Skip to main content

Optimally Orienting Physical Networks

  • Conference paper
Book cover Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

In a network orientation problem one is given a mixed graph, consisting of directed and undirected edges, and a set of source-target vertex pairs. The goal is to orient the undirected edges so that a maximum number of pairs admit a directed path from the source to the target. This problem is NP-complete and no approximation algorithms are known for it. It arises in the context of analyzing physical networks of protein-protein and protein-dna interactions. While the latter are naturally directed from a transcription factor to a gene, the direction of signal flow in protein-protein interactions is often unknown or cannot be measured en masse. One then tries to infer this information by using causality data on pairs of genes such that the perturbation of one gene changes the expression level of the other gene. Here we provide a first polynomial-size ilp formulation for this problem, which can be efficiently solved on current networks. We apply our algorithm to orient protein-protein interactions in yeast and measure our performance using edges with known orientations. We find that our algorithm achieves high accuracy and coverage in the orientation, outperforming simplified algorithmic variants that do not use information on edge directions. The obtained orientations can lead to better understanding of the structure and function of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, E.M., Hassin, R.: A note on orientations of mixed graphs. Discrete Applied Mathematics 116(3), 271–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  3. Boesch, F., Tindell, R.: Robbins’s theorem for mixed multigraphs. The American Mathematical Monthly 87(9), 716–719 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Breitkreutz, A., et al.: A global protein kinase and phosphatase interaction network in yeast. Science 328(5981), 1043–1046 (2010)

    Article  Google Scholar 

  5. Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly connected orientations of mixed multigraphs. Networks 15(4), 477–484 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fields, S., Song, O.-K.: A novel genetic system to detect protein-protein interactions. Nature 340(6230), 245–246 (1989)

    Article  Google Scholar 

  7. Gamzu, I., Segev, D., Sharan, R.: Improved orientations of physical networks. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 215–225. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Gavin, A., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)

    Article  Google Scholar 

  9. Gitter, A., Klein-Seetharaman, J., Gupta, A., Bar-Joseph, Z.: Discovering pathways by orienting edges in protein interaction networks. Nucleic Acids Research (2010), doi:10.1093/nar/gkq1207

    Google Scholar 

  10. Lee, T.I., et al.: Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)

    Article  Google Scholar 

  11. MacIsaac, K., et al.: An improved map of conserved regulatory sites for saccharomyces cerevisiae. BMC Bioinformatics 7(1), 113 (2006)

    Article  Google Scholar 

  12. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orienting graphs based on cause-effect pairs and its applications to orienting protein networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 222–232. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Ourfali, O., Shlomi, T., Ideker, T., Ruppin, E., Sharan, R.: SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments. Bioinformatics 23(13), i359–i366 (2007)

    Article  Google Scholar 

  14. Reimand, J., Vaquerizas, J.M., Todd, A.E., Vilo, J., Luscombe, N.M.: Comprehensive reanalysis of transcription factor knockout expression data in saccharomyces cerevisiae reveals many new targets. Nucleic Acids Research 38(14), 4768–4777 (2010)

    Article  Google Scholar 

  15. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yeang, C., Ideker, T., Jaakkola, T.: Physical network models. Journal of Computational Biology 11(2-3), 243–262 (2004)

    Article  Google Scholar 

  17. Yu, H., et al.: High-Quality binary protein interaction map of the yeast interactome network. Science 322(5898), 104–110 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silverbush, D., Elberfeld, M., Sharan, R. (2011). Optimally Orienting Physical Networks. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics