Skip to main content

Computing Fragmentation Trees from Metabolite Multiple Mass Spectrometry Data

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

Since metabolites cannot be predicted from the genome sequence, high-throughput de-novo identification of small molecules is highly sought. Mass spectrometry (MS) in combination with a fragmentation technique is commonly used for this task. Unfortunately, automated analysis of such data is in its infancy. Recently, fragmentation trees have been proposed as an analysis tool for such data. Additional fragmentation steps (MSn) reveal more information about the molecule.

We propose to use MSn data for the computation of fragmentation trees, and present the Colorful Subtree Closure problem to formalize this task: There, we search for a colorful subtree inside a vertex-colored graph, such that the weight of the transitive closure of the subtree is maximal. We give several negative results regarding the tractability and approximability of this and related problems. We then present an exact dynamic programming algorithm, which is parameterized by the number of colors in the graph and is swift in practice. Evaluation of our method on a dataset of 45 reference compounds showed that the quality of constructed fragmentation trees is improved by using MSn instead of MS2 measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandeira, N., Olsen, J.V., Mann, J.V., Mann, M., Pevzner, P.A.: Multispectra peptide sequencing and its applications to multistage mass spectrometry. Bioinformatics 24(13), i416–i423 (2008)

    Article  Google Scholar 

  3. Berman, P., Karpinski, M., Scott, A.D.: Computational complexity of some restricted instances of 3-SAT. Discrete Appl. Math. 155, 649–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Proc. of ACM Symposium on Theory of Computing (STOC 2007), pp. 67–74. ACM Press, New York (2007)

    Google Scholar 

  5. Böcker, S., Lipták, Z.: A fast and simple algorithm for the Money Changing Problem. Algorithmica 48(4), 413–432 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24, 149–155 (2008); Proc. of European Conference on Computational Biology (ECCB 2008)

    Article  Google Scholar 

  7. Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertexcolored graph pattern matching. J. Discrete Algorithms (2010) (in press), doi:10.1016/j.jda, 09.002

    Google Scholar 

  8. Fellows, M., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Fernie, A.R., Trethewey, R.N., Krotzky, A.J., Willmitzer, L.: Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5(9), 763–769 (2004)

    Article  Google Scholar 

  10. Heinonen, M., Rantanen, A., Mielikäinen, T., Kokkonen, J., Kiuru, J., Ketola, R.A., Rousu, J.: FiD: a software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Commun. Mass Spectrom. 22(19), 3043–3052 (2008)

    Article  Google Scholar 

  11. Hill, D.W., Kertesz, T.M., Fontaine, D., Friedman, R., Grant, D.F.: Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra. Anal. Chem. 80(14), 5574–5582 (2008)

    Article  Google Scholar 

  12. McLafferty, F.W., Tureček, F.: Interpretation of Mass Spectra, 4th edn. University Science Books, Mill valley (1993)

    Google Scholar 

  13. Nuutila, E.: An efficient transitive closure algorithm for cyclic digraphs. Inform. Process. Lett. 52(4), 207–213 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Oberacher, H., Pavlic, M., Libiseller, K., Schubert, B., Sulyok, M., Schuhmacher, R., Csaszar, E., Köfeler, H.C.: On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. results of an Austrian multicenter study. J. Mass Spectrom. 44(4), 485–493 (2009)

    Article  Google Scholar 

  15. Oberacher, H., Pavlic, M., Libiseller, K., Schubert, B., Sulyok, M., Schuhmacher, R., Csaszar, E., Köfeler, H.C.: On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library: 2. optimization and characterization of the search algorithm. J. Mass Spectrom. 44(4), 494–502 (2009)

    Article  Google Scholar 

  16. Pelander, A., Tyrkkö, E., Ojanperä, I.: In silico methods for predicting metabolism and mass fragmentation applied to quetiapine in liquid chromatography/time-of-ight mass spectrometry urine drug screening. Rapid Commun. Mass Spectrom. 23(4), 506–514 (2009)

    Article  Google Scholar 

  17. Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böocker, S.: Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. (December 2010) (in press), doi:10.1021/ac101825k

    Google Scholar 

  18. Sheldon, M.T., Mistrik, R., Croley, T.R.: Determination of ion structures in structurally related compounds using precursor ion fingerprinting. J. Am. Soc. Mass Spectrom. 20(3), 370–376 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scheubert, K., Hufsky, F., Rasche, F., Böcker, S. (2011). Computing Fragmentation Trees from Metabolite Multiple Mass Spectrometry Data. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics