Skip to main content

Securely Connected Facility Location in Metric Graphs

  • Conference paper
  • First Online:
Operations Research Proceedings 2010

Part of the book series: Operations Research Proceedings ((ORP))

  • 1155 Accesses

Abstract

Connected facility location problems arise in many different applications areas, such as transportation, logistics, or telecommunications. Given a set of clients and potential facilities, one has to construct a connected facility network and attach the remaining clients to the chosen facilities via access links. Here, we consider interconnected facility location problems, where we request 1- or 2-connectivity in the subnetwork induced by the chosen facilities alone, disregarding client nodes. This type of connectivity is required in telecommunication networks, for example, where facilities represent core nodes that communicate directly with each other. We show that the interconnected facility location problem is strongly NP-hard for both 1-and 2-connectivity among the facilities, even for metric edge costs. We present simple randomized approximation algorithms with expected approximation ratios 4.40 for 1-connectivity and 4.42 for 2-connectivity. For the classical 2-connected facility location problem, which allows to use non-facility nodes to connect facilities, we obtain an algorithm with expected approximation guarantee of 4.26.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Byrka and K. Aardal. An optimal bifactor approximation algorithm for the metric unca-pacitated facility location problem. SIAM Journal on Computing, 2010. to appear.

    Google Scholar 

  2. M. Chimani, M. Kandyba, and M. Martens. 2-interconnected facility location: Specifications, complexity results, and exact solutions. Technical Report TR09-1-008, Computer Science Department, Technical University Dortmund, 2009.

    Google Scholar 

  3. N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, 1976.

    Google Scholar 

  4. F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Approximating connected facility location problems via random facility sampling and core detouring. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1174–1183, 2008.

    Google Scholar 

  5. G. N. Frederickson and J. Ja’Ja’. On the relationship between the binconnectivity augmentation and traveling salesman problems. Theoretical Computer Science, 19: 189–201, 1982.

    Article  Google Scholar 

  6. S. Kedad-Sidhoum and V. H. Nguyen. An exact algorithm for solving the ring star problem. http://www.optimization-online.org/DB_HTML/2008/03/1942.html, March 2008.

  7. M. Labbe, G. Laporte, I. Rodriguez Martin, and J. J. Salazar Gonzalez. The ring star problem: Polyhedral analysis and exact algorithm. Networks, 43(3): 177–189, 2004.

    Article  Google Scholar 

  8. C. L. Monma, B. S. Munson, and W. R. Pulleyblank. Minimum-weight two-connected spanning networks. Mathematical Programming, 46(2): 153–171, 1990.

    Article  Google Scholar 

  9. M. Pioro and D. Medhi. Routing, Flow, and Capacity Design in Communication and Computer Networks. Morgan Kaufmann Publishers, 2004.

    Google Scholar 

  10. R. Ravi and F. S. Salman. Approximation algorithms for the traveling purchaser problem and its variants in network design. In Proceedings of the 7th Annual European Symposium on Algorithms, pages 29–40, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Martens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martens, M., Bley, A. (2011). Securely Connected Facility Location in Metric Graphs. In: Hu, B., Morasch, K., Pickl, S., Siegle, M. (eds) Operations Research Proceedings 2010. Operations Research Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20009-0_46

Download citation

Publish with us

Policies and ethics