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Abstract We introduce the universal shortest path problem (Univ-SPP) which gen-
eralizes both - classical and new - shortest path problems. Starting with the defini-
tion of the even more general universal combinatorial optimization problem (Univ-
COP), we show that a variety of objective functions for general combinatorial prob-
lems can be modeled if all feasible solutions have the same cardinality. Since this
assumption is, in general, not satisfied when considering shortest paths, we give
two alternative definitions for Univ-SPP, one based on a sequence of cardinality
contrained subproblems, the other using an auxiliary construction to establish uni-
form length for all paths between source and sink. Both alternatives are shown to
be (strongly) NP-hard and they can be formulated as quadratic integer or mixed in-
teger linear programs. On graphs with specific assumptions on edge costs and path
lengths, the second version of Univ-SPP can be solved as classical sum shortest path
problem.

Keywords: Combinatorial optimization, shortest path problem, universal objective
function

1 Introduction

The shortest path problem (SPP) is one of the best known models in mathematical
optimization with a huge number of publications (see e.g. Zwick [14]). One of the
reasons for this is its potential in tackling real-world problems, another its usage as

Lara Turner
Technical University of Kaiserslautern, Department of Mathematics, P. O. Box 3049, 67653
Kaiserslautern, Germany, e-mail: turner@mathematik.uni-kl.de

Horst W. Hamacher
Technical University of Kaiserslautern, Department of Mathematics, P. O. Box 3049, 67653
Kaiserslautern, Germany, e-mail: hamacher@mathematik.uni-kl.de

1



2 Lara Turner and Horst W. Hamacher

subproblem in larger optimization problems, but also in other areas like simulation
or game theory.
In general, one assumes that SPP is the sum-SPP, where paths in a given directed
graph are compared with respect to the sum of their costs. That is, one looks for a
pathP such that the sum∑e∈Pc(e) of the edge costs alongP is minimized. Another
well-known SPP is the bottleneck or max-SPP in which we minimize the maxi-
mum edge cost maxe∈Pc(e) in P. Other versions of shortest path problems include
balanced SPP (minimizes the difference between largest andsmallest edge cost),k-
max SPP ork-sum SPP (Garfinkel et al. [2]) where the latter two determinea path in
which thekth-largest and the sum of thek largest edge costs are as small as possible,
respectively. More exotic SPPs are the(k, l)-balanced SPP (with minimal difference
betweenkth-largest andl th-smallest edge cost), the(k+ l)-max SPP (minimizing
the sum ofkth-largest andl th-largest edge cost) and the(k, l)-trimmed-mean SPP
in which thek largest andl smallest edge costs are ignored and the costs of the re-
maining edges are added. These problems are addressed in some detail in Turner [9].

In the past, several attempts have been made to develop unifying theories with the
goal of finding common properties and solution algorithms for a large class of SPPs
including sum- and max-SPP. Most notably, this was achievedby the class of alge-
braic path problems (see e.g. Zimmermann [13], or, more recently, Mohri [5]) where
the sum or max operation in the objective function is replaced by a more general bi-
linear operator and the real numbers are replaced by the elements of a semigroup or
semiring.
In this paper, we choose a different approach where the objective function is of the
sum type and multiplicative weights are used to model various instances of shortest
path problems. In Section 2, we first define such a universal objective function for
general combinatorial problems. Since this definition is assuming the same cardi-
nality for all feasible solutions, it cannot be directly carried over to universal path
problems, denoted Univ-SPP. But we use this general definition as starting point
for two alternative formulations of Univ-SPP in Sections 3 and 4. We analyse the
complexity of the resulting versions and study special cases in which the problem is
solvable as classical sum-SPP. Integer programming formulations are given in Sec-
tion 5. The paper is concluded in Section 6 with a summary of our results and some
ideas for current and future work.

2 Universal Combinatorial Optimization Problem

We consider the shortest path problem as a special case of a combinatorial optimiza-
tion problem (COP) given by a finite ground setE = {e1, . . . ,em} of cardinalitym,
a set of feasible solutionsF ⊆ 2E and a cost functionc : E → R assigning costs
c(e) ∈ R to the elements inE. The most popular objective functions of combina-
torial problems are of the sum and bottleneck type given by minS∈F ∑e∈Sc(e) and
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minS∈F maxe∈E c(e), respectively. These two objectives are special cases of the more
general problem introduced next.

Definition 1. Consider a COP in which all feasible solutionsS∈ F have the same
cardinality|S| ≤m. For anyS∈F we denote withc(i)(S), i = 1, . . . , |S| , its ith-largest
cost coefficient, i.e.c(1)(S) ≥ . . . ≥ c(|S|)(S), and with

c≥(S) := (c(1)(S), . . . ,c(|S|)(S))

its vector of sorted costs. Given universal weightsλi ∈ R, i = 1, . . . , |S|, theuni-
versal combinatorial optimization problem, Univ-COP, is

min
S∈F

fλ (S) :=
|S|

∑
i=1

λic(i)(S). (1)

A feasible solutionS∗ ∈ F minimizing (1) is auniversal optimal solution with
universal cost fλ (S∗).

To call such problems universal truly makes sense, since, bychoosing appropriate
universal weights, classical and new objective functions can be represented by (1).
Objective functions which can be modeled are, for instance,the standard sum or bot-
tleneck objective for which we setλi = 1 for all i = 1, . . . , |S| or λ1 = 1 andλi = 0
otherwise. The balanced objective value maxe∈Sc(e)−mine∈Sc(e) for any solution
S∈ F is formulated by settingλ1 = 1, λ|S| = −1 andλi = 0 else. Other less-known
objectives ask-max ork-sum objective function,k≤ |S|, are obtained usingλk = 1
or λ1 = . . . = λk = 1 and the remainingλi = 0. Table 1 contains a non-exhaustive
list of objective functions of type (1), showing the power ofthe Univ-COP approach
(see also Example 1).

The idea of associating weight coefficientλi with the ith-largest cost element of a
feasible solutionS∈ F was first introduced by Yager [12] for ordered weighted av-
eraging aggregation operators in multicriteria decisionmaking and later extended to
location problems using the notion of ordered median functions (see, for instance,
Nickel and Puerto [6]). The concept of universal combinatorial optimization prob-
lems was suggested by Kalsch [4] and Hamacher and Turner [3].This is related to
another generalization of combinatorial problems called discrete optimization prob-
lems with ordering proposed by Fernández et al. [1]. In [1, 3] examples of Univ-
COPs can be found which are in their general form solvable in polynomial time.
An example of such a Univ-COP is the universal spanning tree problem (Univ-STP)
for which the greedy algorithm can be shown to find a universaloptimal solution if
λi ≥ 0 for all i = 1, . . . , |S|. The same is true for the universal matroid base problem,
Univ-MBP.

Example 1.We consider the Univ-SPT in the undirected graphG = (V,E) of Fig-
ure 1 where the edge labels denote the edge costsc(e) for all e= [i, j] ∈ E. It can
be shown that the spanning treeT = {[1,2], [2,3], [2,4]} computed by the standard
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Table 1 Objective functions modeled by Univ-COP

λ ∈ R|S| fλ (S) Objective function name

(1, . . . ,1) ∑
e∈S

c(e) Sum

(1,0, . . . ,0) max
e∈S

c(e) Bottleneck/max

(0, . . . ,0,1) min
e∈S

c(e) Min

(1, . . . ,1
︸ ︷︷ ︸

k

,0, . . . ,0)
k
∑

i=1
c(i)(S) k-sum,k≤ |S|

(0, . . . ,0
︸ ︷︷ ︸

k−1

,1,0, . . . ,0) c(k)(S) k-max,k≤ |S|

(0, . . . ,0
︸ ︷︷ ︸

k−1

,1,0, . . . ,0

︸ ︷︷ ︸

l−1

,1,0, . . . ,0) c(k)(S)+c(l)(S) (k+ l)-max,k < l ≤ |S|

(0, . . . ,0
︸ ︷︷ ︸

k

,1, . . . ,1,0, . . . ,0
︸ ︷︷ ︸

l

)
|S|−l

∑
i=k+1

c(i)(S) (k, l)-trimmed-mean, k, l ≤ |S|,
k+ l ≤ |S|

(1, . . . ,1
︸ ︷︷ ︸

k

,0, . . . ,0,1, . . . ,1
︸ ︷︷ ︸

l

)
k
∑

i=1
c(i)(S)+

|S|

∑
i=|S|−l+1

c(i)(S) (k, l)-anti-trimmed-mean,k, l ≤
|S| , k+ l ≤ |S|

(1,0, . . . ,0,−1) max
e∈S

c(e)−min
e∈S

c(e) Balanced

(1,0, . . . ,0
︸ ︷︷ ︸

k−1

,−1,0, . . . ,0) max
e∈S

c(e)−c(k)(S) k-balanced, 1< k≤ |S|

(0, . . . ,0
︸ ︷︷ ︸

k−1

,1,0, . . . ,0,−1,0, . . . ,0
︸ ︷︷ ︸

l−1

) c(k)(S)−c(|S|−l+1)(S) (k, l)-balanced,k, l ≤ |S|, k+ l ≤
|S|

...
...

...

greedy algorithm is universal optimal if all universal weight coefficientsλi are non-
negative. This is e.g. the case for sum, bottleneck, 2-sum, 2-max, or(1,1)-trimmed
mean objective. The corresponding objective function values are 6 (sum objective),
3 (bottleneck objective), 5 (2-sum objective), and 2 for the2-max as well as the
(1,1)-trimmed-mean objective function. Note that treeT is the unique optimal so-
lution for the sum objective while for bottleneck or(1,1)-trimmed-mean objective
function there exist alternative optimal solutions (e.g.T ′ = {[1,3], [2,3], [2,4]} or
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T ′′ = {[1,2], [2,3], [3,4]}). The fact that the non-negativity of the universal weights
is essential in the validity argument of the Greedy algorithm is shown by the fol-
lowing examples: The greedy solution does not provide an optimal solution of the
balanced spanning tree problem which is given by{[1,3], [2,4], [3,4]}. The(1,2)-
balanced shortest spanning trees areT ′ andT ′′′ = {[1,2], [1,3], [2,4]} with an ob-
jective function value of 0. In both of these examples some ofthe universal weights
are equal to−1 (see Table 1).

1

2

3

4

2

3

1

3

4

Fig. 1 Undirected graphG

A crucial point in Definition 1 and the validity proofs in [3] is, however, that the
cardinality |S| of the feasible solutions is fixed. Obviously, this assumption is, in
general, not satisfied for the(s, t)-pathsP in a given digraph. This is e.g. illustrated
by the balanced SPP. In order to make its objective maxe∈Pc(e)−mine∈Pc(e) a
special case of (1), one would necessarily have to setλ1 = 1 in order to repro-
duce the first part maxe∈Pc(e) of the objective function. To reproduce the sec-
ond part−mine∈pc(e) two different universal weight vectors with components
λl = −1, λl ′ = 0 andλl = 0, λl ′ = −1, respectively, would be required to compare
two paths with different number of edgesl andl ′.

In order to define a universal shortest path problem a modifieddefinition of univer-
sality is needed which is based on Definition 1. We propose in the following sections
two alternatives of Univ-SPP which can both handle paths of different length.

3 Universal Shortest Path Problem: Sequential Definition

The classic single-source single-sink shortest path problem is a special type of a
combinatorial optimization problem where the ground set isgiven by the edges of a
directed graphG = (V,E), the feasible solutions are the paths from sources to sink
t and costsc(e) ∈ R are assigned to the edgese∈ E. The set of all(s, t)-paths in
G is denoted byPst and, by definition, such a pathP is a sequence of nodes and
edgesP = (s = i0,e1, i1, . . . , i l(P)−1,el(P), i l(P) = t) with ek = (ik−1, ik) ∈ E for all
k = 1, . . . , l(P) such that neither nodes nor edges are repeated. The number ofedges
in pathP is called its lengthl(P) which is at mostn−1 = |V|−1. We assume with-
out loss of generality that there are no incoming edges ins and no outgoing edges
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from t in graphG.

The first approach consists in splitting Univ-SPP inton−1 universal subproblems
with fixed cardinality. As for universal combinatorial optimization problems, we
first define the vectors of sorted edge costs.

Definition 2. For any pathP ∈ Pst of length l(P) = l with l ∈ {1, . . . ,n−1}, the
sorted cost vectorof pathP sorts the costs alongP in non-increasing order, i.e.

cl
≥(P) := (cl

(1)(P), . . . ,cl
(l)(P))

wherecl
(i)(P), i = 1, . . . , l , is theith-largest edge cost in pathP.

Definition 3. Let G = (V,E) be a directed graph with costsc(e) ∈ R for all e∈ E.
For any fixed path lengthl ∈ {1, . . . ,n−1} and any given universal weight vector
λ l ∈ Rl theuniversal shortest path problem with cardinality l , Univ-SPP(l), is

min
P∈Pst: l(P)=l

fλ l (P) :=
l

∑
i=1

λ l
i cl

(i)(P).

If there exists no(s, t)-path of lengthl , we set the optimal objective value of Univ-
SPP(l ) to ∞ .

Then, Univ-SPP in its sequential definition can be formulated as follows:

Definition 4. If we denote withP∗
l any optimal solution of Univ-SPP(l ), the se-

quential universal shortest path problem, Univ-SPP(1, . . . ,n−1), is defined with
respect to a set ofn−1 universal weight vectors{λ l ∈ Rl : l ∈ 1, . . . ,n−1} as

min
l∈{1,...,n−1}

fλ l (P∗
l ). (2)

A pathP∗ ∈ Pst minimizing (2) is called auniversal shortest pathwith universal
cost fλ l (P∗) wherel = l(P∗).

Choosing universal weight vectorsλ l for any path lengthl ∈ {1, . . . ,n−1}, clas-
sical sum- and bottleneck SPP are modeled in an obvious way bysettingλ l

i = 1
for all i = 1, . . . , l or λ l

1 = 1 and λ l
i = 0 otherwise. As indicated in Section 2,

λ l
1 = 1, λ l

l = −1 andλ l
i = 0 else yields the balanced SPP if we set eitherλ 1

1 = 0 or
λ 1

1 = ∞ for paths consisting of only one edge. Similarly for objective functions like
k-max ork-sum that require a minimum path lengthk≤ n−1 to be well-defined we
can defineλ l

i = 0 orλ l
i = ∞ for all l < k andi = 1, . . . , l depending on whether paths

with less thank edges are assumed to be feasible or not.

The complexity status of the sequential Univ-SPP is easily established, since the
SPP with classical sum-objective and cardinality constraint is a special case of Univ-
SPP(1, . . . ,n−1) and is well-known to be NP-hard.
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Theorem 1.Univ-SPP(1, . . . ,n−1) is (strongly) NP-hard.

Note that the sequential approach reduces to solving a single universal shortest path
problem without cardinality constraint if all paths froms to t have the same length.
This holds, for instance, in layered graphs which are discussed in Section 4 (see
Definition 7). There we will use this fact to propose a solution algorithm which - in
contrast to the result of Theorem 1 - has polynomial time complexity.

4 Universal Shortest Paths with Cardinality |E|

For the case of non-negative costsc(e)≥ 0 which we assume throughout this section
we suggest a second definition for Univ-SPP. The main idea is to enforce for all
paths froms to t a length ofm= |E| wherem is the number of edges in graphG.
This is achieved by extending each(s, t)-path in the original graph by artificial edges
of cost 0. Using this approach, universal shortest path problems can be defined by
a single universal weight vectorλ ∈ Rm instead of a sequence of vectorsλ l , l ∈
{1, . . . ,n−1}, as in the first definition given in Section 3. We start by extending the
definition of sorted cost vectors.

Definition 5. Theextended sorted cost vectorof a pathP∈ Pst is given as

c≥(P) := (c(1)(P), . . . ,c(l(P))(P),0, . . . ,0
︸ ︷︷ ︸

m−l(P)

)

wherec(i)(P), i = 1, . . . , l(P), is the ith-largest edge cost inP, i.e. c(1)(P) ≥ . . . ≥
c(l(P))(P) ≥ 0, andc(i)(P) := 0 for all i = l(P)+1, . . . ,m.

Definition 6. Given a directed graphG = (V,E) with non-negative costsc(e) ≥ 0
for all e∈ E, and a universal weight vectorλ ∈ Rm, theuniversal shortest path
problem with cardinality |E| = m, denotedUniv-SPP(|E|), is

min
P∈Pst

fλ (P) :=
m

∑
i=1

λic(i)(P) (3)

A pathP∗ ∈ Pst for which (3) is minimal is called anextended universal shortest
path with extended universal cost fλ (P∗).

Since the edge costsc(e), e∈ E, are non-negative all artificial costs which are equal
to 0 are ranked after the costs of the edges in pathP. Hence, sum-SPP and bottle-
neck SPP are modeled correctly by Univ-SPP(|E|). Thek-sum SPP of minimizing
the sum of thek largest edge costs in a path is obtained as special case of (3)by
settingλ1 = . . . = λk = 1, λk+1 = . . . = λm = 0. This definition assigns paths with
lengthl(P) < k the total sum of their edge costs as objective value, coinciding with
the definition by Punnen and Aneja [8] fork-sum objectives in general combinatorial
optimization. For thek-max SPP,k≤ m, which determines a path whosekth-largest
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edge cost is as small as possible, we chooseλk = 1 andλi = 0 for all i 6= k and obtain
an optimal objective value of 0 if a path with less thank edges exists.

A comparison of the two formulations for Univ-SPP, Univ-SPP(1, . . . ,n− 1) and
Univ-SPP(|E|), will be given in the concluding Section 6 of this paper. In the fol-
lowing, we will derive some results on the general Univ-SPP(|E|).

Lemma 1. If λi ≥ 0 for all i = 1, . . . ,m, digraph G can without loss of generality be
assumed to have no loops nor parallel edges.

Proof. The non-negativity of the universal weightsλi implies that the deletion of
loops and the largest (with respect to costc(e)) of two parallel edges does not worsen
the objective value of Univ-SPP(|E|). ⊓⊔

The next example shows, however, that the non-negativity assumption in Lemma 1
is necessary in the argumentation for deleting parallel edges.

Example 2.Let λ = (1,−1,0,0) in the following directed graphG = (V,E).

s= 1 2 t = 3

4

1

6

3

Fig. 2 Directed graphG whose parallel edges cannot be deleted

The extended universal shortest path with respect toλ = (1,−1,0,0,0) is indicated
in bold. Deleting edge(s,2) with cost 4 would destroy this path.

In contrast to the classical sum-SPP which can be solved in polynomial time for
non-negative edge costs, Univ-SPP(|E|) turns out to be NP-hard.

Theorem 2.Univ-SPP(|E|) is (strongly) NP-hard.

Proof. Settingλi = −1 for all i = 1, . . . ,m, the longest path problem can be re-
duced to Univ-SPP(|E|) since for any(s, t)-pathsP andP′ ∑e∈Pc(e) ≥ ∑e∈P′ c(e),
i.e. ∑m

i=1c(i)(P) ≥ ∑m
i=1c(i)(P

′), if and only if fλ (P) ≤ fλ (P′). ⊓⊔

Since thek-sum shortest path problem is a special case of Univ-SPP(|E|), Theorem 2
generalizes a result of Garfinkel et al. [2] who prove the NP-hardness ofk-sum SPP,
albeit for arbitrary costsc(e) ∈ R. Whether the NP-hardness of Univ-SPP(|E|) is
still valid in acyclic digraphs or under the additional assumption thatλi ≥ 0 for all
i = 1, . . . ,m is at this point of time still an open question.
Another important difference compared with sum-SPP is thatthe optimality prin-
ciple of dynamic programming which guarantees the correctness of algorithms as
Dijkstra or Bellman-Ford is no longer valid. We see this in the following example
where a subpath of an extended universal shortest path is notoptimal.
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Example 3.We consider the directed graphG = (V,E) of Figure 3 andλ =
(1,0,2,0,0) ∈ R5. Obviously, there are only two(s, t)-pathsP = (s,2,4, t) and
P′ = (s,3,4, t) in graphG. The extended universal costs of these paths arefλ (P) = 4
and fλ (P′) = 3, respectively, such that pathP′ (bold) is optimal for Univ-SPP(|E|)
with λ = (1,0,2,0,0). However, its subpath from sources to node 4 has larger ob-
jective function value than the corresponding subpath ofP (dashed). Consequently,
an extended universal shortest path tree does, in general, not exist.

s= 1

2

3

4 t = 5

1 1

3 0

2

Fig. 3 Extended universal shortest path with non-optimal subpath

Theorem 2 and Example 3 illustrate that the naive transfer ofalgorithmic ideas
from classical sum-SPP to Univ-SPP(|E|) fails. This motivates the search for more
sophisticated methods and the investigation of special cases of Univ-SPP(|E|). We
start with the following obvious observation.

Lemma 2. Letλi ≥ 0 for all i = 1, . . . ,m and let P, P′ ∈Pst be two(s, t)-paths with
extended sorted cost vectors satisfying c≥(P)≤ c≥(P′), i.e. c(i)(P)≤ c(i)(P

′) for all
i = 1, . . . ,m. Then fλ (P) ≤ fλ (P′).

Example 4 shows, however, that there may be exponentially many incomparable
extended sorted cost vectors.

Example 4.Let G = (V,E) be a directed graph with node setV = {0, . . . ,n}, source
s = 0, sink t = n, and wheren ∈ 3N. The edges ofG and its costs are given in
Table 4. Here, we assume thatε > 0 is sufficiently small.

Table 2 Edges and costs of digraphG

Edges Costs

e= (i −3, i −2), i ∈ 3N, i ≤ n c(e) = 2
i
3 − ε

e= (i −3, i −1), i ∈ 3N, i ≤ n c(e) = 2
i
3 − ε

2

e= (i −2, i), i ∈ 3N, i ≤ n c(e) = 2
i
3 + ε

e= (i −1, i), i ∈ 3N, i ≤ n c(e) = 2
i
3 + ε

2

We identify blocksBi , i = 1, . . . ,
n
3, which are the subgraphs ofG consisting of the

nodes{3(i−1),3i−2,3i−1,3i} and the corresponding four connecting edges. The
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0

1

2

3

B1
B i

3
Bn

3

21− ε 21 + ε

21− ε
2 21 + ε

2

. . . . . . i −3

i −2

i −1

i

2
i
3 − ε 2

i
3 + ε

2
i
3 − ε

2 2
i
3 + ε

2

. . . . . . n−3

n−2

n−1

n

2
n
3 − ε 2

n
3 + ε

2
n
3 − ε

2 2
n
3 + ε

2

Fig. 4 DigraphG with exponentially many(s, t)-paths

graphG together with its blocks indicated as dashed rectangles is pictured in Fig-
ure 4. In this digraph there are 2

n
3 different (s, t)-paths with extended sorted cost

vectors
c≥(P) = (c(1)(P), . . . ,c(2· n

3 )(P),0, . . . ,0
︸ ︷︷ ︸

2· n
3

)

in which the costs of the 2· n
3 edges contained in pathP are sorted backwards, that

is, starting with the largest cost edge into nodet = n and following the path until the
start nodes= 0 is reached. Two pathsP, P′ ∈ Pst with P 6= P′ differ in at least one
block Bi , i ∈ {1, . . . ,

n
3}. We assume without loss of generality that pathP uses the

upper branch in blockBi and pathP′ uses the lower branch. Using the cost structure
along the pathsP ∈ Pst, it suffices to consider those components of the extended
sorted cost vectorsc≥(P) andc≥(P′) which belong to blockBi (see Figure 5).

. . . . . . 3(i −1)

3i −2

3i −1

3i

2i − ε 2i + ε

2i − ε
2 2i + ε

2

. . . . . .

Bi

Fig. 5 Block Bi

Sincec≥(P) = (. . . ,2i + ε,2i − ε, . . .) andc≥(P′) = (. . . ,2i + ε
2 ,2i − ε

2 , . . .) digraph
G has exponentially many(s, t)-paths with pairwise incomparable extended sorted
cost vectors.

In the special cases which we consider next, one can, however, show that a shortest
(s, t)-pathP∗ with respect to (modified) sum objective always satisfiesc≥(P∗) ≤
c≥(P) for all P ∈ Pst. An extended universal shortest path can thus be found in
polynomial time.

Theorem 3.For any positive real numberκ ∈ R+ and non-negative universal
weightsλi ≥ 0 for all i = 1, . . . ,m, an extended universal shortest path with respect
to
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a) uniform costs, i.e. c(e) = κ for all e∈ E, or
b) binary costs, i.e. c(e) ∈ {0,κ} for all e∈ E

can be found by solving the sum-SPP.

Proof. It is sufficient to prove the claim for binary costs. In this case, the extended
sorted cost vectors will collect all edges ofP with costκ in the first components and
all the 0’s in the remaining components, i.e.

c≥(P) = (κ, . . . ,κ,0, . . . ,0)

for all P∈ Pst. Hence (3) is minimized by finding a sum shortest path froms to t.
⊓⊔

Theorem 3 cannot be generalized to more than one non-zero cost value. The next
results shows that another generalization of Theorem 3 is possible, but only if a -
rather strict - additional assumption holds for the set of(s, t)-paths inG.

Theorem 4.Let κ, κ ′ ∈ R+ andλi ≥ 0 for all i = 1, . . . ,m. If c(e) ∈ {κ,κ ′} for all
e∈ E and all paths P∈Pst have the same length, any optimal solution of sum-SPP
is an extended universal shortest path.

Proof. Assuming without loss of generality thatκ > κ ′, the extended sorted cost
vector of any pathP∈ Pst is

c≥(P) = ( κ, . . . ,κ,
︸ ︷︷ ︸

|{e∈P:c(e)=κ}|

κ ′
, . . . ,κ ′

,
︸ ︷︷ ︸

|{e∈P:c(e)=κ ′}|
︸ ︷︷ ︸

l

0, . . . ,0
︸ ︷︷ ︸

m−l

)

wherel is the uniform length of the(s, t)-paths inG. Sincec≥(P) andc≥(P′) are
comparable with respect to the component-wise ordering forany two (s, t)-paths
P and P′, there exists a pathP∗ ∈ Pst with c≥(P∗) ≤ c≥(P) for all P ∈ Pst. If
c≥(P∗) < c≥(P), we find a smallesti∗ ∈ {1, . . . , l} with c(i∗)(P

∗) = κ ′ < κ = c(i∗)(P)
andc(i)(P

∗) ≤ c(i)(P) for any i 6= i∗. In particular, this implies that∑e∈P∗ c(e) <

∑e∈Pc(e), i.e. P∗ is a shortest path froms to t with respect to sum objective. The
claim follows sincec≥(P∗∗) = c≥(P∗) for any other sum shortest(s, t)-pathP∗∗. ⊓⊔

To assume equal lenghts for all(s, t)-paths in Theorem 4 is, however, essential.

Example 5.In graphG= (V,E) of Figure 6 withP= (s,2, t) (dashed) andP′ = (s, t)
(bold), the extended sorted cost vectors arec≥(P) = (1,1,0) andc≥(P′) = (3,0,0).
PathP is a sum shortest(s, t)-path, but it is not optimal forλ = (0,1,0). Note that
c≥(P) andc≥(P′) are incomparable, i.e.c≥(P) � c≥(P′) andc≥(P′) � c≥(P).

Since Theorem 3 cannot be carried over to more than two different edge costs,
we propose for this case a different approach. We first show how to tackle Univ-
SPP(|E|) in layered graphs where all(s, t)-paths have the same lengthl and then
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s= 1

2

t = 3

1

3

1

Fig. 6 Two paths with incomparable extended sorted cost vectors

apply this result to a special layered graph closely relatedto a given graph of arbi-
trary structure. Note however that the result on layered graphs is interesting in its
own right, since it can be used as model within network optimization (for instance in
the complexity analysis of maximal flow algorithms) and for real-world applications
like evacuation planning.

Definition 7. A directed graphG = (V,E) with sources and sinkt is a layered
graph if its nodes can be partitioned into setsV0 = {s}, . . . ,Vl = {t} called layers
and all its edges run between consecutive layers, i.e. if node i is in layerVk for some
k∈ {0, . . . , l −1} ande= (i, j) ∈ E, then j is a node in layerVk+1.

Definition 8. A graph G has monotone (s, t)-costs if c(e1) ≥ . . . ≥ c(el(P)) or
c(e1) ≤ . . . ≤ c(el(P)) for all pathsP∈ Pst.

Theorem 5. If G is a layered graph with monotone(s, t)-costs, andλ ∈ Rm, Univ-
SPP(|E|) can be solved in polynomial time as sum-SPP with respect to modified
costs.

Proof. We first consider the case of non-increasing(s, t)-costs. SinceG is a layered
graph, any pathP∈ Pst has lengthl and the monotonicity of the cost implies

c≥(P) = (c(e1), . . . ,c(el )
︸ ︷︷ ︸

l

,0, . . . ,0
︸ ︷︷ ︸

m−l

)

and

fλ (P) =
l

∑
i=1

λic(ei).

Thus, an optimal solution to Univ-SPP(|E|) is a shortest(s, t)-path with respect to
the sum objective with modified costscλ (e) := λkc(e) for all e = (i, j) ∈ E with
i ∈ Vk−1, j ∈ Vk and k ∈ {1, . . . , l}. Since the layered graph is acyclic, the latter
problem can be solved in polynomial time.
In the case of non-decreasing(s, t)-costs we can use the same arguments as before
by settingcλ (e) := λl−k+1c(e). ⊓⊔

In the next step, we show how the previous result obtained forlayered graphs can
be generalized.

Definition 9. Theexpanded graphG′ = (V ′,E′) is a layered graph obtained from
G = (V,E) by includingm+1 copies of each nodei ∈V, i.e.
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V ′ := {i(k) : i ∈V, k = 0, . . . ,m},

m copies of each edge(i, j) ∈ E

E′
1 := {(i(k), j(k+1)) : (i, j) ∈ E, k = 0, . . . ,m−1},

andm edges between consecutive node copiest(k) andt(k+1) of the sink nodet

E′
2 := {(t(k), t(k+1)), k = 0, . . . ,m−1}.

The edge set ofG′ is E′ := E′
1∪E′

2 with costs

c′(i(k), j(k+1)) := ci j

c′(t(k), t(k+1)) := 0

for all i, j ∈V andk = 0, . . . ,m−1.

Example 6 shows a digraphG and its expanded graphG′. It is a layered, and thus
acyclic, digraph withn(m+ 1) nodes andm(m+ 1) edges, where nodess(0) and
t(m) take on the role of source and sink node, respectively. Note that in specific
instances of graphsG, the size of the expanded graphG′ can be reduced consider-
ably by a preprocessing step in which all edges are eliminated fromG (and thus not
copied) which can never occur in a path froms to t.

We observe the following relation between paths inG andG′.

Lemma 3. Let G be a digraph and let G′ be its expanded graph.

a) For any(s, t)-path P in G, there exists a path P′ from s(0) to t(m) in graph G′

which consists of exactly m edges.
b) For any path P′ from s(0) to t(m) in G′, there exists a walk W, i.e. a non-simple

path in which node and edge repetition is allowed, from s to t in graph G with at
most m edges.

c) A 1:1-correspondence between(s, t)-paths in G and(s(0), t(m))-paths in G′ is
only given if digraph G is acyclic.

Proof. Claim a) follows by includingm− l(P) many edges from the setE′
2. Since

copies of nodes and edges may be used more than once in a given(s(0), t(m))-path
P′ the resulting list of nodes and edges inG may contain cycles such that claim b)
follows only for walks and not for paths inG. If G does not contain cycles, node
and edge repetition cannot occur such that claim c) holds.⊓⊔

By construction, the extended sorted cost vectors of(s, t)-paths inG ((s(0), t(m))-
paths inG′) and their equivalents inG′ (in G) coincide. This motivates to solve
Univ-SPP(|E|) in the expanded graphG′. The following lemma relates the extended
universal costs of walks and corresponding paths in digraphG.

Lemma 4. Let W be an(s, t)-walk in graph G and let P be the(s, t)-path obtained
from W by eliminating all cycles. Ifλi ≥ 0 for all i = 1, . . . ,m, then fλ (P) ≤ fλ (W).
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Proof. Removing all cycles in walkW, we obtain the (simple) pathP with l(P) <

l(W) andc(i)(P) ≤ c(i)(W) for all i = 1, . . . ,m. By the non-negativity of theλi and
Lemma 2, it follows thatfλ (P) ≤ fλ (W). ⊓⊔

Theorem 6.Univ-SPP(|E|) in G and G′ are equivalent if digraph G is acyclic or
λi ≥ 0 for all i = 1, . . . ,m. If the costs c(e) are, in addition, monotone along(s, t)-
paths and(s, t)-walks, Univ-SPP(|E|) can be solved as sum-SPP with respect to
modified costs.

Proof. By Lemma 3, any(s, t)-path in digraphG has an equivalent pathP′ from s(0)
to t(m) in G′ with c≥(P′) = c≥(P). Conversely, any pathP′ from s(0) to t(m) in the
expanded graphG′ corresponds to a walkW from s to t in G with at mostm edges
andc≥(W) = c≥(P′). By Lemma 4 this walkW can be chosen as a path for general
graphs and non-negative universal weights or is already a path for acyclic graphs.
For monotone costs which are non-increasing the final claim follows immedidately
from Theorem 5 applied to the layered graphG′. If the costs are non-decreasing,
the same argument is applied to a modified expanded graph where the edge setE′

2
connects copies of the source nodes instead of the sink nodesby edges(s(k),s(k+
1)), k = 0, . . . ,m−1. ⊓⊔

But the equivalence result of Theorem 6 is, in general, no longer true if we allow
cycles and negative universal weight coefficientsλi .

Example 6.Let λ = (1,−1,0,0,0) and consider Univ-SPP(|E|) in the directed graph
G = (V,E) of Figure 7.

s= 1 2

34

t = 5
4

3

0

2

1

Fig. 7 Directed graphG

SinceP = (s,2, t) (bold) is the only feasible(s, t)-path inG it is optimal with ex-
tended universal costfλ (P′) = 4. In the expanded graphG′ which is depicted in Fig-
ure 8 the pathP′ (bold) given by the nodesP′ = (s(0),2(1),3(2),4(3),2(4), t(5)) is
optimal with fλ (P′)= 1. This path corresponds, however, to walkW =(s,2,3,4,2, t)
in digraphG.

5 Integer Programming Formulations

It is well-known that the classical sum shortest path problem can be solved as the
following linear program if there are no negative dicycles in graphG:
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t(0)

4(0)

3(0)

2(0)

s(0)

t(1)

4(1)

3(1)

2(1)

s(1)
4

t(2)

4(2)

3(2)

2(2)

s(2)

3

0

t(3)

4(3)

3(3)

2(3)

s(3)

2

0
t(4)

4(4)

3(4)

2(4)

s(4)

1

0
t(5)

4(5)

3(5)

2(5)

s(5)

0

0

Fig. 8 Expanded graphG′

min ∑
(i, j)∈E

ci j xi j

s.t. ∑
j∈δ+(i)

xi j − ∑
j∈δ−(i)

x ji =







1 if i = s

−1 if i = t

0 if i 6= s, t

(4)

xi j ≥ 0 ∀(i, j) ∈ E.

Since the coefficient matrix induced by the flow conservationconstraints (4) is to-
tally unimodular, an integer optimal solutionx∗ ∈ {0,1}m is found by choosing an
optimal basic solution. This corresponds to a pathP∗ ∈ Pst with (i, j) ∈ P∗ if and
only if x∗i j = 1.

Unlike sum-SPP, Univ-SPP(|E|) cannot be solved as linear program since the addi-
tional sorting problem makes the objective function non-linear. We next present a
quadratic integer programming formulation:

min
m

∑
k=1

λk ∑
(i, j)∈E

sk,i j ci j xi j

s.t.
m

∑
k=1

sk,i j = 1 ∀(i, j) ∈ E

∑
(i, j)∈E

sk,i j = 1 ∀k = 1, . . . ,m

∑
(i, j)∈E

sk,i j ci j xi j ≥ ∑
(i, j)∈E

sk+1,i j ci j xi j ∀k = 1, . . . ,m−1 (5)

∑
j∈δ+(i)

xi j − ∑
j∈δ−(i)

x ji =







1 if i = s

−1 if i = t

0 if i 6= s, t

(6)
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∑
i∈S

∑
j∈S

xi j ≤ |S|−1 ∀S⊆V, |S| ≥ 2 (7)

sk,i j ∈ {0,1} ∀k = 1, . . . ,m, (i, j) ∈ E

xi j ∈ {0,1} ∀(i, j) ∈ E. (8)

The flow conservation constraints (6) together with the subtour elimination con-
straints (7) and the binary constraints (8) ensure that a feasible solutionx is indeed a
path froms to t. The sorting variablessk,i j , wheresk,i j = 1 if edge(i, j) is at position
k of the corresponding extended sorted cost vector andsk,i j = 0 else, guarantee that
the edge costs along any path are sorted correctly (5). Standard linearization tech-
niques can be used to obtain various equivalent mixed integer linear programs simi-
lar to those for discrete ordered median location problems,see Nickel and Puerto [6].

Another mixed integer linear programming formulation for Univ-SPP(|E|) is based
on Ogryczak and Tamir [7]. Using a partial sum reformulationof the universal ob-
jective function andλm+1 = 0 it is only valid for non-increasing and non-negative
universal weight coefficientsλi . Details can be found in Turner [9].

min
m

∑
k=1

(λk−λk+1)

(

ktk + ∑
(i, j)∈E

di j ,k

)

s.t. di j ,k ≥ ci j xi j − tk ∀(i, j) ∈ E, k = 1, . . . ,m

∑
j∈δ+(i)

xi j − ∑
j∈δ−(i)

x ji =







1 if i = s

−1 if i = t

0 if i 6= s, t

∑
i∈S

∑
j∈S

xi j ≤ |S|−1 ∀S⊆V, |S| ≥ 2 (9)

di j ,k ≥ 0 ∀(i, j) ∈ E, k = 1, . . . ,m

tk ∈ R ∀k = 1, . . . ,m

xi j ∈ {0,1} ∀(i, j) ∈ E.

In both programs the subtour elimination constraints (7) and (9) can be deleted if
the given digraph is acyclic orλi ≥ 0 for all i = 1, . . . ,m (compare Theorem 6 in
Section 4). Both formulations can be adapted to describe thesubproblems Univ-
SPP(l ) of the sequential definition Univ-SPP(1, . . . ,n−1).

6 Conclusions

We have defined a universal objective function by sorting theedge costs along any
path in non-increasing order and assigning, in sequence, universal weight coeffi-
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cients to these ordered cost values. In this way we can model many types of shortest
path problems.
While the classical sum shortest path problem is a special case of a combinatorial
optimization problem, we have seen that its universal version, Univ-SPP, is not a
special case of the corresponding universal combinatorialoptimization problem,
Univ-COP, in which we have assumed a fixed cardinality for allfeasible solutions.
For the universal shortest path problem we have, therefore,proposed two alternative
formulations which are compatible with the definition of Univ-COP.
The first one, Univ-SPP(1, . . . ,n− 1), is based on solving a sequence of cardinal-
ity constrained subproblems Univ-SPP(l ) with respect to universal weight vectors
λ l ∈ Rl , l = 1, . . . ,n− 1. Compared with the second approach, Univ-SPP(|E|), in
which sorted cost vectors (and paths) have been extended to cardinality m, the
sequential definition seems to be more flexible with respect to modeling possi-
bilities, but also more complex due to the additional cardinality constraints in
the subproblems Univ-SPP(l ). Cardinality-sensitive objective functions usingith-
smallest edge costs cannot be formulated by Univ-SPP(|E|) since positioni cannot
be fixed in the extended sorted cost vector. An example for such a problem with
cardinality-sensitive objective is the balanced SPP whichcan only be modeled by
Univ-SPP(1, . . . ,n−1) settingλ 1

1 = 0 or λ 1
1 = ∞ in Univ-SPP(1),λ l

1 = 1, λ l
l = −1

andλ l
i = 0 else for Univ-SPP(l ) with l 6= 1.

Two IP formulations for Univ-SPP were suggested in Section 5. The polyhedral
structure of the resulting feasibility polyhedra and the consequences of lineariza-
tion strategies are under research, see Turner [9]. In this thesis, universal shortest
path problems for special choices of universal weightsλ such as(k+ l)-max SPP,
(k, l)-balanced SPP or(k, l)-trimmed-mean SPP will be discussed in detail. These
problems can be solved in polynomial time applying results on k-max andk-sum
optimization for general combinatorial problems. Furthergeneralizations of the bal-
anced objective function can be found in Turner et al. [10].
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