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Abstract In this study, a novel residue-residue contacts predictionapproach based
on evolutionary computation is presented. The prediction is based on four amino
acids properties. In particular, we consider the hydrophobicity, the polarity, the
charge and residues size. The prediction model consists of aset of rules that identi-
fies contacts between amino acids.

1 Introduction

The problem of Protein Structure Prediction (PSP) is one of the grand challenges
in Structural Bioinformatics. A protein can perform several functions, e.g., trans-
port function, enzymatic function, structural function, etc., and its three dimensional
structure determines its biological functions. The knowledge of these structures has
a great importance in medical and biological areas. For instance, recent studies have
demonstrated the relationship between protein missfolding and diseases such as
Cystic fibrosis and Emphysema. Some methods, such as nuclearmagnetic reso-
nance (NMR) and X-ray crystallography, can determine the structure of a protein.
However, such techniques are both slow and expensive. Thus,an alternative method
is needed, and soft computing can provide processing capabilities in order to solve
this problem.

In any computing methods, a representation of the data is needed. A particularly
useful representation of the tertiary structure of a protein is provided by contact
maps. A protein with an amino acid sequence of lengthN, can be represented by
using a symmetric matrixC of size NxN. Each entryCi j is equal to either 0 or
1, depending on whether or not there is a contact between amino acidsi and j.
Two amino acids in a protein are in contact if the distance between them is less
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or equal than a given threshold usually expressed in Angstroms (Å). Researching
methods used in this problem are focused on determining contact maps (distances)
between amino acid residues of a protein sequence. When a contact map is defined,
proteins can be folded and tertiary structures are obtained. This could be done using
approximation algorithms.

Several contact map prediction methods have been applied tothe PSP problem,
e.g., artificial neural networks (ANNs) [1], support vectormachines [2], evolution-
ary computation [3] and template-based modelling [4]. In this paper, we propose
a method to predict residue-residue contacts from sequences of amino acids based
on an evolutionary algorithm (EA). The main motivation for the use of an EA, is
that PSP can be seen as a search problem, where the search space is represented by
all the possible folding rules. Such search space is highly complex and has huge di-
mensions, and in this cases, EAs have proven to perform well.The prediction model
will consist of rules that predict the contact between two residues. The prediction is
based on four physical-chemical properties of the amino acids described in the fol-
lowing. Previously, EAs have been applied to PSP, e.g., HP model and lattice model
were employed in [5]. A contact map model generator was included in [3].

The rest of paper is organized as follow: in section 2, we discuss our proposal
to predict protein contact maps. Section 3 provides the experimentation and the
obtained results. Finally, we draw some conclusions and discuss future works.

2 Methodology

Our experimental procedure is explained as follows. We firstobtain a protein data
set from the Protein Data Bank (PDB) (http://www.wwpdb.org). This data set will
be used by our EA in order to obtain a set of rules for predicting the contact between
two amino acids. From these rules, we can obtain a protein contact map which will
be used in order to evaluate the accuracy of the prediction.

We have selected four properties, which will be used for the prediction: hy-
drophobicity, polarity, charge and residue size, which have been shown to have cer-
tain relevance in PSP.We use Kyte-dolitle hydropathy profile for the hydrophobicity
[6], the Grantham’s profile [7] for polarity and Klein’s scale for net charge [8]. The
Dawson’s scale [9] is employed to determine the size of the residues. A contact
treshold was established at 8Å, as in [1].

In our approach, each individual represents a rule for a residue-residue contact.
Each individual represents the four properties of amino acids in two windows of
size 3 that encodes the amino positionsi−1, i, i + 1 and j −1, j, j + 1 of a protein
sequence, wherei and j are two possible amino acids in contact. The values of the
properties are normalized to a range of between−1 and 1 for hydrophobicity and
polarity, and between 0 and 1 for the residue size. Three values are used to represent
the net charge of a residue:−1 (negative charge), 0 (neutral charge) and 1 (positive
charge).
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The fitness of an individualI is given by the F-measure:F(I) = 2· Recall·Precision
Recall+Precision .

The higher the fitness, the better the individual. Recall represents the proportion of
training examples that matches this rule. Each one of these examples represent a true
contact betweeni and j amino acids. Precision represents the error rate. Moreover,
we also consider some physical-chemical properties (hydrophobicity, polarity and
charge) information of the amino acids. If two amino acids are in contact, they
probably have similar conditions of hydrophobicity and polarity. On the other hand,
they may have opposite charges [3]. We increase the fitness for an individual that
fulfills these requirements.

Individuals are selected with a tournament of size two. One-point crossover is al-
ways applied to selected individuals, while mutation is applied with a probability of
0.5. If mutation is applied to a gene relative to the charge of the amino acid, then its
value is randomly changed to one of the other two allowed possibilities. In the other
cases, the values of the property is increased or decreased by 0.1. After this process,
the validity of the individual is checked, and if the individual is not valid, the ap-
plied mutation is discarded. Elitism is also applied. The initial population consists
of 100 individuals randomly initialized. The maximum number of generations is set
to 100. However, if the fitness of the best individual does notincrease over twenty
generations, the algorithm is stopped. At the end, we selectthe best subset of rules
from the final population according to their F-measure.

3 Experiments

As already stated, the data set was selected from PDB. In particular, we used the
PDB Advanced Search Select. 12,830 non-homologous and non-redundant protein
sequences were extracted with a sequence identity lower than or equal to 30%. The
list of PDB protein identifiers can be downloaded athttp://www.upo.es/eps/marquez/
proteins.txt. We have randomly selected a subset of 200 protein sequencesfrom
these 12,830 proteins, with a maximum length of 318 residues. As validation
method we have used a 10-fold cross-validation. Four statistical measures were cal-
culated to evaluate the accuracy of our algorithm: Recall, Precision, Specificity and
Accuracy:

• Recall represents the percentage of correctly identified positive cases. In our case,
Recall indicates what percentage of contacts have been correctly identified.

• Precision is a measure to evaluate the false positive rate. Precision reflects the
number of real predicted examples.

• Specificity, of True Negative Rate, measures the percentageof correctly iden-
tified negative cases. In this case, Specificity reflects whatpercentage of non-
contacts have been correctly identified.

• Accuracy, represents the percentage of both true positivesand true negatives
cases over the total of the population.
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Table 1 Average results and standard deviation obtained for different number of executions of the
algorithm.

Runs Recallµ±σ Spec.µ±σ Prec.µ±σ Accuracyµ±σ
100 0.036±0.289 0.989±0.010 0.558±0.023 0.993±0.008

500 0.181±0.115 0.992±0.000 0.522±0.022 0.994±0.001

1000 0.289±0.092 0.994±0.000 0.515±0.031 0.994±0.001

2000 0.605±0.084 0.993±0.000 0.506±0.037 0.993±0.001

Results are provided in table 1. The optimal and exact numberof rules is un-
known. For this reason, we have varied the numbers of runs of the EA, where to a
higher number of runs correponds a higher number of rules. The aim of this was to
test whether or not a higher number of rules would provide better results. We show
the results for 100, 500, 1,000 and 2,000 runs. For each run, asubset of rules with
the best F-measure value is selected. So, for instance, for 1,000 runs we have fi-
nally obtained 2,348 rules. The set of rules provided is checked in order to eliminate
repeated or redundant rules.

It can be noticed that as the number of rules increases, the recall increase. How-
ever this is reflected in a decrement of the precision. This result was quite expected,
since by covering more cases, the possibility of errors increases. Therefore, we have
obtained a low recall rate for 100 runs, and a maximum rate of 60% for 2,000 runs.
Satisfactory levels of specificity are obtained in all cases, reaching values higher
than 98%. Accuracy is also always very high, and this reflectsthe effectiveness of
the prediction provided by the EA.

However the precision obtained always remain above 50%. Other methods for
PSP, set the precision rate for a contact map prediction at about 30%. This result
shows that the precision obtained by the proposed EA improves on this by more
than 20%. Specificity and accuracy are always very high, and this reflects the effec-
tiveness of the prediction provided by the EA.

An example of a resulting rule is showed in Figure 1. Each position represents a
value for a different property as explained before and encodes a feature of a possible
amino acid. For instance, the hydrophobicity value for the amino acidi is between
0.52 and 0.92, the polarity value between -1.0 and -0.93, neutral charge (0.0), and a
residue size between 0.77 and 0.97. Therefore, the amino acid i could be L (Lysine)
or F (Phenylalanine) which fulfills all these features according to the cited scales.

−0.39 −0.19 −0.78 −0.68 0.00 0.83 1.03
︸ ︷︷ ︸

i−1

0.52 0.92 −1.00 −0.93 0.00 0.77 0.97
︸ ︷︷ ︸

i

−1.00 −0.64 −1.00 −0.90 0.00 0.63 0.83
︸ ︷︷ ︸

i+1

0.74 0.84 −1.00 −0.90 0.00 0.73 0.83
︸ ︷︷ ︸

j−1

−1.00 −0.93 −0.95 −0.65 0.00 0.57 0.87
︸ ︷︷ ︸

j

0.73 1.00 −0.85 −0.65 1.00 0.57 0.77
︸ ︷︷ ︸

j+1

Fig. 1 Example of a resulting prediction rule.
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4 Conclusions

In this paper, we have developed a novel approach based on evolutionary compu-
tation for residue-residue contact prediction. The contribution of our study is to
provide a possible approach for the contact map prediction using four amino acids
properties: hydrophobicity, polarity, net charge and sizeof residue. These proper-
ties helped to improve the search process performed by the algorithm. The resulting
rules of our algorithm determine a contact between amino acids and can be easily
interpreted and analyzed for experts in the field. As future work, we intend to test
other amino acid properties, and to expand the window size ofa rule, ideally by
having a variable lenght windows, were the optimal length would be found by the
evolutionary search performed.
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