
ReFER: effective Relevance Feedback
for Entity Ranking

Tereza Iofciu1, Gianluca Demartini1,
Nick Craswell2, and Arjen P. de Vries3

1 L3S Research Center, Hannover, Germany
{iofciu,demartini}@L3S.de

2 Microsoft Redmond, WA, USA
nickcr@microsoft.com

3 Centrum Wiskunde & Informatica, Amsterdam, Netherland
arjen@acm.org

Abstract. Web search increasingly deals with structured data about
people, places and things, their attributes and relationships. In such an
environment an important sub-problem is matching a user’s unstruc-
tured free-text query to a set of relevant entities. For example, a user
might request ‘Olympic host cities’. The most challenging general prob-
lem is to find relevant entities, of the correct type and characteristics,
based on a free-text query that need not conform to any single ontology
or category structure. This paper presents an entity ranking relevance
feedback model, based on example entities specified by the user or on
pseudo feedback. It employs the Wikipedia category structure, but aug-
ments that structure with ‘smooth categories’ to deal with the sparseness
of the raw category information. Our experiments show the effectiveness
of the proposed method, whether applied as a pseudo relevance feedback
method or interactively with the user in the loop.

1 Introduction

Finding entities of different types is a challenging search task which goes beyond
classic document retrieval and also single-type entity retrieval such as expert
search [1]. The motivation for this task is that many ‘real searches’ are not look-
ing for documents to learn about a topic, but really seek a list of specific entities:
restaurants, countries, films, songs, etc. [10]. Example needs include ‘Formula 1
drivers that won the Monaco Grand Prix’, ‘Female singer and songwriter born in
Canada’, ‘Swiss cantons where they speak German’, and ‘Coldplay band mem-
bers’, just to name few.

This is a new interesting task that goes beyond standard search engine’s
matching between user query and document features. In the Entity Ranking
(ER) scenario the user is looking for a set of entities of the same type with
some common properties, e.g., ‘countries where I can pay in Euro’. This query
is answered by current web search engines with a list of pages on the topic ‘Euro
zone’, or ways to pay in Euros, but not with a list of country names.



The complexity of this novel search task lays in the multi-step solution that
should be adopted. Firstly, the system has to understand the user query, what
is the entity type and which are its properties. Similarly to expert search, the
index should contain entities instead of just documents, and the entity type
should be represented in and matched against the user query. Therefore, sev-
eral techniques from research fields such as Information Extraction and Natural
Language Processing (NLP) could be used as well in order to first identify en-
tities in a document collection. Moreover, a hierarchy of possible entity types
and relations among entities and their types has to be considered [13, 16]. Initial
attempts to ER have recently been presented. The main approaches build on top
of the link structure in the set of entities [12], use passage retrieval techniques,
language models [13], or NLP based solutions [6].

In this paper, we propose ReFER: a graph-based method to take advantage
of relevance feedback (RFB) in entity retrieval, exploiting either example entities
provided by the user, or the top-k results from an ER system. We show how the
combination of RFB results with the initial system improves search effectiveness
for all runs submitted to the Initiative for the Evaluation of XML Retrieval
(INEX)4 2008 XML Entity Ranking track. The proposed method is designed
based on the Wikipedia setting used at INEX but it could be adapted to other
settings such as the one of tag recommendation (i.e., tagged web pages compared
to Wikipedia articles belonging to Wikipedia categories).

The rest of this paper is structured as follows. We start with a summary
of related work in the area of entity ranking. Section 3 then discusses the two
main properties of Wikipedia and how these are exploited in this paper. The
proposed algorithm is presented in Section 4. Section 5 then discusses our ex-
perimental results, showing how our graph-based method improves performance
of previously proposed entity ranking techniques. The final Section summarizes
our main conclusions.

2 Related Work

The first proposed approaches for ER [3–5] mainly focus on scaling efficiently
on Web dimension datasets but not much on search quality while we aim to
improve effectiveness of the ER task. Approaches for finding entities have also
been developed in the Wikipedia context. Pehcevski et al. [12] use link informa-
tion for improving effectiveness of ER in Wikipedia. Demartini et al. [6] improve
ER effectiveness by leveraging on an ontology for refining the Wikipedia cate-
gory hierarchy. Compared to these approaches, we propose an orthogonal view
on the problem that can be applied to any ER approach via RFB. Balog et al.
[2] propose a model that considers RFB techniques on the category structure
of Wikipedia to improve effectiveness of ER. In this paper we show how our
method can be effectively applied also on top of their system.

A different approach to the problem is to rank document passages that rep-
resent entities. In [20] the authors present an ER system that builds on top of

4 http://www.inex.otago.ac.nz/



an entity extraction and semantic annotation step followed by running a passage
retrieval system using appropriate approaches to re-rank entities. In [7] a similar
approach is used to rank entities over time.

A related task is the entity type ranking defined in [17]. The goal is to retrieve
the most important entity types for a query, e.g., Location, Date, and Organi-
zation for the query Australia. Our algorithm exploits entity type information
from the entity-category graph in order to find the most important entity types.
Another related task is expert finding which has been mainly studied in the con-
text of the TREC Enterprise Track [1]. The entity type is fixed to people and the
query is finding knowledgeable people about a given topic. Entity ranking goes
beyond the single-typed entity retrieval and relevance is more loosely defined.
More recently, at the TREC Entity track the task of finding entities related
to a given one was studied [15]. As our approach works on the entity category
structure, we focus on ER performed in the Wikipedia setting.

3 Category Expansion in Wikipedia

This paper presents an entity ranking model based on assigning entities to
‘smooth categories’. This in turn is based on the Wikipedia link and category
structure. This section describes the two key properties of Wikipedia we rely on
to develop our model. The next section describes the smooth category model.

Wikipedia is a free encyclopedia with 2.7 million English articles written by
volunteers.5 It is a collaborative website with an editorial process governed by
a series of policies and guidelines.6 Wikipedia has two properties that make it
particularly useful for ER. The first is that many of its articles are dedicated to
an entity, so the entity ranking problem reduces to the problem of ranking such
articles. The Wikipedia guidelines prescribe that an entity should have at most
one article dedicated to it, according to the content forking guidelines. Thus the
entity ranking model does not need to eliminate duplicates. Many real-world
entities have no Wikipedia page, according to the notability guidelines. To be
included, an entity should have significant coverage in multiple independent,
reliable sources. For example, the model can rank major-league baseball players
according to some entity-ranking query, but not players in youth baseball leagues,
since youth players rarely meet the notability criteria.

In this setting, a simple ER solution is to rank Wikipedia pages in a standard
IR system. If we search in a List Completion manner(i.e. query by example), for
‘John F. Kennedy’ in an index of Wikipedia pages, the top-ranked articles are:
‘John F. Kennedy’, ‘John F. Kennedy International Airport’, ‘John F. Kennedy
Jr.’, ‘John F. Kennedy Library’ and ‘John F. Kennedy assassination in popular
culture’. The IR system has succeeded in finding pages relevant to the topic of
JFK. However, if the information need were related to finding US presidents,
the system has not succeeded. It did not find entities of a similar type. As a con-
cluding remark, note, some articles do not pertain to an entity (e.g., ‘Running’);
we have to rely on the entity ranking model to avoid retrieving these.

5 http://en.wikipedia.org/wiki/Wikipedia
6 http://en.wikipedia.org/wiki/Wikipedia:Policies_and_guidelines



The second useful property of Wikipedia is its rich link and category struc-
ture, with the category structure being of particular interest when finding entities
of similar type. Intuitively, one would say that if two entities are related by sat-
isfying an information need, they should have at least one common category.
The more common categories two entities belong to, the more related they are
likely to be. The usefulness of Wikipedia’s link structure has been confirmed in
the INEX entity ranking experiments: participants found that category informa-
tion, associations between entities and query-dependent link structure improved
results over their baselines [18]. However, as Wikipedia is a collaborative effort,
no strict rules enforce the guidelines for linking between entities or assigning
entities to categories. Entities may belong to many categories describing its dif-
ferent aspects, and no limit exists on the number of categories an entity could
get assigned. For example the Wikipedia page describing ‘Albert Einstein’ links
to a wide variety of entities, including specific information such as ‘Theory of rel-
ativity’ and ‘Nobel Prize in Physics’, but also more generic facts like ‘Germany’
and ‘Genius’. Considering the Wikipedia category structure, ‘Albert Einstein’
belongs to some sixty categories, varying from ‘German Nobel laureates’ and
‘German immigrants to the United States’ to ‘1879 births’.

The categories of a page are not weighted by their importance, so we do not
know which is more important, and a page may also be missing from important
categories. For example, in our snapshot of Wikipedia the article on South Korea
is in the categories: ‘South Korea’, ‘Liberal democracies’ and ‘Divided regions’.
There are attributes of South Korea that are not described by categories.

4 Link-based Relevance Feedback for Entity Ranking

In this section we describe ReFER, our RFB algorithm based on the link struc-
ture of the Wikipedia model, and we then present ways of integrating it with
existing ER systems.

In our model we assume a collection of categories C = {c1, .., cn} and a
collection of entities E = {e1, .., em}. Each entity ei corresponds to a Wikipedia
page, and each category ci is a tag describing an entity.

