Universal Shortest Paths

Lara Turner and Horst W. Hamacher

Abstract We introduce the universal shortest path problem (Univ)Sittch gen-
eralizes both - classical and new - shortest path probletastirgy with the defini-
tion of the even more general universal combinatorial ozétion problem (Univ-
COP), we show that a variety of objective functions for gaheombinatorial prob-
lems can be modeled if all feasible solutions have the samtingdity. Since this
assumption is, in general, not satisfied when consideringte$t paths, we give
two alternative definitions for Univ-SPP, one based on a eecgl of cardinality
contrained subproblems, the other using an auxiliary coasbn to establish uni-
form length for all paths between source and sink. Both @étires are shown to
be (strongly) NP-hard and they can be formulated as quadragiger or mixed in-
teger linear programs. On graphs with specific assumptiorexige costs and path
lengths, the second version of Univ-SPP can be solved as@&sum shortest path
problem.

Keywords: Combinatorial optimization, shortest path problem, urgaéobjective
function

1 Introduction

The shortest path problem (SPP) is one of the best known madetathematical
optimization with a huge number of publications (see e.gickf14]). One of the
reasons for this is its potential in tackling real-world Iplems, another its usage as
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subproblem in larger optimization problems, but also ireotreas like simulation

or game theory.

In general, one assumes that SPP is the sum-SPP, where patlggven directed
graph are compared with respect to the sum of their costg.i3hane looks for a
pathP such that the surfip c(€) of the edge costs alorigis minimized. Another
well-known SPP is the bottleneck or max-SPP in which we mizénmhe maxi-
mum edge cost maxpc(e) in P. Other versions of shortest path problems include
balanced SPP (minimizes the difference between largesiraatlest edge costh;

max SPP ok-sum SPP (Garfinkel et al. [2]) where the latter two deterraipath in
which thek!M-largest and the sum of thdargest edge costs are as small as possible,
respectively. More exotic SPPs are thkel )-balanced SPP (with minimal difference
betweenk"-largest and'"-smallest edge cost), th&+|)-max SPP (minimizing
the sum ofk!"-largest and'"-largest edge cost) and tfk, |)-trimmed-mean SPP

in which thek largest and smallest edge costs are ignored and the costs of the re-
maining edges are added. These problems are addressedanlstaitin Turner [9].

In the past, several attempts have been made to developngifyeories with the
goal of finding common properties and solution algorithmsaftarge class of SPPs
including sum- and max-SPP. Most notably, this was achibéyetthe class of alge-
braic path problems (see e.g. Zimmermann [13], or, morentgc@lohri [5]) where
the sum or max operation in the objective function is repldmea more general bi-
linear operator and the real numbers are replaced by thesatsrof a semigroup or
semiring.

In this paper, we choose a different approach where the tl@danction is of the
sum type and multiplicative weights are used to model varinatances of shortest
path problems. In Section 2, we first define such a univergaktire function for
general combinatorial problems. Since this definition suasing the same cardi-
nality for all feasible solutions, it cannot be directly dad over to universal path
problems, denoted Univ-SPP. But we use this general definds starting point
for two alternative formulations of Univ-SPP in Sectionsrgia. We analyse the
complexity of the resulting versions and study special sas#hich the problem is
solvable as classical sum-SPP. Integer programming fatiouk are given in Sec-
tion 5. The paper is concluded in Section 6 with a summary ofesults and some
ideas for current and future work.

2 Universal Combinatorial Optimization Problem

We consider the shortest path problem as a special case oftarcatorial optimiza-
tion problem (COP) given by a finite ground €&t {ey, ..., ey} of cardinalitym,

a set of feasible solutions C 2F and a cost functior : E — R assigning costs
c(e) € R to the elements ifE. The most popular objective functions of combina-
torial problems are of the sum and bottleneck type given hys#iy «sc(e) and



Universal Shortest Paths 3

minscr Maxcg c(€e), respectively. These two objectives are special casegohtite
general problem introduced next.

Definition 1. Consider a COP in which all feasible solutioBg F have the same
cardinality|S <m. For anySe F we denote witfe; (S),i=1,...,]§,its ith-largest
cost coefficient, i.ec(;)(S) > ... > ¢(g)(S), and with

C> (S) = (C(l)(S), R C(\S)(S))

its vector of sorted costs Given universal weightd; e R,i =1,...,|S, theuni-
versal combinatorial optimization problem, Univ-COP, is

IS
Iglelllz'] f) (S) = I;/\|C(|) (S) (1)

A feasible solutionS* € F minimizing (1) is auniversal optimal solution with
universal cost f, (S*).

To call such problems universal truly makes sense, sincehbgsing appropriate
universal weights, classical and new objective functicers loe represented by (1).
Objective functions which can be modeled are, for instatieestandard sum or bot-
tleneck objective for whichwe s@t =1 foralli=1,...,|§ orA; =1 andA; =0
otherwise. The balanced objective value gax(e) — minecsc(e) for any solution
Se F is formulated by setting; = 1, )\|3 = —1 andA; = 0 else. Other less-known
objectives ak-max ork-sum objective functiork < |§, are obtained usingx = 1
orA; = ... = A = 1 and the remaining; = 0. Table 1 contains a non-exhaustive
list of objective functions of type (1), showing the powetloé Univ-COP approach
(see also Example 1).

The idea of associating weight coefficientwith the it"-largest cost element of a
feasible solutior§ € F was first introduced by Yager [12] for ordered weighted av-
eraging aggregation operators in multicriteria decisiakimg and later extended to
location problems using the notion of ordered median fomati(see, for instance,
Nickel and Puerto [6]). The concept of universal combinatarptimization prob-
lems was suggested by Kalsch [4] and Hamacher and Turneftig.is related to
another generalization of combinatorial problems calledréte optimization prob-
lems with ordering proposed by Féamdez et al. [1]. In [1, 3] examples of Univ-
COPs can be found which are in their general form solvableolgrpmial time.
An example of such a Univ-COP is the universal spanning treblem (Univ-STP)
for which the greedy algorithm can be shown to find a univesgéimal solution if
Ai>0foralli=1,...,|S. The same is true for the universal matroid base problem,
Univ-MBP.

Example 1We consider the Univ-SPT in the undirected gr&ph- (V,E) of Fig-
ure 1 where the edge labels denote the edge cfstdor all e= |i, j] € E. It can
be shown that the spanning trée= {[1,2],]2,3],[2,4]} computed by the standard
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Table 1 Objective functions modeled by Univ-COP

A eRS fA(9 Objective function name
1,...,1 S c(e) Sum
ecs
(1,0,...,0) masxc(e) Bottleneck/max
ec
(0,...,0,1) minc(e) Min
ecS
k
(1,...,1,0,...,0) Y ¢iH (S k-sum,k < |
SN—— i=1
k
(,...,0,1,0,...,0) Cio (S) k-max,k < |§
N——
k-1
(0,...,0,1,0,...,0,1,0,...,0)  c(y(S) +cy(S) (k+1)-max. k<l <[§
N——
k-1
N—————
-1
IS .
(o,...,0,1,...,1,0,...,0) POIE) (k,1)-trimmed-mean, k,| < |5,
N—— N—— i=k+1 k+1 < |S|
k [ =
K IS .
(1,...,1,0,...,0,1,...,1) YeiyS+ ¥ ¢S (klI)-anti-trimmed-mean,k, | <
——— N——— i=1 i=|9—-1+1 |S7k+| < |S|
k |
(1,0,...,0,-1) maxc(e) — minc(e) Balanced
ecS ecS
(1,0,...,0,—1,0,...,0) maxc(€) — Cyq (S) k-balanced, k k< |§
—— ecS
k—1
(07...7071,07...,077170,...,0) C(k)(s)fc(\S—IJrl)(S) (k,l)—balancedk,l < |S|, k+1 <
k-1 -1

greedy algorithm is universal optimal if all universal wieigoefficientsA; are non-
negative. This is e.g. the case for sum, bottleneck, 2-suma2, or(1,1)-trimmed
mean objective. The corresponding objective functioneslare 6 (sum objective),
3 (bottleneck objective), 5 (2-sum objective), and 2 for fhmax as well as the
(1,1)-trimmed-mean objective function. Note that tfEeés the unique optimal so-
lution for the sum objective while for bottleneck (i, 1)-trimmed-mean objective
function there exist alternative optimal solutions (elg= {[1,3],[2,3],[2,4]} or
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T"={[1,2],[2,3],[3,4]}). The fact that the non-negativity of the universal weights
is essential in the validity argument of the Greedy alganitls shown by the fol-
lowing examples: The greedy solution does not provide aim@btsolution of the
balanced spanning tree problem which is given{f3],[2,4],[3,4]}. The (1,2)-
balanced shortest spanning trees Brand T” = {[1,2],[1,3],[2,4]} with an ob-
jective function value of 0. In both of these examples sontheiuniversal weights
are equal to-1 (see Table 1).

Fig. 1 Undirected grapit

A crucial point in Definition 1 and the validity proofs in [3$, however, that the
cardinality |§ of the feasible solutions is fixed. Obviously, this assuppfis, in
general, not satisfied for ti{g,t)-pathsP in a given digraph. This is e.g. illustrated
by the balanced SPP. In order to make its objective &tax(e) — minecpc(e) a
special case of (1), one would necessarily have toAset 1 in order to repro-
duce the first part maxpc(e) of the objective function. To reproduce the sec-
ond part—minecpc(e) two different universal weight vectors with components
A =—-1, Ay =0 andA; =0, A,y = —1, respectively, would be required to compare
two paths with different number of edgeand!’.

In order to define a universal shortest path problem a modifigdishition of univer-
sality is needed which is based on Definition 1. We propodedridllowing sections
two alternatives of Univ-SPP which can both handle pathsftdrént length.

3 Universal Shortest Path Problem: Sequential Definition

The classic single-source single-sink shortest path proki$ a special type of a
combinatorial optimization problem where the ground segiven by the edges of a
directed grapl = (V, E), the feasible solutions are the paths from sowsrzesink

t and costx(e) € R are assigned to the edgeg E. The set of all(s,t)-paths in

G is denoted byZ; and, by definition, such a pafis a sequence of nodes and
edgesP = (s=ig,€,i1,.--,ii(p)—1,8(p),i1(p) = 1) With & = (ik_1,ik) € E for all
k=1,...,1(P) such that neither nodes nor edges are repeated. The nundunigesf
in pathP is called its length(P) which is at mosh— 1 = |V| — 1. We assume with-
out loss of generality that there are no incoming edgesand no outgoing edges
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fromt in graphG.

The first approach consists in splitting Univ-SPP inte 1 universal subproblems
with fixed cardinality. As for universal combinatorial apiization problems, we
first define the vectors of sorted edge costs.

Definition 2. For any pathP € & of lengthl(P) =1 with | € {1,...,n—1}, the
sorted cost vectorof pathP sorts the costs alorfgin non-increasing order, i.e.

wherec'(i)(P), i=1,...,1,is thei"-largest edge cost in path

Definition 3. Let G = (V,E) be a directed graph with costée) € R for all e E.
For any fixed path lengthe {1,...,n— 1} and any given universal weight vector
Al € R! theuniversal shortest path problem with cardinality I, Univ-SPP(l), is

min_ f,(P):= '_lzl/\i'c'(i)(P).

Pe Pg:1(P)=I

If there exists nds,t)-path of length, we set the optimal objective value of Univ-
SPP()to .

Then, Univ-SPP in its sequential definition can be formuate follows:

Definition 4. If we denote withR* any optimal solution of Univ-SPPy the se-
quential universal shortest path problem Univ-SPP(1....,n— 1), is defined with
respect to a set af — 1 universal weight vectorsA' e R' : 1 €1,...,n—1} as

i £ (PY). 2

e A (RY) )

A pathP* € &5 minimizing (2) is called ainiversal shortest pathwith universal
cost fyi1(P*) wherel =1 (P*).

Choosing universal weight vectodd for any path length € {1,...,n— 1}, clas-
sical sum- and bottleneck SPP are modeled in an obvious wagttingA! = 1
foralli =1,...,1 or A} =1 and}! = 0 otherwise. As indicated in Section 2,
Al =1, =—1and)A! =0 else yields the balanced SPP if we set eithfer= 0 or
)\11 = oo for paths consisting of only one edge. Similarly for objeetiunctions like
k-max ork-sum that require a minimum path lendtk< n— 1 to be well-defined we
can define\| =0 orA! = wforalll <kandi=1,...,l depending on whether paths
with less thark edges are assumed to be feasible or not.

The complexity status of the sequential Univ-SPP is eastgldished, since the
SPP with classical sum-objective and cardinality constiiaia special case of Univ-
SPP(1...,n—1) and is well-known to be NP-hard.
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Theorem 1.Univ-SPP{,...,n— 1) is (strongly) NP-hard.

Note that the sequential approach reduces to solving aesimgversal shortest path
problem without cardinality constraint if all paths frao t have the same length.
This holds, for instance, in layered graphs which are dsedisn Section 4 (see
Definition 7). There we will use this fact to propose a solutigorithm which -
contrast to the result of Theorem 1 - has polynomial time derity.

4 Universal Shortest Paths with Cardinality |E|

For the case of non-negative cosfs) > 0 which we assume throughout this section
we suggest a second definition for Univ-SPP. The main idea enforce for all
paths fromstot a length ofm = |E| wherem is the number of edges in gragh
This is achieved by extending eat)-path in the original graph by artificial edges
of cost 0. Using this approach, universal shortest pathlenad can be defined by
a single universal weight vectdr ¢ R™ instead of a sequence of vectars | €
{1,...,n—1}, as in the first definition given in Section 3. We start by extegdhe
definition of sorted cost vectors.

Definition 5. The extended sorted cost vectoof a pathP € P is given as

wherec (P), i L I(P), is theit"-largest edge cost iR, i.e. cyP)>...>
Ci(p ))(P) >0, andc(>( ):=0foralli=I1(P)+1,...,m

Definition 6. Given a directed grapts = (V,E) with non-negative costs(e) > 0
for all e € E, and a universal weight vectdr € R™, the universal shortest path
problem with cardinality |E| = m, denotedJniv-SPP(E|), is

min f,( Zl)\ iC(i) (3)

PEJt

A pathP* € & for which (3) is minimal is called aextended universal shortest
path with extended universal cost f (P*).

Since the edge cost$e), e € E, are non-negative all artificial costs which are equal
to 0 are ranked after the costs of the edges in patdence, sum-SPP and bottle-
neck SPP are modeled correctly by Univ-SEP Thek-sum SPP of minimizing
the sum of thek largest edge costs in a path is obtained as special case by (3)
settingA; = ... = Ak =1, Akr1 = ... = Ay = 0. This definition assigns paths with
lengthl (P) < k the total sum of their edge costs as objective value, coimgigith

the definition by Punnen and Aneja [8] floisum objectives in general combinatorial
optimization. For thé&-max SPPk < m, which determines a path whok#-largest
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edge costis as small as possible, we chd@se 1 andA; = 0 for alli ## k and obtain
an optimal objective value of 0 if a path with less tHaedges exists.

A comparison of the two formulations for Univ-SPP, Univ-SPP..,n— 1) and
Univ-SPP(E|), will be given in the concluding Section 6 of this paper. e fol-
lowing, we will derive some results on the general Univ-SER(

Lemma 1.If A; > Oforalli =1,...,m, digraph G can without loss of generality be
assumed to have no loops nor parallel edges.

Proof. The non-negativity of the universal weighsimplies that the deletion of
loops and the largest (with respect to atig)) of two parallel edges does not worsen
the objective value of Univ-SPR]). O

The next example shows, however, that the non-negativétyraption in Lemma 1
is necessary in the argumentation for deleting parallebedg

Example 2Let A = (1,—1,0,0) in the following directed grapts = (V,E).

4 6
S e O
1 3

Fig. 2 Directed graplG whose parallel edges cannot be deleted

The extended universal shortest path with respest+o(1,—1,0,0,0) is indicated
in bold. Deleting edgés, 2) with cost 4 would destroy this path.

In contrast to the classical sum-SPP which can be solved limpmial time for
non-negative edge costs, Univ-SHBJ turns out to be NP-hard.

Theorem 2.Univ-SPP(E|) is (strongly) NP-hard.

Proof. SettingA; = —1 for all i = 1,...,m, the longest path problem can be re-
duced to Univ-SPRE|) since for any(s,t)-pathsP andP’ Se.pc(e) > Secp C(€),
i.e. M ¢i(P) > 3Ly ciy(P), ifand only if f (P) < fj (P'). O

Since theék-sum shortest path problem is a special case of Univ-EPRPTheorem 2
generalizes a result of Garfinkel et al. [2] who prove the MiRdhess ok-sum SPP,
albeit for arbitrary costg(e) € R. Whether the NP-hardness of Univ-SHHY is
still valid in acyclic digraphs or under the additional asgion thatA; > 0 for all

i =1,...,mis at this point of time still an open question.

Another important difference compared with sum-SPP is thetoptimality prin-
ciple of dynamic programming which guarantees the coressrof algorithms as
Dijkstra or Bellman-Ford is no longer valid. We see this ie tbllowing example
where a subpath of an extended universal shortest path aptiotal.
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Example 3We consider the directed graph = (V,E) of Figure 3 andA =
(1,0,2,0,0) € R®. Obviously, there are only twgs,t)-pathsP = (s,2,4,t) and
P’ = (s,3,4,1) in graphG. The extended universal costs of these pathsgie) = 4
andf, (P") = 3, respectively, such that pai (bold) is optimal for Univ-SPRE|)
with A = (1,0,2,0,0). However, its subpath from soursgo node 4 has larger ob-
jective function value than the corresponding subpath @ifashed). Consequently,
an extended universal shortest path tree does, in genetalxist.

1 /@)\ 1
7 N
7 N

Fig. 3 Extended universal shortest path with non-optimal subpath

Theorem 2 and Example 3 illustrate that the naive transfaalgdrithmic ideas
from classical sum-SPP to Univ-SRE|) fails. This motivates the search for more
sophisticated methods and the investigation of speciagscaEUniv-SPRE|). We
start with the following obvious observation.

Lemma 2.LetA; > Oforalli =1,...,mand let PP’ € & be two(s,t)-paths with
extended sorted cost vectors satisfyingR) < ¢ (P'), i.e. g;)(P) < ¢;)(P’) for all
i=1,...,m.Then f(P) < f, (P).

Example 4 shows, however, that there may be exponentiallyyrircomparable
extended sorted cost vectors.

Example 4Let G = (V,E) be a directed graph with node 8t {0,...,n}, source
s= 0, sinkt = n, and wheren € 3N. The edges ofs and its costs are given in
Table 4. Here, we assume theat- 0 is sufficiently small.

Table 2 Edges and costs of digragh

Edges Costs

e=(i—3i—2),ie3N,i<n cle)=23—¢
e=(i—3i-1),ie3N,i<n c(e):z:s—g
e=(i—2,i),iedN,;i<n cle)=23+¢
e=(i—1,i),ie3N,i<n c(e)=23+5

We identify blocksB;, i = 1,..., 3, which are the subgraphs &f consisting of the
nodes{3(i—1),3i —2,3i — 1,3i} and the corresponding four connecting edges. The
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Bn
3

2-g 1 2y 23 ¢ i—-2 23¢ 23 ¢ -2 284,

<>< ...... <> ...... >

Fig. 4 DigraphG with exponentially manys,t)-paths
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graphG together with its bIocksn indicated as dashed rectangleisrpd in Fig-
ure 4. In this digraph there are Qifferent (s,t)-paths with extended sorted cost
vectors

)

21

in which the costs of the 2 edges contained in pathare sorted backwards, that
is, starting with the largest cost edge into noden and following the path until the
start nodes = 0 is reached. Two patd P’ € P with P # P’ differ in at least one
blockB;,i € {1,...,5}. We assume without loss of generality that pBthses the
upper branch in blocB; and pathP’ uses the lower branch. Using the cost structure
along the path® € L, it suffices to consider those components of the extended
sorted cost vectors. (P) andcs (P') which belong to bloclB; (see Figure 5).

e — — — — — =

Fig. 5 Block B;

Sincec> (P) = (...,2 +¢€,2 —¢,...) andcs (P)) = (..., 2 + §,2' — £ ...) digraph
G has exponentially mangs, t)-paths with pairwise incomparable extended sorted
cost vectors.

In the special cases which we consider next, one can, howshaw that a shortest
(s,t)-path P* with respect to (modified) sum objective always satistie§P*) <

¢ (P) for all P € Z5. An extended universal shortest path can thus be found in
polynomial time.

Theorem 3.For any positive real numbek € R, and non-negative universal
weightsA; > Oforalli =1,...,m, an extended universal shortest path with respect
to
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a) uniform costs, i.e.(@) =k forallec E, or
b) binary costs, i.e.@) € {0,«} forallec E

can be found by solving the sum-SPP.

Proof. It is sufficient to prove the claim for binary costs. In thiseathe extended
sorted cost vectors will collect all edgesPivith costk in the first components and
all the O’s in the remaining components, i.e.

c-(P)=(k,...,k,0,...,0)

for all P € Z. Hence (3) is minimized by finding a sum shortest path fsimt.
O

Theorem 3 cannot be generalized to more than one non-zeroaloge. The next
results shows that another generalization of Theorem 3ssiple, but only if a -
rather strict - additional assumption holds for the sesdf)-paths inG.

Theorem 4.Letk, k' € R. andA; > Oforalli =1,...,m. If ¢(e) € {k,k’} for all
ec E and all paths R= Z; have the same length, any optimal solution of sum-SPP
is an extended universal shortest path.

Proof. Assuming without loss of generality that> k’, the extended sorted cost
vector of any pathP € L is
c-P)=( k,....,k, «',....,k', 0,...,0)

N—_—— I S

|{ecP:c(e)=k}| |[{ecP:c(e)=k’}| m-I

wherel is the uniform length of thés,t)-paths inG. Sincec-(P) andc- (P') are
comparable with respect to the component-wise orderingffiyrtwo (s,t)-paths
P and P, there exists a patR* € &5 with c>(P*) < c>(P) for all P € . If
¢ (P*) <c>(P), we find asmallest € {1,...,1} with ¢« (P*) = k" < k = ¢(j+(P)
andcj)(P*) < c;)(P) for anyi # i*. In particular, this implies tha§ ecp- c(€) <
SecpC(€), i.e. P* is a shortest path frorato t with respect to sum objective. The
claim follows sincecs (P**) = ¢ (P*) for any other sum shorte§t t)-pathP**. O

To assume equal lenghts for &l t)-paths in Theorem 4 is, however, essential.

Example 5In graphG = (V, E) of Figure 6 withP = (s, 2,t) (dashed) an® = (s;t)
(bold), the extended sorted cost vectorsaréP) = (1,1,0) andcs (P') = (3,0,0).
PathP is a sum shorteds,t)-path, but it is not optimal foA = (0,1,0). Note that
c(P) andc (P') are incomparable, i.e- (P) £ c=(P') andcs (P') £ ¢ (P).

Since Theorem 3 cannot be carried over to more than two diffeedge costs,
we propose for this case a different approach. We first showtbaackle Univ-
SPP(E|) in layered graphs where al§,t)-paths have the same lendtland then
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Fig. 6 Two paths with incomparable extended sorted cost vectors

apply this result to a special layered graph closely relatealgiven graph of arbi-
trary structure. Note however that the result on layereghgas interesting in its
own right, since it can be used as model within network opation (for instance in
the complexity analysis of maximal flow algorithms) and feslrworld applications
like evacuation planning.

Definition 7. A directed graphG = (V,E) with sources and sinkt is alayered
graph if its nodes can be partitioned into s&s= {s},...,V| = {t} calledlayers
and all its edges run between consecutive layers, i.e. i€ nizdn layerVy for some
ke {0,..., -1} ande= (i, j) € E, thenj is a node in laye¥. .

Definition 8. A graph G has monotone (s,t)-costsif c(e;) > ... > c(gp)) or
c(er) < ... <c(g(p)) forall pathsP € Pg.

Theorem 5.1f G is a layered graph with monotor{s, t)-costs, and € R™, Univ-
SPP(E|) can be solved in polynomial time as sum-SPP with respectodifiad
costs.

Proof. We first consider the case of non-increasiag)-costs. Sincé& is a layered
graph, any patl? € & has length and the monotonicity of the cost implies

c-(P) = (c(&),...,c(q),0,...,0)
| m-—I|

and

|
fA(P) = _;/\ic(e,).

Thus, an optimal solution to Univ-SPE() is a shortests,t)-path with respect to

the sum objective with modified costg (e) := Akc(e) for all e= (i, j) € E with

i €VW-1,] €k andk € {1,...,1}. Since the layered graph is acyclic, the latter
problem can be solved in polynomial time.

In the case of non-decreasi(gt)-costs we can use the same arguments as before
by settingc, (€) := A|_k;1¢(e). O

In the next step, we show how the previous result obtainethf@red graphs can
be generalized.

Definition 9. The expanded graphG’ = (V/,E’) is a layered graph obtained from
G = (V,E) by includingm+ 1 copies of each node= V, i.e.
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V'i={i(k):ieV,k=0,....,m},
m copies of each edgg, j) e E
E1:={(i(k),j(k+1)):(i,j) €eE,k=0,....m—1},
andm edges between consecutive node coffiesandt(k+ 1) of the sink node
E; = {(t(k),t(k+1)),k=0,...,m—1}.
The edge set o&' is E’ := E] UE; with costs

cd(i(k),j(k+1)):= Gij
c(t(k),t(k+1)):=0

foralli, jeVandk=0,...,m—1.

Example 6 shows a digrapgh and its expanded gragh. It is a layered, and thus
acyclic, digraph withn(m+ 1) nodes andn(m+ 1) edges, where nodes0) and
t(m) take on the role of source and sink node, respectively. Nwieih specific
instances of graphG, the size of the expanded gra@hcan be reduced consider-
ably by a preprocessing step in which all edges are elimiifaten G (and thus not
copied) which can never occur in a path frerot.

We observe the following relation between path&iandG'.

Lemma 3. Let G be a digraph and let Ge its expanded graph.

a) For any(s,t)-path P in G, there exists a patH Rom 0) to t(m) in graph G
which consists of exactly m edges.

b) For any path Pfrom g0) to t(m) in G/, there exists a walk W, i.e. a non-simple
path in which node and edge repetition is allowed, from s tograph G with at
most m edges.

c) A 1:1-correspondence betweést)-paths in G and(s(0),t(m))-paths in G is
only given if digraph G is acyclic.

Proof. Claim a) follows by includingn— I (P) many edges from the s&t,. Since
copies of nodes and edges may be used more than once in g g@gm(m))-path

P’ the resulting list of nodes and edgesGmay contain cycles such that claim b)
follows only for walks and not for paths i@. If G does not contain cycles, node
and edge repetition cannot occur such that claim c) holds.

By construction, the extended sorted cost vectorgsdf-paths inG ((s(0),t(m))-
paths inG’) and their equivalents i’ (in G) coincide. This motivates to solve
Univ-SPP(E|) in the expanded grap®'. The following lemma relates the extended
universal costs of walks and corresponding paths in dig@&ph

Lemma 4.Let W be an(s;t)-walk in graph G and let P be thés,t)-path obtained
from W by eliminating all cycles. i; > Oforalli =1,...,m, then £ (P) < f,(W).
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Proof. Removing all cycles in walkV, we obtain the (simple) path with |(P) <
[(W) andc (P) < ¢;)(W) for all i = 1,...,m. By the non-negativity of thd; and
Lemma 2, it follows thaff, (P) < f, (W). O

Theorem 6.Univ-SPP(E|) in G and G are equivalent if digraph G is acyclic or
Ai >0foralli =1,...,m. If the costs (@) are, in addition, monotone along,t)-
paths and(s,t)-walks, Univ-SPRE|) can be solved as sum-SPP with respect to
modified costs.

Proof. By Lemma 3, anys,t)-path in digraphG has an equivalent paf from s(0)
tot(m) in G’ with c> (P") = ¢ (P). Conversely, any patR’ from s(0) tot(m) in the
expanded graply’ corresponds to a wal/ from stot in G with at mostm edges
andcs (W) = ¢ (P'). By Lemma 4 this wallkV can be chosen as a path for general
graphs and non-negative universal weights or is alreadyttafpaacyclic graphs.
For monotone costs which are non-increasing the final clallovi's immedidately
from Theorem 5 applied to the layered graph If the costs are non-decreasing,
the same argument is applied to a modified expanded graplevineedge s,
connects copies of the source nodes instead of the sink hydesgess(k), s(k+
1)),k=0,....m—=1. O

But the equivalence result of Theorem 6 is, in general, ngdonrue if we allow
cycles and negative universal weight coefficiehts

Example 6LetA =(1,—1,0,0,0) and consider Univ-SPHE|) in the directed graph
G = (V,E) of Figure 7.
2 :
®k/~%
s=1 2 t=5
SanCarnt

SinceP = (s,2,t) (bold) is the only feasiblés,t)-path inG it is optimal with ex-
tended universal cosj (P') = 4. In the expanded gragh which is depicted in Fig-
ure 8 the patt® (bold) given by the nodeB’ = (s(0),2(1),3(2),4(3),2(4),t(5)) is
optimal with f, (P") = 1. This path corresponds, however, to Wwalk= (s, 2,3,4,2,t)
in digraphG.

Fig. 7 Directed graplG

5 Integer Programming Formulations

It is well-known that the classical sum shortest path probéan be solved as the
following linear program if there are no negative dicyclegraphG:
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Fig. 8 Expanded grapty’

min % Gijx;j
(i,))eE
1 ifi=s
s.t. Z Xij — z Xji=< -1 ifi=t (4)
jed™ (i) jed=(i) 0 ifi £st
xj >0 v(i,j) €E.

Since the coefficient matrix induced by the flow conservationstraints (4) is to-
tally unimodular, an integer optimal solutioth € {0,1}™ is found by choosing an
optimal basic solution. This corresponds to a patre % with (i, j) € P* if and
only if xj = 1.

Unlike sum-SPP, Univ-SPRX|) cannot be solved as linear program since the addi-
tional sorting problem makes the objective function navedir. We next present a
quadratic integer programming formulation:

m
min Ac Yy SijGijXj
K=1  (i,])eE
m
st ) sij=1 V(i j)€E
K=1
> Sij=1 Yk=1,...,m
(i,))eE
SkijCijXij = ; Sk+1,i Gij Xij vk=1,....m=1 (5
(i.))€E (i,eE
1 ifi=s
Xij — Z Xji=4q-1 ifi=t (6)
jeati)  jeam() 0 ifi#st
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5 S <ls -1 VSCV, | > 2 ™)
i€sje

sij € {0,1} vk=1,....m (i,j) €E

xj € {0,1} v(i,j) € E. (8)

The flow conservation constraints (6) together with the cubtlimination con-
straints (7) and the binary constraints (8) ensure thatsilfkesolutionx is indeed a
path fromstot. The sorting variables;;;, wheres,j; = 1 if edge(i, j) is at position

k of the corresponding extended sorted cost vectorsgpd= O else, guarantee that
the edge costs along any path are sorted correctly (5). &tdtidearization tech-
niques can be used to obtain various equivalent mixed intewgar programs simi-
lar to those for discrete ordered median location probleesNickel and Puerto [6].

Another mixed integer linear programming formulation fanil} SPP(E|) is based
on Ogryczak and Tamir [7]. Using a partial sum reformulatidthe universal ob-
jective function and\r,;1 = 0 it is only valid for non-increasing and non-negative
universal weight coefficientd. Details can be found in Turner [9].

min g(/\k*/\k—kl) (ktk+ > dij,k)
(i,

&1 fee
s.t. dijk > GijXij — 1tk V(i,j)eE,k=1,....m
1 ifi=s
Z Xij — z Xjj=¢ -1 ifi=t
&) je&= ) 0 ifigst
gg,;q" <|§-1 VSCV,|§=2 )
dij,kzo v(i,j)eE,k=1,...,m
tkeR Yk=1,....m
xj € {0,1} V(i,j) € E.

In both programs the subtour elimination constraints (9 € can be deleted if
the given digraph is acyclic otj > 0 for alli = 1,...,m (compare Theorem 6 in
Section 4). Both formulations can be adapted to describestbproblems Univ-
SPP() of the sequential definition Univ-SPR(1.,n— 1).

6 Conclusions

We have defined a universal objective function by sortingeithge costs along any
path in non-increasing order and assigning, in sequendegrgal weight coeffi-
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cients to these ordered cost values. In this way we can maaiey types of shortest
path problems.

While the classical sum shortest path problem is a special aba combinatorial
optimization problem, we have seen that its universal versiuniv-SPP, is not a
special case of the corresponding universal combinatopémization problem,
Univ-COP, in which we have assumed a fixed cardinality fofedkible solutions.
For the universal shortest path problem we have, thergfooposed two alternative
formulations which are compatible with the definition of W@ OP.

The first one, Univ-SPP(1..,n— 1), is based on solving a sequence of cardinal-
ity constrained subproblems Univ-SPP{ith respect to universal weight vectors
Al eR' I =1,....n—1. Compared with the second approach, Univ-$EP(in
which sorted cost vectors (and paths) have been extendedrdinality m, the
sequential definition seems to be more flexible with respeanodeling possi-
bilities, but also more complex due to the additional caatlip constraints in
the subproblems Univ-SPIR( Cardinality-sensitive objective functions usiiil-
smallest edge costs cannot be formulated by Univ-§HPgince positiori cannot
be fixed in the extended sorted cost vector. An example fon suproblem with
cardinality-sensitive objective is the balanced SPP whih only be modeled by
Univ-SPP(1...,n— 1) settingA{ = 0 or A} = « in Univ-SPP(1)A] =1, A/ = -1
andA! = 0 else for Univ-SPRY with | # 1.

Two IP formulations for Univ-SPP were suggested in Sectioit®e polyhedral
structure of the resulting feasibility polyhedra and thasenjuences of lineariza-
tion strategies are under research, see Turner [9]. In ltleisig, universal shortest
path problems for special choices of universal weighsuch agk+1)-max SPP,
(k,1)-balanced SPP dik,|)-trimmed-mean SPP will be discussed in detail. These
problems can be solved in polynomial time applying resuttk-anax andk-sum
optimization for general combinatorial problems. Furtheneralizations of the bal-
anced objective function can be found in Turner et al. [10].
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