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Abstract. RNA sequencing based on next-generation sequencing technology is 
useful for analyzing transcriptomes, discovering novel genes and studying 
exon/intron structures. Similar to genome assembly, de novo transcriptome 
assembly does not rely on a reference genome and additional annotated 
information. Most, if not all, existing de novo transcriptome assemblers rely 
heavily on de novo genome assembly techniques without fully utilizing the 
properties of transcriptomes and may result in short contigs because of the splicing 
nature (shared exons) of the genes and the repeats that exist in different genes. 
In this paper, we analyze the properties of the mammalian transcriptome and 
propose an algorithm to reconstruct expressed isoforms without a reference 
genome. We extend the iterative de Bruijn graph approach (IDBA) by using 
pair-end information to solve the problem of long repeats in different genes and 
the problem of branching in the same gene due to alternative splicing. The graph 
will be decomposed into small components, each of which corresponds to a few, if 
not single, genes. The most possible isoforms with sufficient support from the 
pair-end reads will be found heuristically by depth-first search. In practice, our de 
novo transcriptome assembler, T-IDBA, outperforms Abyss (one of the newest de 
novo transcriptome assembler) substantially in terms of sensitivity and precision 
for both simulated and real data. The experimental results also match with our 
theoretical analysis of the performance of T-IDBA, which guarantees most 
isoforms can be reconstructed as long as their coverage exceeds a certain 
threshold. 
Availability: T-IDBA is available at http://www.cs.hku.hk/~alse/idba/ 
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1 Introduction 

RNA sequencing (RNA-Seq) is a recently developed technique to sequence cDNAs 
(complementary DNAs) generated from RNAs using the next-generation sequencing 
technologies (e.g. Illmina Genome Analyzer and Applied Biosystems SOLID). 
RNA-seq is becoming more important in the analysis of transcriptomes and has been 
used successfully in identifying novel genes, refining 5’ and 3’ ends of genes, studying 
gene functions [1] and locating exon/intron boundaries [2, 3]. By aligning the reads 
obtained from RNA-seq to a reference genome, [4] developed a method to discover a 
complete transcriptome for yeast. Furthermore, RNA-seq has been used to determine the 
expression levels of transcripts [5]. [6] studied the complexity of the transcriptome 
reconstruction problem (i.e. the reconstruction of all expressed isoforms and their 
expression levels) and showed that theoretically short reads (both single-end and 
pair-end) cannot guarantee a unique solution even if information of genes, exon 



boundaries and isoforms are all known and given, IsoInfer [7] provides a practical 
solution by formulating the transcriptome reconstruction problem as a convex quadratic 
problem; by determining their abundance ratios (i.e. expression levels) based on the 
annotated information of the reference genome such as exon-intron boundaries and 
TSS-PAS (transcript start sites and polyadenylation sites) pair information; and 
heuristically searching for the best possible isoforms and expression levels. Cufflink [8] 
and Scripture [9] are two other recently published methods using gene and exon-intron 
boundary information generated by TopHat [3] to reconstruct isoforms. Both approaches 
build a graph in which exons are the nodes and two exons are connected if there are 
reads that connect them. Cufflink [8] assigns weights to the edges of the graph and 
models the isoform reconstruction problem as a minimum path cover problem while 
Scripture [9] creates a statistical model to identify significant segments as isoforms. 
 
Similar to the genome assembly problem, the de novo transcriptome assembly problem 
(the problem of reconstructing isoforms without a reference genome and annotated 
information) is also very important. Transcriptome assembly methods that rely on a 
reference genome and additional annotated information may suffer from missing and 
erroneous information of some genes or exons in the database and also cannot detect 
structural variations in the sample. Moreover, the quality of these methods depends 
heavily on the accuracy of the alignment tools [3]. As RNA-seq technology becomes 
more mature, there will be an increasing need to reconstruct unknown mRNAs in the 
sample without any reference genome information. However, there has been little 
progress on the de novo transcriptome assembly problem. Most, if not all, existing 
approaches apply de novo genome assembly techniques (i.e. de Bruijn graph [10-12], 
string graph [13]) directly to solve the de novo transcriptome assembly problem (e.g. 
[14, 15]) without fully utilizing the properties of transcriptomes. The performance of 
these approaches, in particular for the reconstruction of isoforms for the same gene, is 
not satisfactory. There are other approaches (e.g. [16]) that construct isoforms based on 
ESTs (Expressed Sequence Tag); for example, [16] used the de Bruijn graph to 
construct a splicing graph for ESTs. These approaches are usually not scalable and not 
applicable to massive short reads.  
 
Seemingly, transcriptome assembly is an easier problem than genome assembly for 
eukaryotics, such as mouse and human), as there are at most 40~50 thousands of 
transcripts, of length at most a few thousands of nucleotides, while the chromosomes are 
much longer (up to hundreds of millions). The following issues make the de novo 
transcriptome assembly problem different from the genome assembly problem. (1) Due 
to the splicing nature of the genes (for eukaryotes1), the same exon may be used in many 
different isoforms. This implies that, in both the de Bruijn graph and the string graph, 
there exist many branches in the subgraph that corresponds to a particular gene. The 
algorithms designed for de novo genome assembly problem usually stop extending the 
contigs at branches. In order to perform well in de novo transcriptome assembly, one 
has to make a decision as to which edge to traverse at these branches; otherwise, the 
reported contigs will be short and long contigs corresponding to isoforms cannot be 
constructed. (2) Ideally, each subgraph corresponding to a particular gene can be 
isolated as a connected component. However, due to repeats, subgraphs corresponding 
to different genes may merge together and it is difficult to identify correct paths that 
correspond to isoforms of a gene in the graph. This also represents a major difference 

                                                            
1 Without splicing, the problem becomes a lot easier. In this paper, we focus on the transcriptome 

assembly problem for eukaryotes such as mouse and human for which splicing occurs in the 
majority of the genes. 



between solving the de novo transcriptome assembly problem and the problem with a 
reference genome, because with a reference genome, we can focus on one gene at a time 
and reconstruct all its isoforms based on the alignment. (3) Isoforms may have different 
expression levels and it is difficult to identify low-expressed isoforms as the majority of 
the reads may come from those with relatively higher expression levels. Note that the 
uneven expression levels are quite different from uneven coverage in genome assembly 
because the reads from these ‘weak’ isoforms can have their exons (k-mers) well 
covered by other isoforms.  
 
In this paper, we tackle the de novo transcriptome assembly problem. To resolve 
problems arising from repeats in different genes (such as merged subgraphs of different 
genes and more branches by shared exons), we analyzed the properties of mammalian 
transcriptomes and observed that not too many genes (less than 1.4%) contain repeat 
patterns of length greater than 90 bp. This implies that if we can construct a de Bruijn 
graph using substrings of length 90 in the reads, subgraphs that correspond to different 
genes are more likely to be isolated. However, the current next-generation sequence 
technology may not produce such long reads and, even if the technology is available, 
constructing such a de Bruijn graph directly using such long substrings may suffer from 
the gap problem. To resolve this problem (Section 2.1), we first build an accumulated de 
Bruijn graph [17] based on single-end reads up to say 50bp (for reads of length 75bp) 
which can resolve the gap and repeats problem up to 50bp, and then, extend to 90bp 
based on pair-end reads. The graph will decompose into many connected components, 
most of which contain only a single or a few mRNAs. Finally, the branching problem 
introduced by the shared exons is resolved by a heuristic path finding algorithm (also 
based on pair-end information of reads) to generate all possible isoforms and the most 
possible will be output according to heuristic depth-first search (Section 2.2). 
 
We still cannot reconstruct the isoforms with low expression levels (i.e. mRNAs with 
low coverage of reads). However, based on theoretical analysis (Section 2.3), we can 
guarantee that most mRNAs can be reconstructed by our T-IDBA software as long as 
their coverage exceeds a certain threshold. We have implemented T-IDBA and 
evaluated its performance on both simulated and real data which match well with our 
theoretical analysis. The results show that T-IDBA outperforms other de novo 
transcriptome assembly approaches substantially. 

2   Method 

Different from genome assembly whose input reads are sampled from a species genome, 
the input reads of mammalian transcriptome assembly are sampled from the (expressed) 
mRNAs of a mammal. As the total length of genes is much shorter than the genome, at 
first glance, mammalian transcriptome assembly problem seems easier than the genome 
assembly problem. However, because of alternative splicing, some long patterns 
representing exons may occur in multiple mRNAs (isoforms) from the same gene. Thus, 
the de Bruijn graph (i.e. the graph with each vertex representing a k-mer and an edge 
from u to v if u and v adjacently occur in a read) has more branches when constructed 
for the mammalian transcriptome assembly problem than those for the genome assembly 
problem. Therefore, traditional de novo genome assemblers [11] would not work well 
for the mammalian transcriptome assembly problem as they would usually stop at 
branches resulting in very short contigs which represent only part of the exons instead of 
the whole isoform. 



 

Besides, many de novo genomic assemblers [10, 11] remove both ends of a contig to 
increase the accuracy. As the mRNAs are usually relatively short, e.g. 500~5000nt, the 
lengths of contigs decrease significantly. 
 
In order to reconstruct the isoforms of different genes, we developed T-IDBA which 
first divides the de Bruijn graph into many connected components, most of which 
represent isoforms from a single gene. Then T-IDBA determines each isoform from 
each component using pair-end information.  

2.1   Constructing Connected Components 

We observe that, although the repeat patterns in the whole genome can be very long, the 
number of genes that contain the same long repeated patterns is actually quite few. 
Table 1 shows the number of genes of mouse2 having repeated patterns of length at 
least 30. In particular, there are only 367 genes, out of 16,491 genes, containing repeated 
patterns of length at least 90bp. If we can construct a de Brujin graph with large k, most 
connected components should contain isoforms from single genes.  
 
We have also built de Bruijn graphs of the reference mRNA of the mouse (UCSC: mm9, 
NCBI build 37) for different values of k. Figure 1 shows the number of connected 
components. The number of connected components increases when k increases and 
there are 20,457 connected components for the de Bruijn graph with k = 90. As there are 
46,104 mRNAs in the mouse database, each component contains on average 2 mRNAs. 
Table 2 shows the distribution of the numbers of mRNAs in components. About 91% of 
mRNAs are in components containing no more than 10 mRNAs, with the majority 
containing only one mRNA. 
 

                                                            
2 Data obtained from EMBL-EBI (http://www.ebi.ac.uk/astd/main.html).  

Figure 1. The number of components in de Bruijn graph with different k value. 

≥ k 30 40 50 60 70 80 90 100 110 120 
# of genes 5384 3528 2005 996 620 448 367 294 247 233 

Table 1. The number of genes in mouse containing a repeated pattern with length ≥ k as some other 
genes. 



The current next-generation sequencing technology usually only produces reads of 
length about 753. Thus, it is impossible to construct a de Bruijn graph with k = 90 from 
single-end reads directly. Even if the reads were long enough, there would be a lot of 
gaps in the graph when constructed directly. In order to solve this problem, at the first 
step, T-IDBA applies the IDBA algorithm [17] to construct a de Bruijn graph with k = 
kmod < l, where l is the length of the input read. At the second step, T-IDBA aligns 
pair-end reads (by exact match) to the graph for confident connection between nodes. 
Each connection of nodes is validated by finding a unique path in the graph connecting 
the pair of nodes with length matching the insert distance of the pair-end reads (within 
specified error). Note that, the connection between two nodes will be discarded if the 
number of paths between them is zero or more than one. Although this problem is 
NP-hard, since there are only a few loops in the graph when kmod = 50, the unique path 
can be found in practice. Table 3 shows the number of mRNAs with length-k repeats. As 
we can see, less than 5% (1,922 out of 46,104) of mRNAs contain loops (length-k 
repeats) in the graph. All the unique paths for validation are recorded for resolving 
branches and treated as extra long reads for IDBA to construct de Bruijn graph with kmax 
≥ k ≥ l.  
 
Note that IDBA needs to be tuned specifically for transcriptome assembly. Tips removal 
in de Bruijn graph is performed using very short length to avoid removing too many 
k-mers, since transcripts are usually very short. In addition, a bigger threshold m is used 
for filtering those incorrect k-mers due to sequencing errors. Since this may filter out 
some low-coverage k-mers, it is unlikely that we can reconstructed mRNAs with low 

                                                            
3 Although some genome centers can produce longer reads, the majority of them are still working 

with reads of length 75 or shorter. 

Algorithm 1. T-IDBA algorithm 

1. Apply IDBA on input reads from k = kmin to kmod to get a de Bruijn graph G. 
2. Align pair-end reads to G and find connections C(x, y) between nodes with support 

of at least α pair-end reads. C = { (x,y) | there are at least α pairs of reads 
connecting x and y} (The default value of α is 5.) 

3. For each connection C(x, y) if there exists a unique path p connecting x and y 
which is consistent with the insert distance, then treat this path as a long read for 
the next step. P = {p | p is the unique path in G connecting (x, y) in C} 

4. Apply IDBA on input reads and P with k = kmod to kmax to get a de Bruijn graph G’. 
5. For each component in G’, find paths with highest support from pair-end reads. 

k 30 40 50 60 70 80 90 100 110 120 
# of mRNAs 5339 3336 1922 1234 819 588 472 369 321 262 

Table 3. The number of mRNAs with length-k repeats. 

# of mRNAs 1 2 3 4 5 6 7 8 9 10 >10 
# of components 10113 4684 2483 1380 748 434 249 117 80 48 121 

Table 2. The distribution of mRNAs in components 



converage (i.e. low expression level) and only those well-expressed mRNAs are 
considered. 

2.2   Discovering Isoforms in Connected Components 

For each connected component in the de Bruijn graph with k = kmax, T-IDBA discovers 
those paths starting from a vertex with zero in-degree to a vertex with zero out-degree 
with the highest support from pair-end reads. A path is supported by a pair-end reads if 
the pair-end reads can be aligned (by exact match) to the path with the distance between 
the aligned positions matching the insert distance of the pair-end reads (with up to 10% 
error). T-IDBA performs depth-first search from a vertex with zero in-degree to a vertex 
with zero out-degree in decreasing order of support of the branches. In practice, instead 
of performing a complete depth-first search, T-IDBA reports at most 3 potential 
isoforms for each zero in-degree node in each connected component (note that 3 is a 
parameter set to be set by the user). 

2.3 Expected Sensitivity of T-IDBA  

Given a length-n mRNA R with t length-w exons, i.e. n = tw. If the coverage of pair-end 
length-l reads on R is c and the error rate of each nucleotide in a read is e, we can 
evaluate in the following the probability that R can be reconstrcuted by T-IDBA as one 
contig. Thus, we can conclude that most mRNAs can be reconstructed by T-IDBA with 
high probability as long as the coverage of the mRNA exceeds a certain threshold. 
 
In order to reconstrcut R, all kmin-mers of R must exist in the de Bruijn graph when k = 
kmin, i.e. every kmin-mer must be sampled at least m times with no error. Since there are s 
= cn/(2l) pair of reads sampled from R and the probability that a particular kmin-mer 
contains in a pair of read is 2(l – kmin + 1)/(n – l + 1), the probability that a kmin-mer of R 
is sampled j times is 
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If R exists in the de Bruijn graph when k = kmod, R exists in a connected component if 
and only if for each pair of adjacent exons, there is no branch (with probability 1 – pb) or 
the branches can be resolved by pair-end reads. Similar to (1), the probability that α 
pair-end reads connecting two adjacent exons are sampled is 
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And the probability that two kmod-mers, one from each one of pair-end reads, are 
sampled correctly is 21)1( mod
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By multiplying the two probabilities given in (1) and (2), we can calculate the sensitivity 
of finding an mRNA with t length-m exons and coverage c. For example, given a 
length-2500 mRNA with 5 length-500 exons and 30X coverage, if the error rate is 1% 
and the threshold m = 4, α = 5 the mRNA can be reconstucted with probability 0.69. 

3   Experimental Results 

3.1   Simulated data 

We test our transcriptome assembler T-IDBA on mouse genes. The reference mRNA of 
all known mouse genes from UCSC (mm9, NCBI build 37) are used to generate the 
simulated sequencing reads. There are 26,989 genes and 49,409 isoforms in this dataset. 
About 60% of these genes have only one isoform and 0.2% of these genes have more 
than 10 isoforms. For the simulation, we first randomly generate the expression level for 
each isoform and sequencing reads are then sampled uniformly in each mRNA 
according to expression level. We consider the following three different distributions of 
expression level to show the performance of T-IDBA without expression level and with 
the last two distributions to capture the property of real data [18, 19].  
(1) Equal: the expression level of each mRNA is set to 1. 
(2) Uniform: the expression level of each mRNA is generated according to a uniform 

distribution in [0,1]. 
(3) Log Normal: a number r is generated according to a normal distribution N(0, 1) 

and the expression level of each mRNA is set to er. 
 
The sequencing reads are sampled with read length = 75, error rate = 1%, insert distance 
= 250. Based on expression levels, the number of reads of each mRNA is calculated by 
setting the total number of reads to 78M (about 50x depth on average).  
 
The sensitivity and precision of T-IDBA and Abyss [11] are compared for the three 
simulated datasets of different distributions. Since only those isoforms above a certain 
expression level can be reconstructed from the reads, only the mRNAs with sequencing 
depths larger than 30x are considered for sensitivity evaluation.  
 
For T-IDBA, we evaluate the performances of the output at three stages of T-IDBA to 
show the effect of each stages.  
I. Single-end stage: contigs of the graph G at k = kmod (Step 1 of Algorithm 1, without 

using pair-end information). 
II. Pair-end stage: contigs of the graph G’ at k = kmax (Step 4 of Algorithm 1, using 

pair-end information to extend the de Bruijn graph). 
III. Full stage: final results from T-IDBA. 
 



An isoform is said to be found if a contig can be aligned to the isoform with similarity 
exceeding a threshold. We compare sensitivity and precision under different levels of 
similarity. Similarly, a contig is considered as correct if it can be globally aligned to 
some part of a reference mRNA with the given similarity. 

Figure 4. Experimental results of log normal distribution dataset

Figure 3. Experimental results of uniform distribution dataset

Figure 2. Experimental results of equal distribution dataset



Note that the total number of correctly reconstructed mRNAs may not be the same as 
the total number of correct contigs, because an mRNAs may be separated into more than 
one contigs in the graph due to the gap or repeat problem. In this case, the contigs might 
be correct, while the corresponding mRNA is not considered as reconstructed. 

For T-IDBA, kmin, kmod, kmax are set to 25, 50, 90 repectively, while the value of k is set to 
50 for Abyss. Figures 2, 3 and 4 show sensitivity and precision under different similarity 
settings. In all cases, the sensitivities of all algorithms drop when the similarity 
threshold increases, because higher similarity requires the algorithms to reconstruct a 
larger portion of the transcripts. Using traditional de novo assembly method, the repeats 
in different isoforms of the same gene are very difficult to resolve. Even with pair-end 
information, only a small portion of the isoforms can be found correctly. The reason is 
that if two contigs are supported by many pairs of reads, they are usually merged to 
form a large contig by the genome assembler. But in the case of transcriptome assembly, 
it is insufficient to merge them together directly, because two contigs can be connected 
in more than one way.  
 
In Figure 2, T-IDBA has the highest sensitivity, especially when the similarity is more 
than 80%. For 95% similarity, only 0.43% and 1.43% mRNAs can be found in the 
single-end and pair-end versions of Abyss, while the 3 stages of T-IDBA (single-end, 
pair-end and full version) have sensitivity values of 18.54%, 24.08% and 72.10% 
respectively, which demonstrates the effectiveness of each stage of T-IDBA. Note that 
there should be 10113 components in the error-free de Bruijn graph with k = 90. Using 
pair-end information to increase the k value to 90, T-IDBA can find 11100 components 
from simulated reads, which is more than expected number of components because of 
the gap problem which breaks some components into more than one component. Path 
finding stage can further reconstruct isoforms from the same gene and improves the 
sensitivity to 72.10% with 33241 out 46409 mRNAs reconstructed from scratch. Figures 
3 and 4 show a similar trends for different distribution assumptions. There are 32130 
and 23123 expressed isoforms in uniform and log normal distribution data set. T-IDBA 
can reconstruct 74.47% and 75.05% of them for 95% similarity respectively, while those 
values of Abyss are 1.78% and 1.89 % respectively. 
 
