Skip to main content

Framework for Many-Objective Test Problems with Both Simple and Complicated Pareto-Set Shapes

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6576))

Included in the following conference series:

Abstract

Test problems have played a fundamental role in understanding the strengths and weaknesses of the existing Evolutionary Multi-objective Optimization (EMO) algorithms. A range of test problems exist which have enabled the research community to understand how the performance of EMO algorithms is affected by the geometrical shape of the Pareto front (PF), i.e., PF being convex, concave or mixed. However, the shapes of the Pareto Set (PS) of most of these test problems are rather simple (linear or quadratic), even though the real-world engineering problems are expected to have complicated PS shapes. The state-of-the-art in many-objective optimization problems (those involving four or more objectives) is rather worse. There is a dearth of test problems (even those with simple PS shapes) and the algorithms that can handle such problems. This paper proposes a framework for continuous many-objective test problems with arbitrarily prescribed PS shapes. The behavior of two popular EMO algorithms namely NSGAII and MOEA/D has also been studied for a sample of the proposed test problems. It is hoped that this paper will promote an integrated investigation of EMO algorithms for their scalability with objectives and their ability to handle complicated PS shapes with varying nature of the PF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  2. Kalyanmoy, D.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York (2001)

    MATH  Google Scholar 

  3. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation 7, 205–230 (1999)

    Article  Google Scholar 

  4. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)

    Article  Google Scholar 

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization. In: Abraham, A., Jain, R., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Kasprzak, E., Lewis, K.: An approach to facilitate decision trade-offs in pareto solution sets. Journal of Engineering Valuation and Cost Analysis 3, 173–187 (2000)

    Google Scholar 

  7. Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. Birkhäuser-Verlag, Basel (2000) ISBN 978-3764364984

    MATH  Google Scholar 

  8. Li, H., Zhang, Q.: Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 13, 284–302 (2009)

    Article  Google Scholar 

  9. Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On test functions for evolutionary multi-objective optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 792–802. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10, 477–506 (2006)

    Article  MATH  Google Scholar 

  11. Deb, K., Sinha, A., Kukkonen, S.: Multi-objective test problems, linkages, and evolutionary methodologies. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1141–1148 (2006)

    Google Scholar 

  12. Li, H., Zhang, Q.: A multiobjective differential evolution based on decomposition for multiobjective optimization with variable linkages. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 583–592. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Zhang, Q., Zhou, A., Jin, Y.: Rm-meda: A regularity model-based multiobjective estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation 21, 41–63 (2008)

    Article  Google Scholar 

  14. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 91–100. Springer, Heidelberg (2010)

    Google Scholar 

  15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  16. Zhang, Q., Li, H.: MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11, 712–731 (2007)

    Article  Google Scholar 

  17. Hughes, E.: Evolutionary many-objective optimisation: many once or one many? In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 222–227. IEEE, Los Alamitos (2005)

    Google Scholar 

  18. Knowles, J., Corne, D.W.: Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 757–771. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Computation 11, 770–784 (2007)

    Article  Google Scholar 

  20. Purshouse, R.C., Fleming, P.J.: Evolutionary many-objective optimization: An exploratory analysis. In: IEEE Congress on Evolutionary Computation, pp. 2066–2073 (2003)

    Google Scholar 

  21. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: IEEE Congress on Evolutionary Computation, pp. 2424–2431 (2008)

    Google Scholar 

  22. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht (1999) ISBN 0-7923-8278-1

    MATH  Google Scholar 

  23. Das, I., Dennis, J.E.: Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. on Optimization 8, 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective evolutionary algorithm research: A history and analysis. Technical Report TR-98-03, 1998, Dept. Elec. Comput. Eng., Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson, AFB, OH (1998)

    Google Scholar 

  25. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multiobjective optimization algorithm: Amosa. IEEE Transactions on Evolutionary Computation 12, 269–283 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saxena, D.K., Zhang, Q., Duro, J.A., Tiwari, A. (2011). Framework for Many-Objective Test Problems with Both Simple and Complicated Pareto-Set Shapes. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics