
Cooperating Distributed Grammar Systems:
Components with Nonincreasing Competence

Maurice H. ter Beek1, Erzsébet Csuhaj-Varjú2,�,
Markus Holzer3,��, and György Vaszil4

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’,
Consiglio Nazionale delle Ricerche,
Via G. Moruzzi 1, 56124 Pisa, Italy

maurice.terbeek@isti.cnr.it
2 Computer and Automation Research Institute

Hungarian Academy of Sciences,
Kende utca 13–17, 1111 Budapest, Hungary

csuhaj@sztaki.hu
3 Institut für Informatik, Universität Giessen

Arndtstraße 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de
4 Computer and Automation Research Institute

Hungarian Academy of Sciences,
Kende utca 13–17, 1111 Budapest, Hungary

vaszil@sztaki.hu

Abstract. We study the generative power of CD grammar systems (CDGSs) that
use a cooperation protocol based on the level of competence on a sentential form
— and the competence of their components does not increase during rewriting.
A component of a CDGS is k-competent on a sentential form if it can rewrite
exactly k different nonterminals appearing in that string. A CDGS with compo-
nents that are nonincreasing in competence works in =k-competence mode of
derivation if no k-competent component can ever become �-competent, for some
� > k. We introduce a static and a dynamic definition to impose this restriction,
and we relate the generative power of such CDGSs working either in a sequential
or in a parallel manner and according to the aforementioned cooperation proto-
col, for various k, with that of context-free forbidding random context grammars,
(random context) ET0L systems, and context-free programmed grammars with
appearance checking.

1 Introduction

A grammar system is a set of grammars that under a specific cooperation protocol gen-
erate one language. The idea to consider — contrary to the classical paradigm “one

� Also affiliated with: Department of Algorithms and Their Applications, Faculty of Informatics,
Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary.

�� Part of the work was done while the author was at Institut für Informatik, Technische Univer-
sität München, Boltzmannstraße 3, 85748 Garching bei München, Germany.

J. Kelemen and A. Kelemenová (Eds.): Pǎun Festschrift, LNCS 6610, pp. 70–89, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

CD Grammar Systems: Nonincreasing Competence 71

grammar generating one language” — a set of cooperating grammars generating one
language first appeared in [1]. An intensive exploration of the potential of grammar
systems was not undertaken until [2] established a link between cooperating distributed
grammar systems (CDGSs) and blackboard systems as known from artificial intelli-
gence. Such a system consists of autonomous agents, a blackboard, and a control mech-
anism. The latter dictates rules which the agents must respect during their joint effort
to solve a problem stated on the blackboard. The only way for the agents to commu-
nicate is via the blackboard, which represents the current state of problem solving. If
the problem solving is successful, the solution appears on the blackboard. CDGSs form
a language-theoretic framework for modelling blackboard systems. Agents are repre-
sented by grammars, the blackboard is represented by the sentential form, control is reg-
ulated by a cooperation protocol of the grammars, and the solution is represented by a
terminal word. By now, grammar systems form a well-established and well-recognized
area in the theory of formal languages [3,4].

In this paper, we introduce two variants of cooperation protocols for CDGSs, based
on the level of competence that a component has on a sentential form during a deriva-
tion. We consider cooperation protocols that allow a component to start rewriting when a
competence condition is satisfied, and that require it to do so as long as the grammar sat-
isfies this condition. Intuitively, a component is k-competent on a sentential form if it can
rewrite exactly k different nonterminals appearing in the sentential form. This particu-
lar cooperation protocol is called the =k-comp.-mode of derivation. The more different
nonterminals of a sentential form a component is able to rewrite, the higher its (level of)
competence on that sentential form. Restricting in this way the rewriting of the sentential
form to components that have a certain (level of) competence, provides a formal inter-
pretation of the requirement that agents must be competent enough before being able to
participate in the problem solving taking place on the blackboard. Competence-based
cooperation protocols have already been studied extensively in the literature, see, e.g.,
[1,2,5,6,7,8]. The variants we introduce here examine the consequences of imposing that
no k-competent component can ever become �-competent, for some � > k, by rewrit-
ing the sentential form. We introduce both a static and a dynamic definition of CDGSs
whose components’ competence is nonincreasing during a derivation, thus providing a
formal interpretation of the assumption that the competence of agents does not increase
while participating in the problem solving on the blackboard. In the first case we impose
restrictions on the productions of the CDGSs, while in the second case we introduce a
further restriction on the used competence-based derivation mode.

We show that such CDGSs, working in =k-comp.-mode of derivation and context-
free rewriting either sequentially or in parallel, are very powerful, by relating them
to context-free forbidding random context languages, (random context) ET0L langua-
ges [9], and languages generated by context-free programmed grammars with appear-
ance checking. More precisely, we prove that CDGSs with nonincreasing competence
in the static or in the dynamic sense working in =1-comp.-mode of derivation, rewrit-
ing in parallel, characterize the family of languages generated by ET0L systems. We
prove that the same holds for CDGSs with nonincreasing competence in the static
sense working in =1-comp.-mode of derivation, rewriting sequentially, while CDGSs

72 M.H. ter Beek et al.

with nonincreasing competence in the dynamic sense working in =1-comp.-mode of
derivation are strictly more powerful: their generative power equals that of context-free
forbidding random context grammars. We moreover prove that CDGSs with nonin-
creasing competence in the static or in the dynamic sense working in =k-comp.-mode
of derivation, with k ≥ 2, rewriting in parallel, characterize the family of languages
generated by context-free recurrent programmed grammars with appearance checking
or — equivalently — that of random context ET0L languages. Finally, we show that
CDGSs with nonincreasing competence in the static sense working in =k-comp.-mode
of derivation, with k ≥ 2, rewriting sequentially, are at least as powerful as random
context ET0L languages, but their exact generative power is an open problem, while
CDGSs with nonincreasing competence in the dynamic sense working in =2-comp.-
mode of derivation, rewriting sequentially, can generate all recursively enumerable lan-
guages. In Section 6 we will provide a table that summarizes all results.

We thus provide yet another characterization of the family of languages generated
by random context ET0L systems, which was shown to be related to CDGSs with non-
standard derivation modes, see, e.g., [6,7,10]. This language family is of particular in-
terest as it coincides with that of context-free recurrent programmed languages and as
such forms an intermediate class between the families of context-free random context
languages and context-free programmed languages generated by grammars without ap-
pearance checking [11]. In fact, since we show that quite simple component grammars
suffice to simulate random context ET0L systems, we demonstrate that it is indeed the
cooperation protocol that is very powerful. We hope our results can help to gain more
insight in a longstanding open problem in the theory of regulated rewriting: are context-
free programmed grammars more powerful than context-free recurrent programmed
grammars?

2 Preliminaries

We assume familiarity with basic formal language theory (see, e.g., [12,13]). We denote
set difference by \, set inclusion by ⊆, strict set inclusion by ⊂, cardinality of a finite
set M by |M |, and the empty word by λ. We consider two languages L1 and L2 equal,
and write L1 = L2, iff L1 \ {λ} = L2 \ {λ}.

An ET0L system is a quadruple G = (Σ, H, ω, Δ), with alphabet Σ, finite set of
complete tables H , axiom ω ∈ Σ+, and terminal alphabet Δ ⊆ Σ. A complete table
is a finite set of context-free rules, i.e., elements of Σ × Σ∗, which includes a rule for
every a∈Σ. For x, y∈Σ∗, we write x ⇒h y iff x=a1 . . . an, y=z1 . . . zn, and for all
1≤ i≤n, ai → zi∈h for some h∈H . The language generated by G is defined as

L(G) = {w ∈ Δ∗ | ω ⇒hi1
w1 ⇒hi2

. . . ⇒him
wm = w,

for m ≥ 1 and hij ∈ H with 1 ≤ j ≤ m }.

The language family generated by ET0L systems is denoted by L(ET0L).
A context-free random context grammar is a quadruple G = (N, T, P, S), with N

and T its sets of nonterminals and terminals, S ∈ N its start symbol, and P its finite
set of context-free random context rules, i.e., triples of the form (A → z, Q, R), where

CD Grammar Systems: Nonincreasing Competence 73

A→ z is a context-free production with A ∈N and z ∈ (N ∪ T)∗, and Q, R⊆N are
its permitting and forbidding random context. For x, y∈ (N ∪ T)∗, we write x⇒ y iff
x=x1Ax2, y =x1zx2, all symbols of Q appear in x1x2, and no symbol of R appears
in x1x2. If either Q and/or R is empty, then the corresponding context check is omitted.
The language generated by G is defined as L(G)={w∈T ∗ | S⇒∗ w }, where ⇒∗ is
the reflexive transitive closure of ⇒. If all permitting random contexts are empty, then
G is called a context-free forbidding random context grammar and the corresponding
family of languages is denoted by L(fRC, CF).

It is known (see, e.g., [12,13]) that L(ET0L) ⊂ L(fRC, CF) ⊂ L(RE), where
L(RE) denotes the family of recursively enumerable languages.

A context-free programmed grammar is a 7-tuple G=(N,T, P, S, Λ, σ, φ) with finite
set of nonterminals N , finite set T of terminals, axiom S ∈ N , finite set P of context-
free productions α → β, with α ∈ N and β ∈ (N ∪ T)∗, and finite set Λ of labels (for
the productions in P). Set Λ is a function that given a label outputs a production; σ and φ
are functions from Λ into 2Λ. For (x, r1), (y, r2) ∈ (N∪T)∗×Λ and Λ(r1) = (α → β),
we write (x, r1) ⇒ (y, r2) iff either x = x1αx2, y = x1βx2, with x1, x2 ∈ (N ∪ T)∗,
and r2 ∈ σ(r1), or x = y, rule α → β is not applicable to x, and r2 ∈ φ(r1). In
the latter case, the derivation step is in appearance checking mode. Set σ(r1) is called
the success field and set φ(r1) the failure field of r1. The language generated by G is
defined as

L(G) = {w ∈ T ∗ | (S, r1)
∗⇒ (w, r2) for some r1, r2 ∈ Λ },

in which
∗⇒ denotes the reflexive transitive closure of ⇒. Grammar G is a context-

free recurrent programmed grammar if for every p ∈ Λ, p ∈ σ(p), and if φ(p)
=
∅, then σ(p) = φ(p). The family of languages generated by context-free [recurrent]
programmed grammars with appearance checking is denoted by L([r]PR, CF, ac).

The family of languages generated by random context ET0L systems [9] is denoted
by L(RC, ET0L). It is known (see, e.g., [12,13]) that L(ET0L) ⊂ L(RC, ET0L) =
L(rPR, CF, ac) ⊆ L(PR, CF, ac) = L(RE).

3 Competence in CD Grammar Systems

A cooperating distributed grammar system (CDGS) of degree n ≥ 1 is an (n + 3)-
tuple G = (N, T, α, P1, . . . , Pn), with disjoint alphabets N of nonterminals and T
of terminals, axiom α ∈ (N ∪ T)∗, and components P1, . . . , Pn that are finite sets
of context-free productions, i.e., productions of the form A → z, for A ∈ N and
z ∈ (N∪T)∗. This definition of CDGSs differs from the usual one by allowing arbitrary
words from (N ∪ T)∗ as axioms.

In this paper, we consider both sequential and parallel context-free rewriting. Let
1 ≤ i ≤ n, let dom(Pi) = {A ∈ N | A → z ∈ Pi } be the domain of Pi, and
let x, y ∈ (N ∪ T)∗. Then we define a single sequential rewriting step as x ⇒i y
iff x = x1Ax2 and y = x1zx2, for some A → z ∈ Pi. To facilitate parallel rewrit-
ing, we first associate to each component Pi a finite substitution hi defined as hi(A) =
{ z | A → z ∈ Pi } if A ∈ dom(Pi) and hi(A) = {A} if A ∈ (N∪T)\dom(Pi). Then

74 M.H. ter Beek et al.

we define a parallel rewriting step as x ⇒i y iff y ∈ hi(x). In both types of rewriting
paradigms, subscript i thus refers to the component being used.

Recall from [8] the notion of competence that components of a CDGS have on a
sentential form. Component Pi, with 1 ≤ i ≤ n, is called k-competent on a sentential
form x in (N ∪ T)∗ iff |alphN (x) ∩ dom(Pi)| = k, where alphN (x) = {A ∈ N | x ∈
(N ∪ T)∗A(N ∪ T)∗ }, i.e., it denotes the set of all nonterminals occurring in x. We
abbreviate the (level of) competence of component Pi on x by clevi(x), i.e., clevi(x) =
|alphN (x) ∩ dom(Pi)|.

Based on the (level of) competence, we now recall from [6] the =k-competence-
based cooperation protocol for CDGSs.1 Let k ≥ 1. Then

x ⇒=k-comp.
i y iff there is a derivation

x = x0 ⇒i x1 ⇒i · · · ⇒i xm−1 ⇒i xm = y

for some m ≥ 1 and it satisfies
(1) clevi(xj) = k for 0 ≤ j < m and clevi(xm)
= k, or
(2) clevi(x0) = k, clevi(xj) ≤ k for 1 ≤ j ≤ m, and y ∈ T ∗.

Let ⇒=k-comp. denote ⇒=k-comp.
i for some i, with 1 ≤ i ≤ n. The reflexive transitive

closure of ⇒=k-comp. is denoted by
∗⇒=k-comp.. The language generated by G in the

=k-comp.-mode of derivation is

L=k-comp.(G) = {w ∈ T ∗ | α
∗⇒=k-comp.w }.

The family of languages generated by CDGSs working in the =k-comp.-mode of
derivation is denoted by L(CD, CF, =k-comp.) for sequential rewriting and by
L(CD, parCF, =k-comp.) for parallel rewriting.

Example 1. Let G=(N, T, α, P1, . . . , P8) be a CDGS with nonterminals N ={A, A′,
B, B′, C, D}, terminals T ={a, b, c}, axiom AB and components

P1 ={A → aA′b, B′ → B′, C → C},
P2 ={A → A, B → B′c, C → C},
P3 ={A′ → A, B → B, C → C},
P4 ={A′ → A′, B′ → B, C → C},

P5 ={A′ → C, B → B},
P6 ={A → A, A′ → A′, B′ → D},
P7 ={B′ → B′, C → λ}, and
P8 ={D → λ}.

When working in the =1-comp.-mode of derivation, G generates the language
L=1-comp.(G) = { anbncn | n ≥ 1}, independently of whether it rewrites in a se-
quential or parallel manner. This can be seen as follows.

Each of the components P1, P3, P5 and P6 is 1-competent on the axiom. However,
all but P1 are unable to alter the axiom, and these components thus remain 1-competent
forever. In those cases, the derivation enters a loop. Given the axiom, the only two-step
derivation that does not loop is AB ⇒=1-comp.

1 aA′bB ⇒=1-comp.
2 aA′bB′c.

Now a choice must be made. Either we apply P5 to derive aA′bB′c ⇒=1-comp.
5

aCbB′c ⇒=1-comp.
6 aCbDc, after which the derivation can be finished by

1 In [6,7], we investigated also the ≤k- and ≥k-competence-based cooperation protocols.

CD Grammar Systems: Nonincreasing Competence 75

aCbDc ⇒=1-comp.
7 abDc ⇒=1-comp.

8 abc (or, instead, by applying P8 before P7).
Otherwise we apply P3 to derive aA′bB′c ⇒=1-comp.

3 aAbB′c ⇒=1-comp.
4 aAbBc,

after which this sequence of applications of P1, P2, P3 and P4 can be repeated
n − 1 times, for some n ≥ 1, to obtain anAbnBcn, from which we can de-
rive anAbnBcn ⇒=1-comp.

1 anA′bnBcn ⇒=1-comp.
2 anA′bnB′cn ⇒=1-comp.

5

anCbnB′cn ⇒=1-comp.
6 anCbnDcn ⇒=1-comp.

7 anbnDcn ⇒=1-comp.
8 anbncn (or,

instead, by applying P8 before P7). Clearly indeed the language L=1-comp.(G) =
{ anbncn | n ≥ 1 } is generated.

We studied the generative power of CDGSs working in the =k-comp.-mode of deriva-
tion and rewriting sequentially (in [6]) or in parallel (in [7]), and obtained the inclu-
sion chains L(ET0L) ⊆ L(CD, parCF, =1-comp.) ⊆ L(CD, parCF, f -comp.) =
L(rPR, CF, ac) and L(ET0L) ⊂ L(fRC, CF) ⊆ L(CD, CF, =1-comp.) ⊆
L(CD, CF, f -comp.)=L(RE), for f ∈{=k | k≥2 }.

4 CD Grammar Systems with Nonincreasing Competence

In CDGSs working in =k-comp.-mode of derivation, a component may start rewriting
a sentential form provided it is k-competent on the string, and it must rewrite as long as
it remains k-competent: only when it is no longer k-competent, another (k-competent)
component may start. The moment a component is forced to quit rewriting, it is either
j-competent, for some j < k, or �-competent, for some � > k. In this paper, we intro-
duce CDGSs in which the latter case simply cannot occur: no k-competent component
can ever become �-competent, for some � > k, by rewriting the sentential form, i.e., a
component’s competence is nonincreasing during rewriting. We consider two ways of
imposing this: a static and a dynamic one.

A CDGS G = (N, T, α, P1, . . . , Pn) is with statically nonincreasing competence,
denoted by sni-CDGS, iff for all 1≤ i≤n and for all A → z in Pi,

(alphN (z) \ {A}) ∩ dom(Pi) = ∅.

In an sni-CDGS, no production with left-hand side A in a component Pi, with 1 ≤ i ≤
n, is thus allowed to have any nonterminals other than A from dom(Pi) in its right-
hand side. This definition is strict: it does not take into account the nonterminals that
are actually present in the sentential form. Assume a CDGS G with a component P =
{A → aB, B → Cb}. Clearly G is not an sni-CDGS. However, P is 1-competent on a
sentential form AC and cannot increase its competence by rewriting. On the contrary,
while P is also 1-competent on a sentential form AAC, in this case applying P would
increase its competence. This calls for a dynamic definition to formalize the intuitive
notion of forbidding competence-increasing rewriting steps.

A CDGS G = (N, T, α, P1, . . . , Pn) works in dynamically nonincreasing compe-
tence-based fashion iff it works according to the dynamically nonincreasing =k-compe-
tence-based derivation mode, denoted by =k-comp.dni, defined as follows. Let k≥ 1.
Then x ⇒=k-comp.dni

i y iff there is a derivation x = x0 ⇒i x1 ⇒i · · · ⇒i xm−1 ⇒i

xm = y, for some m ≥ 1, and it satisfies:

76 M.H. ter Beek et al.

(1) clevi(xj) = k for 0 ≤ j < m and clevi(xm) < k, or
(2) clevi(x0) = k, clevi(xj) ≤ k for 1 ≤ j ≤ m, and y ∈ T ∗.

As usual, ⇒=k-comp.dni denotes ⇒=k-comp.dni
i for some i, with 1 ≤ i ≤ n, and the

reflexive transitive closure of ⇒=k-comp.dni is denoted by
∗⇒=k-comp.dni. The language

generated by G in the =k-comp.dni-mode of derivation is

L=k-comp.dni(G) = {w ∈ T ∗ | α
∗⇒=k-comp.dniw }.

The family of languages generated by sni-CDGSs working in =k-comp.-mode of
derivation is denoted by L(sni-CD, CF, =k-comp.) if rewriting sequentially and by
L(sni-CD, parCF, =k-comp.) if rewriting in parallel. Likewise, the family of lan-
guages generated by CDGSs working in =k-comp.dni-mode of derivation is de-
noted by L(CD, CF, =k-comp.dni) if rewriting sequentially, and by L(CD, parCF,
=k-comp.dni) if rewriting in parallel.

It is not difficult to see in Example 1 that G is an sni-CDGS and (thus) working in a
dynamically nonincreasing competence-based fashion.

5 The Generative Power of Nonincreasing Competence

CDGSs working in =1-comp.-mode and rewriting in parallel, independently of whether
they are sni-CDGSs or work in a dynamically nonincreasing competence-based fashion,
characterize the class of ET0L languages.

Theorem 1
L(sni-CD, parCF,=1-comp.)=L(CD, parCF,=1-comp.dni) = L(ET0L).

Proof. The statement is proved once we prove the three inclusions L(ET0L) ⊆
L(sni-CD, parCF, =1-comp.) ⊆ L(CD, parCF, =1-comp.dni) ⊆ L(ET0L). As the
second inclusion is trivial, we prove the first and the last.

[L(ET0L) ⊆ L(sni-CD, parCF, =1-comp.)] Let G = (Σ, H, ω, Δ) be an ET0L
system with H = {h1, . . . , hk}. Without loss of generality, we assume ω equals S ∈ Σ.
We define a CDGS G′ with the disjoint union N ′ = {X(i) | X ∈ Σ, 0 ≤ i ≤
k +2 }∪{F} as nonterminals, set of terminals Δ disjoint from N ′, axiom S(0) and the
components defined below.

Simulating the application of one table of H consists of 3 phases: simulating the
selected table by encoding the sentential form, applying the table, and decoding the
sentential form. The coding is done by the components

Pencode,i,X = {X(0) → X(i)} ∪ {Y (�) → F | Y ∈ Σ, � ∈ {1, . . . , k + 2} \ {i} },
for all 1 ≤ i ≤ k + 2 and X ∈ Σ. An application of hi ∈ H is simulated by

Papply,i,X = {X(i) → w(k+1) | X → w ∈ hi }
∪ {Y (�) → F | Y ∈ Σ, � ∈ {0, . . . , k + 2} \ {i, k + 1} },

for all 1 ≤ i ≤ k and X ∈ Σ, where for w = x1 · · ·xt, with xj ∈ Σ and 1 ≤ j ≤ t,

w(k+1) = x
(k+1)
1 · · ·x(k+1)

t , with x
(k+1)
j ∈ N ′. Decoding is simulated by

CD Grammar Systems: Nonincreasing Competence 77

Pdecode,X ={X(k+1)→X(0)} ∪ {Y (�)→F | Y ∈Σ, �∈{1, . . . , k + 2} \ {k + 1}},

for all X ∈ Σ. After encoding the sentential form to code (k + 2) with compo-
nents Pencode,k+2,X , the derivation can be finished, for all X ∈ Σ, by

Pfinish,X = {X(k+2) → X | X ∈ Δ } ∪ {X(k+2) → F | X ∈ Σ \ Δ }
∪ {Y (�) → F | Y ∈ Σ, � ∈ {0, . . . , k + 1} },

Now G′ can simulate G. Take a sentential form x=x1· · ·xt, with xj ∈Σ and 1≤ j≤ t.
Assume that applying hi ∈ H of G leads to y = y1· · ·yr, with yj ∈ Σ and 1 ≤ j ≤ r.

Starting from x(0) = x
(0)
1 · · ·x(0)

t , with x
(0)
j ∈ N ′ and 1 ≤ j ≤ t, G′ derives y(0) =

y
(0)
1 · · ·y(0)

r , with y
(0)
j ∈N ′ and 1≤j≤r, as follows.

First components Pencode,i,X rewrite each X(0) ∈ alphN ′(x(0)) to X(i). Their 1-
competence ensures using the same i for each symbol. Next components Papply,i,X

apply a rule of hi for each symbol, producing y(k+1) = y
(k+1)
1 · · · y(k+1)

r , with y as
above. The components are 1-competent on the sentential form, so each symbol must
be rewritten before applying the decoding components. The latter components rewrite
each X(k+1) ∈ alphN ′(y(k+1)) to X(0) and another table may be simulated. To obtain
a terminal word the components must be applied in this order.

From the description of G′ we see that if x
(0)
1 · · ·x(0)

t , with x
(0)
j ∈ N ′ and 1 ≤ j ≤ t,

is a sentential form of G′, then so is x1 · · ·xt, with xj ∈ Σ and 1 ≤ j ≤ t. Hence,
starting from axiom S(0) and considering that using Pencode,k+2,X and Pfinish,X , with
X ∈ Σ, may produce x1 · · ·xt, with xj ∈ Σ and 1 ≤ j ≤ t, from the sentential form

x
(0)
1 · · ·x(0)

t , with x
(0)
j ∈ N ′ and 1 ≤ j ≤ t, then we see that G′ correctly simulates G.

[L(CD, parCF, =1-comp.dni) ⊆ L(ET0L)] Let G = (N, T, α, P1, . . . , Pn) be a
CDGS working in =1-comp.dni-mode, rewriting in parallel. To simulate G, we con-
struct an ET0L system G′ = (Σ, H, S, T), with Σ = M ∪ N ∪ T ∪ {S, F}, with
M ={ pi,A | A ∈ dom(Pi), 1 ≤ i ≤ n } such that S, F and all symbols in M (called
labels from now on) are new symbols not appearing in N ∪ T , and the set H of tables
defined below. By definition, all unspecified symbols in a table are rewritten identically.

Assume a derivation in G starts by applying Pi, for some 1 ≤ i ≤ n, to α. As G
works in =1-comp.dni-mode, only one nonterminal from dom(Pi) occurs in α. The
simulation starts by applying hstart = {S → pα | p ∈ M }. This results in a sentential
form pi,Aα, for some A ∈ dom(Pi) and 1 ≤ i ≤ n, in which pi,A is a label from M .
Symbol pi,A indicates that Pi (1-competent due to the presence of A) is simulated. As G
works in dynamically nonincreasing competence-based fashion, Pi only stops rewrit-
ing α if all occurrences of A in α (possibly introduced by successive applications) are
replaced. However, Pi may contain more productions with left-hand side A and, as G
works in dynamically nonincreasing competence-based fashion, Pi may rewrite occur-
rences of certain B ∈ dom(Pi) introduced meanwhile. Note that two distinct nontermi-
nals from dom(Pi) may never occur in a sentential form. To simulate the components
of G, we construct the tables

78 M.H. ter Beek et al.

happly,i,A ={A → z | A → z ∈ Pi } ∪ { pi,A → pi,A, pi,A → pi,B ,

B → F | B ∈ dom(Pi), B
= A } ∪ { p → F | p ∈ M \ {pi,A} },

for all A ∈ dom(Pi) and 1 ≤ i ≤ n. Table happly,i,A, for some A ∈ dom(Pi) and 1 ≤
i ≤ n, is applied to the sentential form pi,Aα until it has rewritten all occurrences of A
in α (also those introduced by successive applications). As an F (which can never be
rewritten) is introduced in case A is not the only nonterminal from dom(Pi) appearing
in α, in any successful derivation of G′ this table is only applied if Pi could be applied
to α in a derivation of G. Moreover, the productions replacing all labels p
= pi,A by F
guarantee that this table is only applied if label pi,A is present in the sentential form.
Note that this table can rewrite label pi,A by pi,B , for some B ∈ dom(Pi), to faithfully
mimic the fact that G works in dynamically nonincreasing competence-based fashion.
It remains to guarantee that this table is indeed applied to sentential form pi,Aα until
it has rewritten all occurrences of A in α (possibly introduced earlier). Therefore, we
construct the tables

htest,i,A = { pi,A → p | pi,A, p ∈ M, p
= pi,A } ∪ {B → F | B ∈ dom(Pi) },

for all A ∈ dom(Pi) and 1 ≤ i ≤ n. By applying one of these tables, G′ can start sim-
ulating the application of another component from G (indicated by label p). However,
clearly no successful derivation exists in case not all occurrences of A in the sentential
form are replaced. The simulation described so far is repeated for all components that
are applied in a successful derivation in G. To successfully finish the simulation, we
construct table

hfinish = { p → λ | p ∈ M } ∪ {A → F | A ∈ Σ \ (M ∪ T) }.

Clearly no successful derivation exists if this table is applied before the only nontermi-
nal symbol remaining in the sentential form is a label from M .

The situation is quite different for CDGSs working in =1-comp.-mode and rewriting
sequentially: the two definitions of nonincreasing competence lead to different language
classes. While sni-CDGSs working in =1-comp.-mode and rewriting sequentially still
characterize the class of ET0L languages, CDGSs working in =1-comp.dni-mode and
rewriting sequentially characterize the strictly more powerful class of languages gen-
erated by context-free forbidding random context grammars. To prove this, we need a
normal-form result for context-free forbidding random context grammars [14]; for the
reader’s convenience we include the proof of the next lemma.

Lemma 1. Any context-free forbidding random context language L can be generated
by a context-free forbidding random context grammar (N, T, P, S) whose productions
(A → z, ∅, R) ∈ P satisfy z /∈ (N ∪ T)∗R(N ∪ T)∗, i.e., the forbidding contexts of
productions do not appear in their right-hand sides.

Proof. Let G = (N, T, P, S) be a context-free forbidding random context grammar
so that L(G) = L. We construct a context-free forbidding random context grammar

CD Grammar Systems: Nonincreasing Competence 79

G′ = (N ′ ∪ N ′′, T, P ′, S) in normal form, with N ′ = {A′ | A ∈ N }, N ′′ = {A′′ |
A ∈ N } (N , N ′, and N ′′ are pairwise disjoint), and

P ′ = { (A → A′, ∅, N ′′), (A′ → g(z), ∅, R ∪ N ′) | (A → z, ∅, R) ∈ P }
∪ { (A′′ → A, ∅, N ′) | A ∈ N },

with the homomorphism g : (N ∪ T)∗ → (N ′′ ∪ T)∗ defined by g(a) = a′′ if a ∈ N
and g(a) = a if a ∈ T .

Consider a production p = (A → z, ∅, R) and a sentential form with occurrences
of A and no nonterminal from R (otherwise no successful derivation exists for this p).
The application of p in G is simulated as follows in G′. First an A is primed (the
derivation will block if another nonterminal is primed), then A′ is replaced by g(z)
(blocking the priming of nonterminals). To continue successfully, all (if any) doubly
primed nonterminals are unprimed. This results in a sentential form without (doubly)
primed nonterminals, and another production from P can be simulated.

We are now ready for the next theorem.

Theorem 2
L(ET0L) = L(sni-CD, CF, =1-comp.) ⊂ L(fRC, CF) = L(CD, CF, =1-comp.dni).

Proof. Recall that L(ET0L) ⊂ L(fRC, CF). We first prove the two inclusions that
together prove the first equality in the statement of this theorem, in both cases using the
same ideas that we used to prove Theorem 1.

[L(ET0L) ⊆ L(sni-CD, CF, =1-comp.)] We simulate an ET0L system G =
(Σ, H, ω, Δ) with the CDGS G′ that we defined in the proof of Theorem 1 to prove
the inclusion L(ET0L) ⊆ L(sni-CD, parCF, =1-comp.). This CDGS simulates the
application of some table hi ∈ H in three phases: simulating h by encoding the senten-
tial form, applying h, and decoding the sentential form. The reader may verify that G′ is
indeed an sni-CDGS and that the simulation of G still works if G′ rewrites sequentially.

[L(sni-CD, CF, =1-comp.) ⊆ L(ET0L)] Let G = (N, T, α, P1, . . . , Pn) be an
sni-CDGS working in =1-comp.-mode and rewriting sequentially. To simulate G, we
construct an ET0L system G′ = (Σ, H, S, T), where Σ = M ∪ N ∪ T ∪ {S, F},
with M = { pi,A | A ∈ dom(Pi), 1 ≤ i ≤ n } and S, F and all symbols in M (called
labels from now on) are new symbols not appearing in N∪T , and H contains the tables
defined below. As usual, all unspecified symbols in a table are rewritten identically.

Let G start a derivation from α by applying Pi, for some 1 ≤ i ≤ n. Working in
=1-comp.-mode, α contains only one occurrence of A∈dom(Pi). The simulation thus
starts by applying hstart = {S → pα | p∈M }. This results in a sentential form pi,Aα,
for some A ∈ dom(Pi) and 1 ≤ i≤ n, in which pi,A is a label from M indicating the
simulation of Pi (1-competent due to the presence of A). As G is an sni-CDGS, com-
ponent Pi only stops rewriting when all occurrences of A in α (also those introduced by
successive applications of Pi along the way) are replaced. Component Pi may however
contain more productions with left-hand side A. We thus construct tables

h
apply
i,A ={(A→z)∈Pi} ∪ {B→F, p→F | B
=A, B∈dom(Pi), p∈M \ {pi,A}}

80 M.H. ter Beek et al.

for all A∈dom(Pi) and 1≤ i≤n. The idea is to apply happly
i,A , for some A∈dom(Pi) and

1≤ i≤n, to the sentential form pi,Aα until all occurrences of A in α are rewritten (also
those introduced by its successive applications). Symbol F (that cannot be rewritten)
is introduced in case A is not the only nonterminal from dom(Pi) in α, guaranteeing
that in a successful derivation of G′ this table is only applied if Pi could be applied
to α according to G. The productions replacing all labels p
= pi,A by F guarantee
that this table is only applied if label pi,A is present in the sentential form. It remains
to guarantee that this table is indeed applied to the sentential form pi,Aα until it has
rewritten all occurrences of A in α (including those introduced by earlier applications).
To this aim, we construct the tables

htest
i,A = { pi,A → p | pi,A, p ∈ M, p
= pi,A } ∪ {B → F | B ∈ dom(Pi) },

for all A ∈ dom(Pi) and 1 ≤ i ≤ n. By applying one of these tables, G′ can start sim-
ulating the application of another component from G (indicated by label p). However,
clearly no successful derivation exists if not yet all occurrences of A in the sentential
form have been replaced. The above simulation is repeated for all components applied
in a successful derivation in G. To successfully finish simulating a derivation in G we
apply table

hfinish = { p → λ | p ∈ M } ∪ {A → F | A ∈ Σ \ (M ∪ T) }.

No successful derivation exists if hfinish is applied before the only nonterminal symbol
remaining is a label from M . This proves the inclusion.

We now prove the second equality in the statement of this theorem.
[L(fRC, CF) ⊆ L(CD, CF, =1-comp.dni)] Let G = (N, T, P, S) be a forbid-

ding random context grammar such that every random context rule (A → z, ∅, R)
in P satisfies z
∈ (N ∪ T)∗R(N ∪ T)∗. Note that A ∈ R is possible. Without loss
of generality, let each random context rule have a unique label p (the set of all la-
bels is Λ). To simulate G we construct G′, with disjoint union of sets of nonterminals
N ′ = N ∪ {F} ∪ {A′ | A∈N} ∪ {Ap | A∈N, p∈Λ}, terminals T , axiom S and the
components defined below.

A simulation of the application of a random context rule (A → z, ∅, R) has two
phases: Simulating it by marking all nonterminals A in the sentential form and applying
it at appropriate places. The marking is as follows:

(1) In case A
∈ R we introduce the component Pmark,p = {A → Ap}
∪ {B → F | B ∈ R } ∪ {Bq → F | B ∈ N, q ∈ Λ, Bq
= Ap }.

(2) In case A ∈ R we introduce the component Pmark,p = {A → A′, A′ → Ap}
∪ {B → F | B ∈ R } ∪ {Bq → F | B ∈ N, q ∈ Λ, Bq
= Ap }.

Finally, after the marking, the derivation may continue by the component

Papply,p = {Ap → A, Ap → z} ∪ {Bq → F | B ∈ N, q ∈ Λ }.

This completes the description of the CDGS G′. Next we explain how G′ can be used
to simulate the forbidding random context grammar G.

CD Grammar Systems: Nonincreasing Competence 81

Consider applying the random context rule (A → z, ∅, R) labelled p to a sentential
form α with at least one occurrence of A and no symbol from R. Recall z
∈ (N ∪
T)∗R(N ∪ T)∗. The sentential form α is thus

α = α1Aα2Aα3 . . . αn−1Aαn,

where n ≥ 2 and αi ∈ ((N \ {A}) ∪ T)∗, for 1 ≤ i ≤ n. Then we consider two cases,
according to whether A
∈ R or A ∈ R. In the former case the random context rule can
be applied several times to α, obtaining a sentential form

α′ = α1β1α2β2α3 . . . αn−1βn−1αn,

where βi, for 1 ≤ i ≤ n, is either A or z. These derivations can be mimicked by ap-
plying the 1-competent component Pmark,p, which verifies that no symbol from R is
present and replaces every A by Ap, followed by an application of Papply,p, which is
also 1-competent. During this application, all Ap are replaced by either A or z — note
that if all Ap are replaced by A, we get the original sentential form α. This shows G′

can generate the sentential form α′. Note how shortcuts are circumvented by rules in-
troducing F . Finally, in the latter case, i.e., if A ∈ R, we observe that whenever random
context rule p can be applied to α (assumed to contain no symbol from R) it must sat-
isfy α = α1Aα2, where αi ∈ ((N \{A})∪T)∗, for 1 ≤ i ≤ 2, leading to α′ = α1zα2.
This derivation can again be mimicked by Pmark,p followed by Papply,p, where the dy-
namically nonincreasing feature comes into play. Observe that if α contains at least two
occurrences of A and no symbol from R, then Pmark,p is 1-competent at the start. Hence
rewriting one A by A′ results in an increase in competence. Since this is not allowed if
the CDGS G′ works in =1-comp.dni-mode, the derivation blocks. Thus, the only way
to successfully apply Pmark,p on α requires α = α1Aα2 with αi ∈ ((N \{A})∪T)∗, for
1 ≤ i ≤ 2. Then it is easy to see that the sentential form α′ = α1zα2 can be generated
by G′, proving the inclusion.

[L(CD, CF, =1-comp.dni) ⊆ L(fRC, CF)] Let G = (N, T, α, P1, . . . , Pn) be a
CDGS working in =1-comp.dni-mode and rewriting sequentially. To simulate G we
construct a context-free forbidding random context grammar G′ = (N ′, T, P, S′) with
N ′ = N ∪ {S′} ∪ { pi | 1 ≤ i ≤ n } and S′ and all pi, for 1 ≤ i ≤ n, symbols not
appearing in N .

Assume G starts a derivation by applying Pi, for some 1 ≤ i ≤ n, to α. As G works
in =1-comp.dni-mode, only one nonterminal from dom(Pi) occurs in α. The simula-
tion starts by applying a random context rule (S′ → piα, ∅, ∅), for 1 ≤ i ≤ n, leading to
sentential form piα showing Pi is simulated next. As G works in =1-comp.dni-mode,
Pi only stops rewriting if all occurrences of some nonterminal A in α are replaced (also
those introduced by successive applications). However, as Pi may have several produc-
tions with left-hand side A it might also rewrite occurrences of certain B ∈ dom(Pi).
No two distinct nonterminals from dom(Pi) may ever occur both in the sentential form.
To simulate Pi, for 1 ≤ i ≤ n, we construct the random context rules

(A → z, ∅, { pj | 1 ≤ j ≤ n, i
= j } ∪ (dom(Pi) \ {A})),
for every A → z ∈ Pi. The random context rules can only be applied to a sentential
form piα and only one nonterminal from dom(Pi) can occur. Rewriting continues until

82 M.H. ter Beek et al.

all occurrences of nonterminal A from dom(Pi) in α are rewritten (including those
introduced by successive applications). Then another component Pj , for 1 ≤ j ≤ n,
of G may continue the derivation. We therefore introduce for every i and j with 1 ≤
i, j ≤ n and i
= j, the random context rules (pi → pj , ∅, dom(Pi)), ensuring that
the label is changed from pi to pj iff no nonterminal from dom(Pi) occurs. Hence,
component Pi has become zero-competent on the current sentential form.

The simulation described above is now repeated for all components that are applied
by G in a successful derivation. Finally, to successfully finish simulating a derivation
by G, we apply the rule (pi → λ, ∅, N), for 1 ≤ i ≤ n. It is clear that none of these
rules can be applied as long as one nonterminal is present. This proves the inclusion.

We now turn our attention to CDGSs working in =k-comp.-mode, for some k ≥ 2,
and rewriting in parallel. Independently of whether the CDGSs are sni-CDGSs or work
in a dynamically nonincreasing competence-based fashion, for k ≥ 2 the family of
languages generated by context-free recurrent programmed grammars with appearance
checking is characterized.

Theorem 3
L(sni-CD, parCF,=k-comp.) = L(CD, parCF,=k-comp.dni) = L(rPR, CF, ac),
for k ≥ 2.

Proof. Once we show L(rPR, CF, ac) ⊆ L(sni-CD, parCF, =k-comp.) ⊆ L(CD,
parCF, =k-comp.dni) ⊆ L(rPR, CF, ac), for k ≥ 2, the statement is proved. Since
the second inclusion is trivial, we only prove the other two.

[L(rPR, CF, ac) ⊆ L(CD, parCF, =k-comp., sni)] Let k = 2. Generalizing the
proof to the case k > 2 is straightforward and left to the reader. Let G = (N, T, P, S, Λ,
σ, φ) be a recurrent programmed grammar with appearance checking. We assume pro-
ductions of the form p : (A → z, σ(p), φ(p)), with success field σ(p) and failure field
φ(p). As G is a recurrent programmed grammar with appearance checking, each pro-
duction p ∈ Λ is such that p ∈ σ(p), and either φ(p) = ∅ or φ(p) = σ(p). Without
loss of generality, assume only p1 is able to rewrite S. To simulate G, we construct an
sni-CDGS G′ with disjoint union N ′ = N ∪{ p, p′ | p ∈ Λ }∪{F, Z} of nonterminals,
terminals T disjoint from N ′, axiom Sp1Z and the components defined next. For each
production p : (A → z, σ(p), φ(p)) such that q ∈ σ(p) with q
= p, we construct the
components

Pp,q,present = {A → zq, A → A, p → p′} ∪ { r → F | r ∈ Λ \ {q, p} },
Pp,q,clean = {p → λ, q → q} and

Pp,q,clean′ = {p′ → λ, q → q},
and in case φ(p)
= ∅, with φ(p) = σ(p), the additional components

Pp,q,absent = {A → F, p → q, Z → Z}.
Note that at any time, two types of markers are present in the sentential form. A general
marker Z , sometimes used to guarantee that components are 2-competent, and a specific
marker p (or its primed version), which is the label of the context-free production being
simulated.

CD Grammar Systems: Nonincreasing Competence 83

First assume p : (A → z, σ(p), φ(p)) is such that φ(p) = ∅. Also assume a sen-
tential form with one or more occurences of A. Then each Pp,q,present, with q ∈ σ(p),
with q
= p, is 2-competent. Note that the moment Pp,q,present replaces p by its primed
version, it is no longer 2-competent. No successful derivation exists if p → p′ is ap-
plied before A → zq introduced q. After one occurrence of A is replaced by zq, then
either another occurrence of A is replaced by zq or p is primed. In the latter case, only
Pp,q,clean′ is 2-competent and its application deletes p′. In the former case, both Pp,q,clean

and Pq,p,clean = {q → λ, p → p} are 2-competent. Applying Pp,q,clean leads to delet-
ing p, while Pq,p,clean leads to deleting q. In both cases, we thus obtain a sentential form
ready to simulate a new context-free production, labelled with either q or p. Note that
productions r → F , for all r ∈ Λ \ {q, p}, in Pp,q,present guarantee that only occur-
rences of q or p occur in a sentential form before the production q or p, respectively, is
simulated.

Note that in G, the application of A → z can be repeated as long as there are oc-
currences of A in the sentential form, since by definition p ∈ σ(p). The fact that G′

must be an sni-CDGS, however, forces us to require that q
= p in Pp,q,present, which
thus indicates that the context-free production q from the success field of p must be
applied next. Nevertheless, we have seen that several occurrences of A can be replaced,
thus simulating p ∈ σ(p). Hence q indicates that eventually this context-free production
from the success field of p must be applied, but not necessarily immediately.

Now assume p : (A → z, σ(p), φ(p)) is such that σ(p) = φ(p)
= ∅, and a sentential
form without any A. If it contains label p, then for each q ∈ φ(p) we have a 2-competent
Pp,q,absent. After a Pp,q,absent replaced p by q, it is no longer 2-competent and we get a
sentential form ready to simulate the production labelled q, thus simulating the “failed”
application of p.

Finally, a derivation can finish only when no more nonterminals other than Z or p,
for some p ∈ Λ, appear in the sentential form, in which case

Pfinish = { p → λ | p ∈ Λ } ∪ {Z → λ}

is 2-competent and it removes all remaining nonterminals from the sentential form until
a terminal word is obtained. Note that an earlier application of component Pfinish (i.e.,
when the sentential form still contains nonterminals other than those from { p | p ∈
Λ } ∪ {Z}) blocks a successful derivation. This is because such an application would
remove either p ∈ Λ or Z , but not both. If p ∈ Λ is removed too early, then the only
possible 2-competent component is Pabsent but in that case it would introduce an F and
block a successful derivation. If Z is removed too early, then a successful derivation is
blocked due to the fact that Pfinish can no longer become 2-competent and the sentential
form thus always contains some p ∈ Λ.

We described the sni-CDGS G′. The reader can verify that if productions are applied
in a different order, no successful derivation exists. Working in =2-comp.-mode and
rewriting in parallel, G′ simulates the recurrent programmed grammar G with appear-
ance checking and generates L(G).

[L(CD, parCF, =k-comp.dni) ⊆ L(rPR, CF, ac)] We consider a CDGS G =
(N, T, α, P1, . . . , Pn) working in =k-comp.dni-mode and rewriting in parallel. To si-
mulate G, we construct the recurrent programmed grammar G′ = (N ′, T, P, S, Λ, σ, φ)

84 M.H. ter Beek et al.

with appearance checking. In G′, the nonterminals N ′ = N ∪{A′ | A ∈ N }∪{S, F}
are such that S and F are new symbols not appearing in N ∪ T , while P , Λ, σ and φ
are as defined below.

For all Pi, with 1≤ i≤n, and all X ⊆ dom(Pi), with |X |= k, we construct the set
of productions P present

i,X ∪ P absent
i,X ∪P apply

i,X ∪P test
i,X ∪ P decode

i,X ∪ P test′
i,X as below. For all Y ⊆

dom(Pi), with |Y |<k, we construct as follows the set of productions P check
i,Y ∪ P check′

i,Y .

Those in P present
i,X test the presence of the symbols in X in the sentential form, while those

in P absent
i,X test the absence of all symbols in dom(Pi) \ X . By alternating productions

from the other components, some productions from Pi with left-hand sides in X are
applied (using a coding to prime nonterminals) and in between we test if Pi is still k-
competent. In detail, productions in P check

i,Y test the presence of the symbols in Y in the

sentential form, while those in P check′
i,Y test the absence of all symbols in dom(Pi) \ Y .

For notational convenience, we identify rules and their labels, and rule sets and sets of
labels of rules.

Let X = {A1, . . . , Ak} and let dom(Pi) \ X = {C1, . . . , Cm}. Then P present
i,X con-

tains the following k productions, with 1 ≤ j ≤ k − 1:

rpresent
i,X,Aj

: (Aj → Aj , {rpresent
i,X,Aj

, rpresent
i,X,Aj+1

}, ∅) and

rpresent
i,X,Ak

: (Ak → Ak, {rpresent
i,X,Ak

} ∪ {rabsent
i,X,C1

}, ∅).
In case of a successful derivation, these productions check the presence of all sym-
bols Aj , with 1 ≤ j ≤ k, after which eventually production rabsent

i,X,C1
is to be applied next.

This production is part of P absent
i,X , which contains the following m = |dom(Pi) \ X |

productions, with 1 ≤ � ≤ m − 1:

rabsent
i,X,C�

: (C� → F, {rabsent
i,X,C�

, rabsent
i,X,C�+1

}, {rabsent
i,X,C�

, rabsent
i,X,C�+1

}) and

rabsent
i,X,Cm

: (Cm → F, {rabsent
i,X,Cm

} ∪ P apply
i,X , {rabsent

i,X,Cm
} ∪ P apply

i,X).

Let F be a failure symbol (that cannot be rewritten): no successful derivation exists if F
is introduced in the sentential form. In case of a successful derivation, we thus checked
the absence of all symbols from dom(Pi) \ X and eventually one of the productions
from P apply

i,X is to be applied next.

Productions in P apply
i,X simulate the applications of those productions in Pi that ha-

ve Aj , with 1 ≤ j ≤ k, as their left-hand side (recall that X = {A1, . . . , Ak}). How-
ever, as G works in =k-comp.dni-mode, we need to prime nonterminals to distinguish
those occurrences present in the sentential form before rewriting the Aj from those in-
troduced by rewriting the Aj . The unpriming is later done by productions from P decode

i,X .
As G rewrites in parallel, we also need to test that all occurrences of Aj are primed,
and eventually unprimed. This is done by productions from P test

i,X and P test′
i,X , respectively.

Finally, after each application of a production that rewrites Aj , we need to test if Pi is
still k-competent. Productions from P check

i,X and P check′
i,X do so in the way described above.

Note that we use the fact that directly after the first production from P apply
i,X with Aj as

its left-hand side has been applied, we know the symbols from X \{Aj} are still present
in the sentential form — as this was tested earlier by P

present
i,X .

CD Grammar Systems: Nonincreasing Competence 85

The set P apply
i,X is the union

⋃
Aj∈X P apply

i,X,Aj
of the following sets constructed for each

symbol in X , with 1 ≤ j ≤ k:

P
apply
i,X,Aj

= {(Aj → z′, P apply
i,X ∪ {rtest

i,X,A1
}, P apply

i,X ∪ {rtest
i,X,A1

}) | (Aj → z) ∈ Pi},

where z′ is obtained from z by priming all (and only) its nonterminals.
Rule set P test

i,X contains the following k productions, with 1 ≤ j ≤ k − 1:

rtest
i,X,Aj

: (Aj → F, {rtest
i,X,Aj

, rtest
i,X,Aj+1

}, {rtest
i,X,Aj

, rtest
i,X,Aj+1

}) and

rtest
i,X,Ak

: (Ak → F, {rtest
i,X,Ak

} ∪ P decode
i,X , {rtest

i,X,Ak
} ∪ P decode

i,X).

Let P decode
i,X , used for unpriming the sentential form, be the set of rules

P decode
i,X = { (Y ′ → Y, P decode

i,X ∪ {rtest′
i,X,A′

1
}, P decode

i,X ∪ {rtest′
i,X,A′

1
}) | Y ∈ N ′ }.

Let A′
1, . . . , A

′
p be primed versions of all nonterminals in N . Then P test′

i,X contains the
following |N | productions, with 1 ≤ j ≤ p − 1:

rtest′
i,X,Aj

: (A′
j → F, {rtest′

i,X,Aj
, rtest′

i,X,Aj+1
}, {rtest′

i,X,Aj
, rtest′

i,X,Aj+1
}) and

rtest′
i,X,Ap

: (A′
p → F, {rtest′

i,X,Ap
} ∪ { rpresent

i,X′,B1
| X ′ = {B1, . . . , Bk} ⊆ dom(Pi) }

∪ { rcheck
i,Y,B1

| Y = {B1, . . . , Bj} ⊆ dom(Pi), |Y | < k },
{rtest′

i,X,Ap
} ∪ { rpresent

i,X′,B1
| X ′ = {B1, . . . , Bk} ⊆ dom(Pi) } ∪

{ rcheck
i,Y,B1

| Y = {B1, . . . , Bj} ⊆ dom(Pi), |Y | < k }).
In case of a sucessful derivation, it is possible to continue the derivation with compo-
nent i using some set X ′ ⊂ dom(Pi) of nonterminals of size k for the k-competent
derivation, or to drop the derivation of the ith component. In the latter case, we
must verify that the level of competence has not increased and dropped to some sub-
set Y ⊆ dom(Pi) of size strictly less than k. Therefore, let Y = {B1, . . . , Bj}, with
j < k, and let dom(Pi)\Y = {D1, . . . , Dq}. Then P check

i,Y contains these j productions,
with 1 ≤ h ≤ j − 1:

rcheck
i,Y,Bh

: (Bh → Bh, {rcheck
i,Y,Bh

, rcheck
i,Y,Bh+1

}, ∅) and

rcheck
i,Y,Bj

: (Bj → Bj , {rcheck
i,Y,Bj

} ∪ {rcheck′
i,Y,D1

}, ∅).
In case of a successful derivation, these productions check the presence of all sym-
bols Bh, with 1 ≤ h ≤ j, after which eventually production rcheck′

i,Y,D1
is to be applied

next. This production is part of P check′
i,Y , which contains the following q = |dom(Pi)\Y |

productions, with 1 ≤ � ≤ q − 1:

rcheck′
i,Y,D�

: (D� → F, {rcheck′
i,Y,D�

, rcheck′
i,Y,D�+1

}, {rcheck′
i,Y,D�

, rcheck′
i,Y,D�+1

}) and

rcheck′
i,Y,Dq

: (Dq →F, {rcheck′
i,Y,Dq

} ∪ {rpresent
j,X,A1

| j
= i, X ={A1, . . . , Ak}⊆dom(Pj)},
{rcheck′

i,Y,Dq
} ∪ {rpresent

j,X,A1
| j
= i, X ={A1, . . . , Ak}⊆dom(Pj)}).

86 M.H. ter Beek et al.

Another competent enough component can be chosen for further rewriting.
Finally, note that G has a word α as axiom, whereas G′ has a symbol S as axiom.

Therefore G′ moreover contains the following production:

s : (S → α, {s} ∪ { rpresent
i,X,A1

| 1 ≤ i ≤ n, X = {A1, . . . , Ak} ⊆ dom(Pi) }, ∅).

Given axiom S, the application of this production s results in the sentential form α,
after which the simulation of applying a k-competent component Pi, with 1 ≤ i ≤ n,
is started by applying a production rpresent

i,X,A1
from P present

i,X , for a subset X of the domain
of Pi with cardinality k.

We described the recurrent programmed grammar G′ with appearance checking. The
reader can verify that no successful derivation exists if productions are applied in differ-
ent orders. This is ensured by productions guaranteeing, when needed, the introduction
of failure symbol F that cannot be rewritten. The recurrent programmed grammar G′

with appearance checking simulates the CDGS G working in =k-comp.dni-mode and
rewriting in parallel, and generates L(G). This proves the inclusion.

In contrast, for CDGSs working in =k-comp.-mode, for some k ≥ 2, and rewriting
sequentially, we do not know whether the two definitions of nonincreasing competence
lead to different language classes. What we do know is that, for k ≥ 2, sni-CDGSs
working in =k-comp.-mode and rewriting sequentially can generate all languages that
can be generated by context-free recurrent programmed grammars with appearance
checking, while CDGSs working in =k-comp.dni-mode and rewriting sequentially can
generate all languages that can be generated by context-free programmed grammars
with appearance checking.

Theorem 4. L(rPR, CF, ac) ⊆ L(sni-CD, CF,=k-comp.) ⊆ L(PR, CF, ac)
= L(CD, CF, =k-comp.dni), for k ≥ 2.

Proof. We prove the first inclusion (the second is trivial) and the equality, both for k =
2. The generalizations of the proofs to the cases that k > 2 are rather straightforward
and left to the reader. Hence, let k = 2.

[L(rPR, CF, ac) ⊆ L(sni-CD, CF, =k-comp.)] This follows directly from the
proof of the inclusion L(rPR, CF, ac)⊆L(sni-CD, parCF, =k-comp.) in Theorem 3.
It is easy to see that the exact same construction suffices.

Now consider the equality in the statement above. We only prove the inclusion from
left to right, as the reverse direction is obvious.

[L(PR, CF, ac) ⊆ L(CD, CF, =k-comp.dni)] Let G = (N, T, P, S, Λ, σ, φ) be a
programmed grammar with appearance checking. We assume its productions are of the
form p : (A → z, σ(p), φ(p)), with success field σ(p) and failure field φ(p) so that
p
∈ σ(p) ∪ φ(p). Without loss of generality, assume p1 is its only production able to
rewrite S. To simulate G, we construct a CDGS G′ with the disjoint union of sets of
nonterminals

N ′=N ∪ {F, Z} ∪ { p, p′ | p∈Λ } ∪
⋃

p∈Λ

Np, with Np ={Ap, A
′
p, Ãp | A∈N },

CD Grammar Systems: Nonincreasing Competence 87

terminals T disjoint from N ′, axiom Sp1Z and the components defined next. For each
production p : (A → z, σ(p), φ(p)), we construct the components

Pp,code ={A→Ap, A→A′
p} ∪ {p→p} and Pp,uncode ={A′

p→A} ∪ {p→p}.
Now a successful application of production p is simulated by the components

Pp,present = {Ap → Ãp, Ãp → Ãp} ∪ {p → p′},
Pp,apply = {Ãp → z} ∪ {p′ → p′} and

Pp,finish = {B → F | B ∈ Np } ∪ {Z → Z} ∪ { p′ → q | q ∈ σ(p), q
= p },
while a “failed” application of production p is simulated by the component

Pp,absent ={B→F |B∈Nq, q∈Λ} ∪ {A→F, Z→Z} ∪ {p→q |q∈φ(p), q
=p}.
Two types of markers are present in any sentential form: A general one (Z) to guarantee
that components are 2-competent and a specific one (p, or its primed version) to indicate
the context-free production being simulated.

Let p : (A → z, σ(p), φ(p)) be the production to be applied to the current sentential
form, which we assume to contain one or more occurrences of A. The only 2-competent
component which does not introduce a trap symbol F is Pp,code. The moment Pp,code

replaces the last nonterminal A, it is no longer 2-competent. All nonterminals A are
then replaced by Ap or A′

P , respectively. Now Pp,uncode is 2-competent if in the previous
step nonterminals A′

p were introduced. In this case, all these nonterminals are rewritten
to A. There may thus be nonterminals Ap left in the sentential form — if there is no Ap

present, we are left with the sentential form we started with.
Now assume that the current sentential form has at least one Ap. Then Pp,present is

2-competent on this sentential form; other components that may be competent under
certain further assumptions, like Pp,finish or Pp,absent, do not lead to a successful deriva-
tion. Also, no successful derivation exists if p → p′ is applied before Ap → Ãp by
Pp,present. If one occurrence of Ap is replaced by Ãp, then either Pp,present becomes 3-
competent, in case another nonterminal Ap is present in the sentential form, or it re-
mains 2-competent and production p → p′ is applied, while the level of competence
drops to 1. Thus Pp,present is applicable iff exactly one occurrence of nonterminal Ap is
present in the sentential form under consideration, which is then replaced by Ãp (and p
by p′). Here the dynamically nonincreasing feature is used to ensure that the senten-
tial from contains exactly one nonterminal Ap for rewriting. The derivation continues
with Pp,apply followed by Pp,finish, leading to a sentential form in which the former Ãp

is replaced by z and the label is changed to q ∈ σ(p). Note that a production Z → Z
is used to force the 2-competence of Pp,finish, and that it blocks shortcuts whenever p′

and Ãp are present simultaneously, in case Pp,apply was not applied after Pp,present. This
shows how to successfully apply production p of G.

Now assume no A occurs in the sentential form. Then Pp,absent is 2-competent on this
sentential form. If Pp,absent replaces p by q, for q ∈ φ(p), it is no longer 2-competent and
the sentential form can simulate the production labelled q, thus simulating the “failed”
application of p.

88 M.H. ter Beek et al.

Finally, a derivation can only finish when no more nonterminals other than Z or p,
for some p ∈ Λ, appear in the sentential form, in which case

Pp,terminate = {Z → λ, p → λ} ∪ {B → F | B ∈ N ′ }

is 2-competent and it removes all remaining nonterminals from the sentential form un-
til a terminal word is obtained. An earlier application of component Pp,terminate is not
possible, even in case a primed label appears, as then also a nonterminal Ãp occurs and
Pp,terminate is at least 3-competent. If, on the other hand, nonterminal p is removed and
the derivation of Pp,terminate is stopped because it became 1-competent, then a successful
derivation is blocked because no other component can become 2-competent anymore. A
similar reasoning can be applied if nonterminal Z is removed first. Whenever Pp,terminate

is applied, it thus has to remove both nonterminals p and Z .
We described the CDGS G′ working in =2-comp.dni-mode and rewriting

sequentially. The reader can verify that no successful derivation exists if productions
are applied in a different order. G′ thus simulates the programmed grammar G with
appearance checking, and generates L(G).

6 Conclusion

In this paper, we introduced and examined both a static and a dynamic definition of
nonincreasing competence in CDGSs working in =k-comp.-mode of derivation, for
some k ≥ 1, and rewriting in a context-free sequential or parallel manner. We obtained
the following chain of inclusions, with k ≥ 2:

L(ET0L) = L(sni-CD, parCF, =1-comp.) = L(CD, parCF, =1-comp.dni)
=L(sni-CD, CF, =1-comp.) ⊂ L(CD, CF, =1-comp.dni) = L(fRC, CF)
⊆L(sni-CD,parCF,=k-comp.)=L(CD,parCF,=k-comp.dni)=L(RC,ET0L)
⊆L(sni-CD, CF, =k-comp.) ⊆ L(CD, CF, =k-comp.dni) = L(RE).

Our results might help solve a longstanding open problem in regulated rewriting: is
L(RC, ET0L)=L(rPR, CF, ac) ⊆ L(PR, CF, ac)=L(RE) strict?

In Table 1 we compare the results we obtained in this paper with the results we
obtained in [6,7]. This table should be read as follows: the entry at the intersection
of the ith row, marked by a mode f , and the jth column, is either a language family L
which coincides with the family X at the top of the column having components working
in the appropriate mode or an expression of the form L1 ⊂ · = L2, which means that
L1 ⊂ X = L2 holds. For instance, for L(CD, CF, =1-comp.dni) we haveL(ET0L) ⊂
· = L(fRC), which means L(ET0L) ⊂ L(CD, CF, =1-comp.dni) = L(fRC).

This table shows some interesting open problems. It would, e.g., be interesting to
know the generative power of CDGSs working in the ordinary =1-comp.-mode of
derivation and rewriting sequentially. All we know is this:
L(ET0L) = L(sni-CD, CF, =1-comp.) ⊂ L(CD, CF, =1-comp.dni) = L(fRC, CF)
⊆ L(CD, CF, =1-comp.) ⊆ L(CD, CF, =2-comp.) = L(RE).

CD Grammar Systems: Nonincreasing Competence 89

Table 1. Generative power CDGS in (static/dynamic nonincreasing) =k-comp.-mode

Acknowledgements

We thank an anonymous referee of [7] for suggesting to consider also a dynamic defi-
nition of nonincreasing competence-based derivation.

References

1. Meersman, R., Rozenberg, G.: Cooperating Grammar Systems. In: Winkowski, J. (ed.)
MFCS 1978. LNCS, vol. 64, pp. 364–374. Springer, Heidelberg (1978)

2. Csuhaj–Varjú, E., Dassow, J.: On Cooperating Distributed Grammar Systems. Journal of
Information Processing and Cybernetics EIK 26, 49–63 (1990)

3. Csuhaj–Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Grammatical
Approach to Distribution and Cooperation. Topics in Computer Mathematics, vol. 5. Gordon
and Breach, London (1994)

4. Dassow, J., Păun, G., Rozenberg, G.: Grammar Systems. In: [13], vol. 2, ch. 4, pp. 155–213
(1997)

5. Bordihn, H., Csuhaj–Varjú, E.: On Competence and Completeness in CD Grammar Systems.
Acta Cybernetica 12, 347–361 (1996)

6. ter Beek, M.H., Csuhaj–Varjú, E., Holzer, M., Vaszil, G.: On Competence in CD Grammar
Systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp.
76–88. Springer, Heidelberg (2004)

7. ter Beek, M.H., Csuhaj–Varjú, E., Holzer, M., Vaszil, G.: On Competence in CD Gram-
mar Systems with Parallel Rewriting. International Journal of Foundations of Computer Sci-
ence 18, 1425–1439 (2007)

8. Csuhaj–Varjú, E., Dassow, J., Holzer, M.: CD Grammar Systems with Competence Based
Entry Conditions in their Cooperation Protocols. International Journal of Computer Mathe-
matics 83, 159–169 (2006)

9. von Solms, S.H.: Some Notes on ET0L-languages. International Journal of Computer Math-
ematics 5, 285–296 (1975)

10. Bordihn, H., Holzer, M.: Grammar Systems with Negated Conditions in their Cooperation
Protocols. Journal of Universal Computer Science 6, 1165–1184 (2000)

11. Fernau, H., Wätjen, D.: Remarks on Regulated Limited ET0L Systems and Regulated
Context-Free Grammars. Theoretical Computer Science 194, 35–55 (1998)

12. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS Monographs
in Theoretical Computer Science, vol. 18. Springer, Berlin (1989)

13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3. Springer,
Berlin (1997)

14. Bordihn, H., Holzer, M.: Personal communication

	Cooperating Distributed Grammar Systems: Components with Nonincreasing Competence
	Introduction
	Preliminaries
	Competence in CD Grammar Systems
	CD Grammar Systems with Nonincreasing Competence
	The Generative Power of Nonincreasing Competence
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

