Skip to main content

A New Vertex Similarity Metric for Community Discovery: A Distance Neighbor Model

  • Conference paper
  • 1047 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6591))

Abstract

The hierarchical clustering methods based on vertex similarity can be employed for community discovery. Vertex similarity metric is the most important part of these methods. However, the existing metrics do not perform well compared with the state-of-the-art algorithms. In this paper, we propose a new vertex similarity metric based on distance neighbor model, called Distance Neighbor Ratio Metric (DNRM), for community discovery. DNRM considers both distance and nearby edge density which are essential measures in community structure. Compared with the existing metrics of vertex similarity, DNRM outperforms substantially in community discovery quality and the computing time. The experiments are designed rigorously involving both well-known social networks in real world and computer generated networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)

    Article  Google Scholar 

  2. Price, D.: Networks of scientific papers. In: Kochen, M. (ed.) The Growth of Knowledge: Readings on Organization and Retrieval of Information, pp. 145–155. Wiley, Chichester (1965)

    Google Scholar 

  3. Dunne, J.A., Williams, R.J., Martinez, N.D.: Foodweb structure and network theory: The role of connectance and size. Proc. Natl. Acad. Sci. USA 99, 12917–12922 (2002)

    Article  Google Scholar 

  4. Kauffman, S.A.: Metabolic stability and epigenesis in randomly connected nets. J. Theor. Bio. 22, 437–467 (1969)

    Article  Google Scholar 

  5. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001)

    Article  Google Scholar 

  6. Sales-Pardo, M., Guimera, R., Moreira, A.A., Amaral, L.A.N.: Module identification in bipartite and directed networks. Proc. Natl. Acad. Sci. USA 104, 15224–15229 (2007)

    Article  Google Scholar 

  7. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49, 291–308 (1970)

    Article  MATH  Google Scholar 

  8. Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23, 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  9. Pothen, A., Simon, H., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: Email as spectroscopy: automated discovery of community structure within organizations. In: Huysman, M.H., Wenger, E., Wulf, V. (eds.) Proceedings of the International Conference on Communities and Technologies, pp. 81–96. Springer, Heidelberg (2003)

    Google Scholar 

  12. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and indentifying communities in networks. Proc. Nat. Academy of Science (PNAS) 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  13. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-Organization and Identification of Web Communities. Computer 35(3), 66–71 (2002)

    Article  Google Scholar 

  14. Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. J. ACM 46(5), 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pirolli, P., Pitkow, J., Rao, R.: Silk from a Sows Ear:Extracting Usable Structures from the Web. In: Proc. ACM Conf. Human Factors in Computing Systems (CHI), pp. 118–125 (1996)

    Google Scholar 

  16. Donetti, L., Münoz, M.A.: Detecting network communities: a new systematic and powerful algorithm. J. Stat. Mech., P10012 (2004)

    Google Scholar 

  17. Capocci, A., Servedio, V.D.P., Caldarelli, G., Colaiori, F.: The scale-free topology of market investments. Physica A 352, 669 (2005)

    Article  MathSciNet  Google Scholar 

  18. Alves, N.A.: Unveiling community structures in weighted networks. Phys. Rev. E 76(3), 36101 (2007)

    Article  MathSciNet  Google Scholar 

  19. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a potts model. Phys. Rev. Lett. 93(21), 218701 (2004)

    Article  Google Scholar 

  20. Zhou, H.: Distance, dissimilarity index, and network community structure. Phys. Rev. E 67(6), 061901 (2003)

    Article  Google Scholar 

  21. Arenas, A., Diaz-Guilera, A., Peerez-Vicente, C.J.: Synchronization reveals topological scalses in complex networks. Phys. Rev. Lett. 96(11), 114102 (2006)

    Article  Google Scholar 

  22. Fortunato, S.: Community detection in graphs, arXiv, 0906.0612 (2009)

    Google Scholar 

  23. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330 (2004)

    Article  Google Scholar 

  24. Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Socit Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  25. Barnes, E.R.: An algorithm for partitioning the nodes of a graph. SIAM Journal for Algorithms and Discrete Methods 3, 541–550 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  27. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabsi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  28. Gleiser, P., Danon, L.: Community structure in Jazz. Adv. Complex Systems 6, 565–573 (2003)

    Article  Google Scholar 

  29. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin commu-nity of doubful sound features a large problem of long-lasting associations. Behav. Ecol. Sociobiol. 54, 396–405 (2003)

    Article  Google Scholar 

  30. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72, 026132 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y. (2011). A New Vertex Similarity Metric for Community Discovery: A Distance Neighbor Model. In: Nguyen, N.T., Kim, CG., Janiak, A. (eds) Intelligent Information and Database Systems. ACIIDS 2011. Lecture Notes in Computer Science(), vol 6591. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20039-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20039-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20038-0

  • Online ISBN: 978-3-642-20039-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics