Skip to main content

Real-Time Estimation of Optical Flow Based on Optimized Haar Wavelet Features

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6576))

Abstract

Estimation of optical flow is required in many computer vision applications. These applications often have to deal with strict time constraints. Therefore, flow algorithms with both high accuracy and computational efficiency are desirable. Accordingly, designing such a flow algorithm involves multi-objective optimization. In this work, we build on a popular algorithm developed for real-time applications. It is originally based on the Census transform and benefits from this encoding for table-based matching and tracking of interest points. We propose to use the more universal Haar wavelet features instead of the Census transform within the same framework. The resulting approach is more flexible, in particular it allows for sub-pixel accuracy. For comparison with the original method and another baseline algorithm, we considered both popular benchmark datasets as well as a long synthetic video sequence. We employed evolutionary multi-objective optimization to tune the algorithms. This allows to compare the different approaches in a systematic and unbiased way. Our results show that the overall performance of our method is significantly higher compared to the reference implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA (1980)

    Google Scholar 

  2. Stein, F.: Efficient computation of optical flow using the census transform. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 79–86. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 151–158. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  4. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  5. Baker, A., Scharstein, D., Lewis, J., Roth, S., Blak, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1–8. IEEE Press, Los Alamitos (2007)

    Google Scholar 

  6. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  7. Bouguet, J.Y.: Pyramid implementation of the Lucas Kanade feature tracker. In: OpenCV Documentation, Intel Corporation Microprocessor Research Labs (2000)

    Google Scholar 

  8. Tomasi, C., Kanade, T.: Detection and Tracking of Point Features. Technical Report CMU-CS-91-132, Carnegie Mellon University (1991)

    Google Scholar 

  9. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  10. Camus, T.: Real-time quantized optical flow. Journal of Real-Time Imaging 3, 71–86 (1995)

    Article  Google Scholar 

  11. Zhang, D., Lu, G.: An edge and color oriented optical flow estimation using block matching. In: Proceedings of the IEEE International Conference on Signal Processing, vol. 2, pp. 1026–1032. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  12. Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision 70(3), 257–277 (2006)

    Article  Google Scholar 

  13. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 41–48. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  15. Steinbruecker, F., Pock, T., Cremers, D.: Large displacement optical flow computation without warping. In: Proceesings of the IEEE International Conference on Computer Vision, pp. 1609–1614. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  16. Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision 57(2), 137–154 (2001)

    Article  Google Scholar 

  17. Papageorgiou, C., Poggio, T.: A trainable system for object detection. International of Journal Computer Vision 38(1), 15–33 (2000)

    Article  MATH  Google Scholar 

  18. Salmen, J., Suttorp, T., Edelbrunner, J., Igel, C.: Evolutionary optimization of wavelet feature sets for real-time pedestrian classification. In: Proceedings of the IEEE Conference on Hybrid Intelligent Systems, pp. 222–227. IEEE Press, Los Alamitos (2007)

    Google Scholar 

  19. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 260–267. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  20. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  21. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation 15(1), 1–28 (2007)

    Article  Google Scholar 

  22. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  23. Suttorp, T., Hansen, N., Igel, C.: Efficient covariance matrix update for variable metric evolution strategies. Machine Learning 75(2), 167–197 (2009)

    Article  Google Scholar 

  24. Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion behaviour on synthetic and real-world stereo sequences. In: Proceedings of the Conference on Image and Vision Computing New Zealand, pp. 1–6. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  25. Igel, C., Glasmachers, T., Heidrich-Meisner, V.: Shark. Journal of Machine Learning Research 9, 993–996 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salmen, J., Caup, L., Igel, C. (2011). Real-Time Estimation of Optical Flow Based on Optimized Haar Wavelet Features. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics