
point since the infrastructure is managed by the Morse simulator.

4.1 Identification of the Species
Identifying the species of agents is twofold and is based on: 1) defining the agents
of the species dynamics such as their lifecycle, the way they process information
and take decisions; 2) defining the high-level abstract constructs the application de-
veloper will use to define the behaviour of the agents. Here, we are interested in the
species of AGVs concerned with AGV dynamics and mechanisms.

Based on the species of AGVs, we differentiate the subspecies of AMAS AGVs,
concerned with decision and interaction behaviour, by defining how it uses the
mechanisms available from its parent species. In the scenario, the objective of the
AMAS AGVs is to plan and allocate tasks (to move to a destination to “rescue” a vic-
tim) among them. For that, each AMAS AGV follows a perceive-decide-act lifecycle
and exchange messages with other AMAS AGVs by following a cooperative task al-
location protocol defined using the AMAS theory (see [5]). Tweaks of the behaviour
are focused on the evaluation of tasks criticality and their acceptation.

4.2 Architecture of the Species of AGVs

Based on the species presented previously, Fig. 1 shows the architecture of AGVs.
In particular, the Behaviour component is in charge of orchestrating the internal
components functions to achieve a coherent global behaviour. It gathers elaborated
information from the rest of the components, makes choices, orders execution of ac-
tions, monitors results, and sends control information to relevant components when
necessary. Behaviour is considered as an abstract component where will be im-
plemented the specific strategy we want to test (AMAS in this paper). Other compo-
nents are considered generic for the species of AGVs (and thus for all strategies).

<<component>>
Rosace Robot Species

<<component>>
GPS

<<component>>
Gyroscope

<<component>>
Movement

<<component>>
Camera

<<component>>
Radio

<<component>>
Executor

<<component>>
MessageQueue

<<component>>
Behavioural Component

new move event

broadcast

follow path

neigbours

get visible objects

get position

get orientation

get msg

execute

put msg

send

Visual Paradigm for UML Community Edition [not for commercial use] 

Fig. 1 Component view of the AGVs architecture (UML 2)



Engineering Agent Frameworks: An Application in Multi-Robot Systems 5

<<component>>
Behaviour Component

<<component>>
LifeCycle

<<component>>
TaskEvaluation

<<component>>
Task Allocation

Protocol

<<component>>
Perception <<component>>

Action Applier
(Buffered)

<<component>>
Task Management

<<component>>
Message

Dispatcher

<<component>>
Move Event
Dispatcher
(Buffered)

<<component>>
Vision

execute

evaluate get position

new move event

get visible objects

get msg

new task

task allocated

broadcast
broadcast

do

do

task finished

abort task

follow path

get tasks

add request

allocate

add answer

Visual Paradigm for UML Community Edition [not for commercial use] 

Fig. 2 Component view of the AMAS AGVs architecture (UML 2)

4.3 Architecture of the Species of AMAS AGVs

To match with the AMAS theory, the Behaviour component of the species of AGVs
architecture is implemented with a set of components categorised into three main
activities of the agent: perception, decision, action. A specification has been elicited
from a description of the AMAS strategy for the victim rescue task allocation. From
this specification, we were able to design the layered architecture of the subspecies
of AMAS AGVs depicted Fig. 2.

At the perception level, AMAS AGVs use the components defined in the archi-
tecture of the species of AGVs in order to interpret messages and perception. It dis-
patches information to the decision level depending on their content. At the deci-
sion level, AMAS AGVs have to individually evaluate tasks and collectively decide to
(re)allocate them. At the action level, AMAS AGVs execute tasks, broadcast messages
(decisions) and forward victims location.

With Behaviour is seen as an architecture, the high-level abstract constructs
for defining the behaviour of this subspecies are Task Evaluation, Perception
or Task Management. This last point highlights the differences between user and
developer of the framework: building the AMAS AGV subspecies is to use the AGV
framework, but at the same time is to build a new specific framework.

5 Feedback and Evaluation
In this section, we briefly evaluate the produced species (architectures and frame-
work) and SPEARAF in regards to the requirements detailed in Sect. 1.

