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Abstract. A model-free learning algorithm called Predictive Sequence Learning
(PSL) is presented and evaluated in a robot Learning from Demonstration (LFD)
setting. PSL is inspired by several functional models of the brain. It constructs
sequences of predictable sensory-motor patterns, without relying on predefined
higher-level concepts. The algorithm is demonstrated on a Khepera II robot in
four different tasks. During training, PSL generates a hypothesis library from
demonstrated data. The library is then used to control the robot by continually
predicting the next action, based on the sequence of passed sensor and motor
events. In this way, the robot reproduces the demonstrated behavior. PSL is able
to successfully learn and repeat three elementary tasks, but is unable to repeat a
fourth, composed behavior. The results indicate that PSL is suitable for learning
problems up to a certain complexity, while higher level coordination is required
for learning more complex behaviors.

1 Introduction

Recent years have witnessed an increased interest in computational mechanisms that
will allow robots to Learn from Demonstrations (LFD). With this approach, also re-
ferred to as Imitation Learning, the robot learns a behavior from a set of good exam-
ples, demonstrations. The field has identified a number of key problems, commonly
formulated as what to imitate, how to imitate, when to imitate and who to imitate [3].
In the present work, we focus on the first question, referring to which aspects of the
demonstration should be learned and repeated.

Inspiration is taken from several functional models of the brain and prediction is
exploited as a way to learn state definitions. A novel learning algorithm, called Pre-
dictive Sequence Learning (PSL), is here presented and evaluated. PSL is inspired by
S-Learning [42, 43], which has previously been applied to robot learning problems as a
model-free reinforcement learning algorithm [40, 41].

The paper is organized as follows. In Sect. 2 a theoretical background and biological
motivation is given. Section 3 gives a detailed description of the proposed algorithm.
Section 4 describes the experimental setup and results for evaluation of the algorithm.
In Sect. 5, conclusions, limitations and future work are discussed.

2 Motivation

One common approach to identify what in a demonstration that is to be imitated is to
exploit the variability in several demonstrations of the same behavior. Invariants among
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the demonstrations are seen as the most relevant and selected as essential components
of the task [3, 17]. Several methods for discovering invariants in demonstrations can
be found in the LFD literature. One method presented by Billard et al. applies a time-
delayed neural network for extraction of relevant features from a manipulation task [4,
5]. A more recent approach uses demonstrations to impose constraints in a dynamical
system, e.g. [16, 25].

While this is a suitable method for many types of tasks, there are also applications
where it is less obvious which aspects of a behavior should be invariant, or if the relevant
aspects of that behavior is captured by the invariants. Since there is no universal method
to determine whether two demonstrations should be seen as manifestations of the same
behavior or two different behaviors [10], it is in most LFD applications up to the teacher
to decide. However, the teacher’s grouping of actions into behaviors may not be useful
for the robot. In the well known imitation framework by Nehaniv and Dautenhahn [34],
it is emphasized that the success of an imitation is observer dependent. The consequence
of observer dependence when it comes to interpreting sequences of actions has been
further illustrated with Pfeifer and Scheier’s argument about the frame of reference
[35, 36], and is also reflected in Simon’s parable with the ant [45]. A longer discussion
related to these issues can be found in [6].

Pfeifer and Scheier promotes the use of a low level specification [36], and specifi-
cally the sensory-motor space I = U × Y , where U and Y denotes the action space
and observation space, respectively. Representations created directly in I prevents the
robot from having memory, which has obvious limitations. However, systems with no
or very limited memory capabilities has still reached great success within the robotics
community through the works by Rodney Brooks, e.g., [12–15], and the development
of the reactive and behavior based control paradigms, e.g., [1]. By extending the def-
inition of I such that it captures a certain amount of temporal structure, the memory
limitation can be removed. Such a temporally extended sensory-motor space is denoted
history information space Iτ = I0 × I1 × I2 × . . . × Iτ , where τ denotes the tempo-
ral extension of I [10]. With a large enough τ , Iτ can model any behavior. However,
a large τ leads to an explosion of the number of possible states, and the robot has to
generalize such that it can act even though the present state has not appeared during
training.

In the present work, we present a learning method that is not based on finding invari-
ants among several demonstrations of, what the teacher understands to be “the same
behavior”. Taking inspiration from recent models of the brain where prediction plays a
central role, e.g. [22, 23, 27, 32], we approach the question of what to imitate by the
use of prediction.

2.1 Functional Models of Cortex

During the last two decades a growing body of research has proposed computational
models that aim to capture different aspects of human brain function, specifically the
cortex. This research includes models of perception, e.g., Riesenhuber and Poggio’s
hierarchical model [38] which has inspired several more recent perceptual models [23,
32, 37], models of motor control [26, 42, 46–48] and learning [22]. In 2004, this field
reached a larger audience with the release of Jeff Hawkins’s book On Intelligence [28].
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With the ambition to present a unified theory of the brain, the book describes cortex as
a hierarchical memory system and promotes the idea of a common cortical algorithm.
Hawkins’s theory of cortical function, referred to as the Memory-Prediction framework,
describes the brain as a prediction system. Intelligence is, in this view, more about
applying memories in order to predict the future, than it is about computing a response
to a stimulus.

A core issue related to the idea of a common cortical algorithm is what sort of bias
the brain uses. One answer is that the body has a large number of reward systems.
These systems are activated when we eat, laugh or make love, activities that through
evolution have proved to be important for survival. However, these reward systems are
not enough. The brain also needs to store the knowledge of how to activate these reward
systems.

In this context, prediction appears to be critical for learning. The ability to predict the
future allows the agent to foresee the consequences of its actions and in the long term
how to reach a certain goal. However, prediction also plays an even more fundamental
role by providing information about how well a certain model of the world correlates
with reality.

This argument is supported not only by Hawkins’s work, but by a large body of re-
search investigating the computational aspects of the brain [8]. It has been proposed that
the central nervous system (CNS) simulates aspects of the sensorimotor loop [29, 31,
33, 47]. This involves a modular view of the CNS, where each module implements one
forward model and one inverse model. The forward model predicts the sensory conse-
quences of a motor command, while the inverse model calculates the motor command
that, in the current state, leads to the goal [46]. Each module works under a certain
context or bias, i.e., assumptions about the world which are necessary for the module’s
actions to be successful. One purpose of the forward model is to create an estimate of
how well the present situation corresponds to these assumptions. If the prediction error
is low the situation is familiar. However, if the prediction error is high, the situation
does not correspond to the module’s context and actions produced by the inverse model
may be inappropriate.

These findings have inspired recent research on robot perception and control. One
example is the rehearse, predict, observe, reinforce decomposition proposed by [18,
20, 44] which adapts the view of perception and action as two aspects of a single pro-
cess. Hierarchical representations following this decomposition have also been tested
in an LFD setting [19] where the robot successfully learns sequences of actions from
observation. In work parallel to this, we also investigates PSL as an algorithm for be-
havior recognition [11], exploring the possibilities to use PSL both as a forward and
an inverse model. The present work should be seen as a further investigation of these
theories applied to robots, with focus to learning with minimal bias.

2.2 Sequence Learning

PSL is inspired by S-Learning, a dynamic temporal difference (TD) algorithm presented
by Rohrer and Hulet, [42, 43]. S-Learning builds sequences of passed events which may
be used to predict future events, and in contrast to most other TD algorithms it can base
its predictions on many previous states.



Predictive Learning from Demonstration 189

S-Learning can be seen as a variable order Markov model (VMM) and we have
observed that it is very similar to the well known compression algorithm LZ78 [49].
This coincidence is not that surprising considering the close relationship between loss-
less compression and prediction [2]. In principle, any lossless compression algorithm
could be used for prediction, and vice verse [21].

S-Learning was originally developed to capture the discrete episodic properties ob-
served in many types of human motor behavior [39]. Inspiration is taken from the
Hierarchical Temporal Memory algorithm [24], with focus on introducing as few as-
sumptions into learning as possible. More recently, it has been applied as a model-free
reinforcement learning algorithm for both simulated and physical robots [40, 41]. We
have also evaluated S-Learning as an algorithm for behavior recognition [9]. However,
to our knowledge it has never been used as a control algorithm for LFD.

The model-free design of S-Learning, together with its focus on sequential data and
its connections to human motor control makes S-Learning very interesting for further
investigation as a method for robot learning. With the ambition to increase the focus on
prediction, and propose a model that automatically can detect when it is consistent with
the world, PSL was designed.

3 Predictive Sequence Learning

PSL is trained on an event sequence η = (e1, e2, . . . , et), where each event e is a
member of an alphabet

∑
. η is defined up to the current time t from where the next

event et+1 is to be predicted.
PSL stores its knowledge as a set of hypotheses, known as a hypothesis library

H . A hypothesis h ∈ H expresses a dependence between an event sequence X =
(et−n, et−n+1, . . . , et) and a target event I = et+1:

h : X ⇒ I (1)

Xh is referred to as the body of h and Ih denotes the head. Each h is associated with a
confidence c reflecting the conditional probability P (I|X). For a given η, c is defined
as c (X ⇒ I) = s (X, I) /s (X), where the support s (X) describes the proportion of
transactions in η that contains X and (X, I) denotes the concatenation of X , and I .
A transaction is defined as a sub-sequence of the same size as X . The length of h,
denoted |h|, is defined as the number of elements in Xh. Hypotheses are also referred
to as states, since a hypothesis of length |h| corresponds to VMM state of order |h|.

3.1 Detailed Description of PSL

Let the library H be an empty set of hypotheses. During learning, described in Alg. 1,
PSL tries to predict the future event et+1, based on the observed event sequence η.

If it fails to predict the future state, a new hypothesis hnew is created and added to H .
hnew is one element longer than the longest matching hypothesis previously existing in
H . In this way, PSL learns only when it fails to predict.

For example, consider the event sequence η = ABCCABCCA. Let t = 1. PSL will
search for a hypothesis with a body matching A. Initially H is empty and consequently



190 E.A. Billing, T. Hellström, and L.-E. Janlert

Algorithm 1. Predictive Sequence Learning (PSL)
Require: an event sequence η = (e1, e2, . . . , en)

1: t← 1
2: H ← ∅
3: M ←

{
h ∈ H | Xh =

(
et−|h|+1, et−|h|+2, . . . , et

)}

4: if M = ∅ then
5: let hnew : (et)⇒ et+1

6: add hnew to H
7: goto 20
8: end if
9: M̂ ← {h ∈M | |h| ≥ |h′| for all h′ ∈M}

10: let hmax ∈
{

h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂
}

11: if et+1 &= Ihmax then
12: let hc be the longest hypothesis {h ∈M | Ih = et+1}
13: if hc = null then
14: let hnew : (et)⇒ et+1

15: else
16: let hnew :

(
et−|hc|, et−|hc|+1, . . . , et

)
⇒ et+1

17: end if
18: add hnew to H
19: end if
20: update the confidence for hmax and hcorrect as described in Sect. 3
21: t← t + 1
22: if t < n then
23: goto 2
24: end if

PSL will create a new hypothesis (A) ⇒ B which is added to H . The same procedure
will be executed at t = 2 and t = 3 so that H = {(A)⇒ B; (B)⇒ C; (C)⇒ C}. At
t = 4, PSL will find a matching hypothesis hmax : (C) ⇒ C producing the wrong
prediction C. Consequently, a new hypothesis (C) ⇒ A is added to H . The predictions
at t = 5 and t = 6 will be successful while h : (C) ⇒ A will be selected at t = 7
and produce the wrong prediction. As a consequence, PSL will create a new hypothesis
hnew : (B, C) ⇒ C. Source code from the implementation used in the present work is
available online [7].

3.2 Making Predictions

After, or during, learning, PSL can be used to make predictions based on the sequence
of passed events η = (e1, e2, . . . , et). Since PSL continuously makes predictions during
learning, this procedure is very similar to the learning algorithm (Alg. 1). The prediction
procedure is described in Alg. 2.

For prediction of a suite of future events, êt can be added to η to create η′. Then
repeat the procedure described in Alg. 2 using η′ as event history.
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Algorithm 2. Making predictions using PSL
Require: an event sequence η = (e1, e2, . . . , et−1)
Require: the trained library H =

(
h1, h2, . . . , h|H|

)

1: M ←
{
h ∈ H | Xh =

(
et−|h|, et−|h|+1, . . . , et−1

)}

2: M̂ ← {h ∈M | |h| ≥ |h′| for all h′ ∈M}
3: let hmax ∈

{
h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂

}

4: return the prediction êt = Ihmax

3.3 Differences and Similarities between PSL and S-Learning

Like PSL, S-Learning is trained on an event sequence η. However, S-Learning does
not produce hypotheses. Instead, knowledge is represented as Sequences φ, stored in
a sequence library κ [43]. φ does not describe a relation between a body and a head,
like hypotheses do. Instead, φ describes a plain sequence of elements e ∈ η. During
learning, sequences are “grown” each time a matching pattern for that sequence appears
in the training data. Common patterns in η produce long sequences in κ. When S-
Learning is used to predict the next event, the beginning of each φ ∈ κ is matched to
the end of η. The sequence producing the longest match is selected as a winner, and the
end of the winning sequence is used to predict future events.

One problem with this approach, observed during our previous work with S-Learning
[9], is that new, longer sequences, are created even though the existing sequence already
has Markov property, meaning that it can predict the next element optimally. To prevent
the model from getting unreasonably large, S-Learning implements a maximum se-
quence length m. As a result, κ becomes unnecessarily large, even when m is relatively
low. More importantly, by setting the maximum sequence length m, a task-dependent
modeling parameter is introduced, which may limit S-Learning’s ability to model η.

PSL was designed to alleviate the problems with S-Learning. Since PSL learns only
when it fails to predict, it is less prune to be overtrained and can employ an unlimited
maximum sequence length without exploding the library size.

4 Evaluation

The PSL algorithm was tested on a Khepera II miniature robot [30]. In the first eval-
uation (Sect. 4.1), the performance of PSL on a playful LFD task is demonstrated. In
a second experiment (Sect. 4.2), the prediction performance during training of PSL
is compared to the performance of S-Learning, using recorded sensor and motor data
from the robot. During both experiments, the robot is given limited sensing abilities
using only its eight infrared proximity sensors mounted around its sides.

One important issue, promoted both by Rohrer et al. [40, 41] and ourselves [10], is
the ability to learn even with limited prior knowledge of what is to be learned. Prior
knowledge is information intentionally introduced into the system to support learning,
often referred to as ontological bias or design bias [10]. Examples of common design
biases are pre-defined state specifications, pre-processing of sensor data, the size of a
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neural network or the length of a temporal window. While design biases help in learn-
ing, they also limit the range of behaviors a robot can learn. A system implementing
large amounts of design bias will to a larger extent base its decisions not on its own ex-
perience, but on knowledge of the programmer designing the learning algorithm, mak-
ing it hard to determine what the system has actually learned.

In addition to design bias, there are many limitations and constraints introduced by
other means, e.g., by the size and shape of the robot including its sensing and action
capabilities, structure of the environment and performance limitations of the computer
used. These kinds of limitations are referred to as pragmatical bias [10]. We generally
try to limit the amount of ontological bias, while pragmatical bias should be exploited
by the learning algorithm to find useful patterns.

In the present experiments, the robot has no previous knowledge about its surround-
ings or itself. The only obvious design bias is the thresholding of proximity sensors into
three levels, far, medium and close, corresponding to distances of a few centimeters.
This thresholding was introduced to decrease the size of the observation space Y , limit-
ing the amount of training required. An observation y ∈ Y is defined as the combination
of the eight proximity sensors, producing a total of 38 possible observations.

An action u ∈ U is defined as the combination of the speed commands sent to the
two motors. The Khepera II robot has 256 possible speeds for each wheel, producing an
action space U of 2562 possible actions. However, only a small fraction of these were
used during demonstration.

The event sequence is built up by alternating sensor and action events, η =
(u1, y1, u2, y2 . . . , uk, yk). k is here used to denote the current stage, rather than the
current position in η denoted by t. Even though events is categorized into observations
and actions, PSL makes no distinction between these two types of events. From the
perspective of the algorithm, all events et ∈

∑
are discrete entities with no predefined

relations, where
∑

= Y ∪ U .
In each stage k, PSL is used to predict the next event, given η. Since the last element

of η is an observation, PSL will predict an action uk ∈ U , leading to the observation
yk ∈ Y . uk and yk are appended to η, transforming stage k to k + 1. This alternating
use of observations and actions was adopted from S-Learning [42]. A stage frequency
of 10 Hz was used, producing one observation and one action every 0.1 seconds.

4.1 Demonstration and Repetition

To evaluate the performance of PSL on an LFD problem, four tasks are defined and
demonstrated using the Khepera II robot. Task 1 involves the robot moving forward in
a corridor approaching an object (cylindrical wood block). When the robot gets close
to the object, it should stop and wait for the human teacher to “load” the object, i.e.,
place it upon the robot. After loading, the robot turns around and goes back along the
corridor. Task 2 involves general corridor driving, taking turns in the right way without
hitting the walls and so on. Task 3 constitutes the “unloading” procedure, where the
robot stops in a corner and waits for the teacher to remove the object and place it to
the right of the robot. Then the robot turns and pushes the cylinder straight forward
for about 10 centimeters, backs away and turns to go for another object. Task 4 is the
combination of the three previous tasks. The sequence of actions expected by the robot
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wait for loading, 
then turn and go back

turnstart

unload

push object

Fig. 1. Schematic overview of the composed behavior (Task 4). Light gray rectangles mark walls,
dark gray circles mark the objects and dashed circles mark a number of key positions for the
robot. See text for details.

is illustrated in Fig. 1. The robot starts by driving upwards in the figure, following the
dashed line. until it reaches the object at the loading position. After loading, the robot
turns around and follows the dashed line back until it reaches the unload position. When
the cylinder has been unloaded (placed to the left of the robot), the robot turns and
pushes the object. Finally, it backs away from the pile and awaits further instructions.
The experimental setup can be seen in Fig. 2. Even though the setup was roughly the
same in all experiments, the starting positions and exact placement of the walls varied
between demonstration and repetition.

All tasks capture a certain amount of temporal structure. One example is the turning
after loading the object in Task 1. Exactly the same pattern of sensor and motor data
will appear before, as well as after, turning. However, two different sequences of actions
is expected. Specifically, after the teacher has taken the cylinder to place it on the robot,
only the sensors on the robot’s sides are activated. The same sensor pattern appears
directly after the robot has completed the 180 degree turn, before it starts to move
back along the corridor. Furthermore, the teacher does not act instantly. After placing
the object on the robot, one or two seconds passed before the teacher issued a turning
command, making it more difficult for the learning algorithm to find the connection
between the events. Even Task 2 which is often seen as a typical reactive behavior is, due
to the heavy thresholding of sensor data, temporally demanding. Even longer temporal
structures can be found in Task 3, where the robot must push the object and remember
for how long the object is to be pushed. This distance was not controlled in any way,
making different demonstrations of the same task containing slightly conflicting data.

After training, the robot was able to repeat Task 1, 2 and 3 successfully. For Task 1,
seven demonstrations were used for a total of about 2.6 min. Task 2 was demonstrated
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Fig. 2. Experimental setup

for about 8.7 min and Task 3 was demonstrated nine times, in total 4.6 min. The robot
made occasional mistakes in all three tasks, reaching situations where it had no training
data. In these situations it sometimes needed help to be able to complete the task. How-
ever, the number of mistakes clearly decreased with increased training, and mistakes
made by the teacher during training often helped the robot to recover from mistakes
during repetition.

For Task 4, the demonstrations from all three partial tasks were used, plus a single
2 min demonstration of the entire Task 4. Even after extensive training, resulting in
almost 40 000 hypotheses in library, the robot was unable to repeat the complete be-
havior without frequent mistakes. Knowledge from the different sub-tasks was clearly
interfering, causing the robot to stop and wait for unloading when it was supposed to
turn, turning when it was supposed to follow the wall and so on. Detailed results for all
four tasks can be found in Table 1.

PSL was trained until it could predict about 98% of the demonstrated data correctly.
It would be possible to train it until it reproduces all events correctly, but this takes
time and initial experiments showed that it did not affect the imitation performance
significantly.

4.2 Comparison between S-Learning and PSL

In Sect. 3.3, a number of motivations for the design of PSL were given, in relation to S-
Learning. One such motivation was the ability to learn and increase the model size only
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Table 1. Detailed statistics on the four evaluation tasks. Training events is the number of sensor
and motor events in demonstrated data. Lib. size is the number of hypotheses in library after
training. Avg. |h| is the average hypothesis length after training.

Task Training events Library size Avg. |h|
Task 1 3102 4049 9.81
Task 2 10419 30517 16
Task 3 5518 8797 11
Task 4 26476 38029 15

when necessary. S-Learning always learns and creates new sequences for all common
events, while PSL only learns when prediction fails. However, it should be pointed out
that even though S-Learning never stops to learn unless an explicit limit on sequence
length is introduced, it quickly reduces the rate at which new sequences are created in
domains where it already has extensive knowledge.

To evaluate the effect of these differences between PSL and S-Learning, prediction
performance and library size were measured during training in three test cases. Case 1
contained a demonstration of the loading procedure (Task 1) used in the LFD evaluation,
Sect. 4.1. During the demonstration, the procedure was repeated seven times for a total of
about 150 seconds (3000 sensor and motor events). Case 2 encapsulated the whole com-
posed behavior (Task 4) used in LFD evaluation. The behavior was demonstrated once
for 120 seconds (2400 events). Case 3 constituted 200 seconds of synthetic data, describ-
ing a 0.1 Hz sinus wave discretized with a temporal resolution of 20 Hz and an amplitude
resolution of 0.1 (resulting in 20 discrete levels). The 4000 elements long data sequence
created a clean repetitive pattern with minor fluctuations due to sampling variations.

In addition to PSL and S-Learning, a first order Markov model (1MM) was included
in the tests. The Markov model can obviously not learn the pattern in any of the three
test cases perfectly, since there is no direct mapping et ⇒ et+1 for many events. Hence,
the performance of 1MM should be seen only as reference results.

The results from the three test cases can be seen in Fig. 3. The upper part of each plot
show accumulated training error over the demonstration while lower parts show model
growth (number of hypotheses in library). Since the Markov model does not have a
library, the number of edges in the Markov graph is shown, which best corresponds to
sequences or hypotheses in S-Learning and PSL, respectively.

5 Description

A novel robot learning algorithm called Predictive Sequence Learning (PSL) is pre-
sented and evaluated in an LFD setting. PSL is both parameter-free and model-free in
the sense that no ontological information about the robot or conditions in the world is
pre-defined in the system. Instead, PSL creates a state space (hypothesis library) in or-
der to predict the demonstrated data optimally. This state space can thereafter be used
to control the robot such that it repeats the demonstrated behavior.

In contrast to many other LFD algorithms, PSL does not build representations
from invariants among several demonstrations that a human teacher considers to be
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Fig. 3. Training results for all three test cases. See Sect. 4.2 for details.
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“the same behavior”. All knowledge, from one or several demonstrations, is stored as
hypotheses in the library. PSL treats inconsistencies in these demonstrations by generat-
ing longer hypotheses that will allow it to make the correct predictions. In this way, the
ambiguous definitions of behavior is avoided and control is seen purely as a prediction
problem.

In the prediction performance comparison, PSL produces significantly smaller li-
braries than S-Learning on all three data sets. The difference is particularly large in
Case 3 (Fig. 3), where both algorithms learn to predict the data almost perfectly. In this
situation, S-Learning continues to create new sequences, while PSL does not.

In Case 3, PSL also shows the clearly fastest learning rates (least accumulated er-
rors). The reason can be found in that PSL learns on each event where it fails to predict,
while S-Learning learns based on sequence length. When the model grows, S-Learning
decreases its learning rate even though the performance is still low. In contrast, the
learning rate of PSL is always proportional to performance, which can also be seen in
the plots for all three test cases (Fig. 3). However, even though PSL commits less ac-
cumulated errors than S-Learning in all three tests, the performance difference in Case
1 and 2 is small and how these results generalize to other kinds of data is still an open
question.

In the demonstration-repetition evaluation, tasks 1, 2 and 3 were repeated correctly.
Even though the robot made occasional mistakes, the imitation performance clearly
increased with more demonstrations. However, in Task 4, which was a combination
of the three first tasks, an opposite pattern could be observed. Despite the fact that
PSL was still able to predict demonstrated data almost perfectly, knowledge from the
three elementary tasks clearly interfered. The reason for this interference is that Task
4 requires much longer temporal dynamics than any of the elementary tasks did when
learned separately.

One example of how this knowledge interference is manifested is the turning versus
unloading. When the robot approaches the position marked as turn in Fig. 1, coming
from the left and is supposed to take a right turn, it no longer sees the right wall behind
it. Consequently, the situation looks identical to that of unloading. When the robot is
to unload, it goes downward in Fig. 1 (position unload) but instead of turning it must
wait for the cylinder to be placed to its right side. To make the right prediction, PSL
has to base its decision on information relatively far back in the event history. Even
though PSL has no problem to build a sufficiently large model from training data, the
large temporal window produces a combinatorial explosion and the chance of the right
patterns reappearing during repetition is small. As a result, PSL decreases the temporal
window (i.e., uses shorter hypotheses), and the two situations become inseparable.

5.1 Conclusions and Future Work

The results show that the proposed algorithm is feasible for LFD problems up to a
certain complexity. PSL implements very few assumptions of what is to be learned and
is therefore likely to be applicable to a wide range of problems.

However, PSL also shows clear limitations when the learning problem increases and
longer temporal dynamics is required. PSL is subject to combinatorial explosion and
the amount of required training data increases exponentially with problem complexity.
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In these situations, some higher-level coordination is clearly necessary. One possible
solution is to place PSL as a module in a hierarchical system. PSL learns both to predict
sensor data as a response to action (forward model) and to select actions based on the
current state (inverse model). In the present work, PSL is viewed purely as a controller
and the forward model is consequently not considered. However, in work parallel to
this, we show that PSL can also be used as an algorithm for behavior recognition [11],
i.e., as a predictor of sensor values. A big advantage of using PSL for both control and
behavior recognition is that the forward and inverse computations are in fact based on
the same model, i.e., the PSL library. This approach has several theoretical connections
to the view of human perception and control as two heavily intertwined processes, as
discussed in Section 2.1.

The present work should be seen as one step towards a hierarchical control architec-
ture that can learn and coordinate itself, based on the PSL algorithm. The model-free
design of PSL introduces very few assumptions into learning, and should constitute a
good basis for many types of learning and control problems. Integrating PSL as both
forward and inverse model to achieve a two-layer modular control system, is the next
step in this process and will be part of our future work.
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