The precision performance of the algorithms on the three datasets have similar trend 
(Figures 2, 3 and 4). The single-end version of Abyss and the single-end and pair-end 
stages for T-IDBA all have nearly 99% precision as all contigs are correct but short. The 
pair-end Abyss and T-IDBA introduce a small number of errors by connecting incorrect 
contigs together. After applying path finding algorithm at the final stage, the precision 
of T-IDBA further drops to about 83%, because of some wrong combinations of contigs. 
When compared to IsoInfer [7], which makes use of a reference genome and additional 
annotated information, the performance of the full stage of T-IDBA is similar in terms 
of sensitivity and precision even without a reference genome. (IsoInfer’s sensitivity and 
precision are around 77.4% and 81.3%, respectively for simulated log normal 
distribution data on the mouse.) 

3.2   Real data 

The RNA sequencing reads (152 millions 76-base pair-end reads )of embryonic stem 
cells in [9] are used to evaluate our assembly algorithm. We applied our assembler and 
Abyss on this dataset using the same parameters as for the simulated data. Since only 
mRNAs with coverage depth more than 30 can be reconstructed, we aligned the reads 
using BLAT [20] to the mRNA reference database and found that there are 2,835 



mRNAs4 with coverage higher than 30 and at least 80% of the region reconstructed by 
more than 4 reads. 
For real data, the performance of both T-IDBA and Abyss drops (Figure 5). It may be 
caused by the noise which is not well understood (e.g. from intron regions of the gene) 
or the log normal distribution of reads which may not be able to capture the real 
property of the transcriptome data. In all cases, T-IDBA outperforms Abyss as more 
isoforms can be reconstructed by T-IDBA. When similarity is set to 80%, the sensitivity 
and precision of T-IDBA are 46.7% and 79.7%, compared with only 8.6% and 47.9%, 
respectively, for Abyss.  
 
There might be another explanation for the poorer performance for real data. Some parts 
of an exon are not reconstructed by enough reads thus the corresponding mRNA will be 
reconstructed by more than one contig. The non-uniform distribution of reads within one 
mRNA will also cause problems in T-IDBA as shown in Figure 6. Some parts of the 
mRNAs have very low coverage. It is unlikely that we can reconstruct these mRNAs 
using only one contig. If two contigs are allowed to cover one mRNA, the sensitivity of 
T-IDBA and Abyss can be increased to 69% and 19%, respectively, and this matches 
with our mathematical analysis as given in Section 2.3. Compared with Scripture [9], 

                                                            
4 In [9], they showed that 15,352 known genes are found and 13,362 of them are significant 

expressed. The difference between these figures and ours is because they assume that a gene is 
found as long as there are enough reads covering the junctions (exon boundaries) of the gene 
instead of requiring the whole mRNA to be covered with enough coverage while in our case, 
we want to recover the whole mRNA sequence, thus our coverage requirement is higher. 

Figure 6. The coverage distribution of mRNA uc007awt.t in real data.

Figure 5. Experimental results of real data.



which uses reference genomes and can reconstruct 78% of the expressed isoforms, the 
performance of T-IDBA looks reasonably good. 

4   Conclusions 

We observed that the de Bruijn graph of transcriptomes can be decomposed into small 
connected components if k is large enough. Our T-IDBA algorithm, which captures the 
merits of all k values in between kmin and kmax with pair-end information, can 
decomposite the graph generated from the transcriptome sequencing reads into many 
connected components, each of which contains very few mRNAs. Since most of the 
isoforms from the different genes will fall into different components, the isoform 
reconstruction becomes easier for each component. A heuristic-based isoform finding 
algorithm, based on maximizing the number of pair-end support, is used to generate the 
most possible isoforms. The performance of T-IDBA outperforms Abyss for both 
simulated and real data and matched with theoretical analysis. However, the 
performance of T-IDBA for real data is not as good as that for simulated data (although 
it is still a lot better than that of Abyss) due to the non-uniform read distribution in an 
mRNA. Further analysis on real data should be performed to build better model of the 
error and expression level distribution so as to have a more robust and accurate de novo 
transcriptome assembler.  
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