From the AMAS specialist point of view, SPEARAF provides an easy way to im-
plement the subspecies of AMAS AGVs. The developer doesn’t need to know imple-
mentation details of the species of AGVs: indeed, specification of the interfaces and
the dynamics is enough to use a specific species. In this sense, SPEARAF enable to
implement MAS strategies with a common framework in order to factorise the effort
and compare the different solutions. Moreover, responsibilities of components of the
subspecies are clear enough to focus on improving the parameters (task evaluation
and acceptation) of the task allocation protocol by a less expert developer.



6 Jérôme LACOUTURE, Victor NOËL, Jean-Paul ARCANGELI and Marie-Pierre GLEIZES

Then, reuse and extensibility of species and components are clear advantages
of SPEARAF. From the species of AGVs, it is easy to provide the other subspecies
to implement the strategies presented Sect. 1. Consequently, the development it-
self produces reusable artifacts such as components (e.g. task allocation, vision) or
species (by extension) for the development of other species, other scenarios and
even other applications in robotics. An interesting example is reusing the species of
AMAS AGVs to produce an species of AMAS AAVs with same goals: it doesn’t need
an important effort and would only consist in developing the AAVs specific compo-
nents to build a species of AAVs. Moreover, using species enables to first prototype
the implementation of an AGV then create a real subspecies by building a derived
architecture from the parent species.

From the point of view of the framework developer, SPEARAF provides guide-
lines dedicated to architectures for agents by explicitly making the developer de-
fine precisely the agent dynamics, behaviour and mechanisms. Other advantages of
SPEARAF for this role are not pointed up by this paper, in particular at the infrastruc-
ture level with the separation of agent concerns from environment concerns (MAS
and runtime).

6 Conclusion
By relying on the SPEARAF development process, we built a system enabling the
comparison in a simulator of different multi-agent strategies for multi-robot task
allocation in a dynamic environment. As the evaluation shows, we were able to
answer non-functional requirements needed by such a system. SPEARAF provides
helps and guidelines for the development of MAS, in particular at the agent level
and its programming. The concept of “species” encourages to explicitly build an ar-
chitecture realising the dynamics of the agents, its interactions with its environment
and enabling the definition of its behaviour through high-level abstract constructs.
Using such concepts enables the species user to build subspecies and profit from the
advantages of software architecture practices till the end of the development.

References
1. Amor, M., Fuentes, L.: Malaca: A Component and Aspect-Oriented Agent Architecture. Infor-

mation & Software Technology 51(6), 1052–1065 (2009)
2. Bonnet-Torres, O., Tessier, C.: A Formal Petri Net Based Model for Team Monitoring. Hand-

book of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models
23, 568–590 (2009)

3. Garcia, A., Lucena, C.: Taming Heterogeneous Agent Architectures with Aspects. Communi-
cations of the ACM 51(5), 75–81 (2008)

4. Gascueña, J.M., Fernández-Caballero, A., Garijo, F.J.: Using ICARO-T Framework for Reac-
tive Agent-Based Mobile Robots. In: PAAMS, pp. 91–101 (2010)

5. Georgé, J.P., Gleizes, M.P., Garijo, F., Noel, V., Arcangeli, J.P.: Self-adaptive Coordination for
Robot Teams Accomplishing Critical Activities. In: Y. Demazeau, F. Dignum, J.M. Corchado,
J. Bajo (eds.) PAAMS’10, AISC, vol. 70, pp. 145–150. Springer-Verlag (2010)

6. Gleizes, M.P., Camps, V., Georgé, J.P., Capera, D.: Engineering systems which generate emer-
gent functionalities. In: D. Weyns, S.A. Brueckner, Y. Demazeau (eds.) EEMMAS 2007, LNCS
(LNAI), vol. 5049, pp. 58–75. Springer (2008)

7. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. IGI Global (2005)
8. Noël, V., Arcangeli, J.P., Gleizes, M.P.: Between Design and Implementation of MAS: A

Component-Based Two-Step Process. In: EUMAS’10 (2010)