Definition 1. An entity ei is a tuple 〈uri, desc, Cei , Rei〉 where uri is the en-
tity’s identifier, desc is a string describing ei (given by the Wikipedia article),
Cei ⊆ C is the set of categories describing the entity and Rei ⊆ E \ {ei} is the
set of entities that are refered to from the Wikipedia url of ei.

One can easily see that given a collection of entities and categories, we can
retrieve two types of connections. The first type is between two entities and we
denote it with link = 〈ei, ej〉. The second type of connection is between an entity
and a category and we denote it with edge = 〈ei, cj〉. In addition we distinguish
between two types of edges according to the process that created them. The
‘hard’ edges of entity ei are the ones that can be directly generated using Cei ,
i.e., CH(ei) = {c|c ∈ Cei}. The ‘smooth’ edges can be inferred through the
categories of the referred entities, i.e., CS(ei) = {c|c ∈ Cej∀ej ∈ Rei}.



4.1 The ReFER Algorithm

Our entity ranking algorithm can be described as propagation of weights through
a directed acyclic graph. The graph has nodes in three layers: an ’input’ layer
of entities, an ’intermediate’ layer of hard and smooth categories and a ranked
’output’ layer of entities connected to the ’intermediate’ categories. Weights
propagate through graph and is proportional to the number of links, hard edges
and smooth edges.

Fig. 1. Three layer graph, with input node entity ‘Boston, Massachusetts’. Solid edges
indicate hard categories, dashed edges indicate smooth categories.

For the example in Figure 1, if the article on Boston Massachusetts is in the
category Cities in Massachusetts, and links to several pages that are also in that
category, then the article’s input node is connected to Cities in Massachusetts
node via both a hard edge and a smooth edge. In our example, category Cities
in Massachusetts will be weighted higher than category Irish-American culture,
as the latter has no smooth edges leading to it. Smooth categories can add extra
weight to hard categories, and also make associations with new categories. For
‘South Korea’, the original category that is most strongly supported is ‘Liberal
Democracies’, since seven of the articles linked-to by the ‘South Korea’ article
are ‘Liberal Democracies’. The page is associated to 26 smooth categories, out
of which 14 contain the word Korea. There is though some noise in the smooth
categories, like ‘Constitutional Monarchies’ and ‘History of Japan’. In order to
reduce the amount of noisy smooth categories for an entity ei we filter out the
ones with less than 2 entities from Rei belonging to them.

Given a query q we activate a certain set of nodes Eq as input for our algo-
rithm. Then for each category node in CH(ei)∪CS(ei), where ei ∈ Eq , we sum
the incident edge weights from active input nodes from Eq. For category cj let
us denote the total incoming hard-edge weight as hcj and smooth-edge weight as
scj . In our initial experiments, we noticed that the hard-category ‘coordination’
between the input nodes is important. If there is one category that is common
to most of the active input nodes, then that category is extremely important,
and should massively outweigh the other categories. This led us to develop the
following exponential category weighting heuristic:

cw(cj ) =
αhcj + scj

log(catsize(ccj ) + β)
, (1)



where catsize(cj ) is the number of Wikipedia pages in the category cj and α and
β are parameters7, β being used so that the logarithm does not return negative
values. The log down-weights very large categories, since these are unlikely to
be discriminative. Akin to stopword removal, we eliminate categories with many
entities (in our setup we considered a threshold of 1000 entities).

If there is a category that is common to all input nodes in Eq, then it will
have high h and a much higher weight than any other category. For example, if
the input nodes are a number of entities in the category Cities in Massachusetts,
then that category will dominate the rest of the entity ranking process. If there
is not a dominant category, then both hard and smooth categories come into
play under this weighting scheme.

To rank entities, we propagate and sum the category weights to the output
layer. The final entity ranking weight of output node ek includes a popularity
weight P (ek):

ew(ek ) = (

n∑
j=1

cw(cj )) ∗ P (ek). (2)

The popularity weight is based on the Wikipedia link graph where node ek has
indegree INk, such that P (ek) = min(θ, log(INk)), θ being a parameter8. Static
rank, a well-known concept from Web search, is a query-independent indica-
tor that a certain search result is more likely to be relevant (see, for example,
PageRank [11]). We found that connectivity in Wikipedia is an indicator that
an entity is well-known, and therefore possibly a good search result.

4.2 ReFER Bootstrap and its Application to ER systems

The algorithm we propose is query independent as it just needs an initial set of
entities where to start from. ER systems start from keyword queries provided
by the user in order to generate a ranked list of results. We propose three ways
of running our algorithm and combining it with existing ER systems.

In the first scenario the user provides also a small set of example relevant
entities. We can use such set as the active nodes Eq from input layer I. We would
thus obtain a ranked list of entities ordered by decreasing ew(ek ) scores. It is then
possible to merge, for example by means of a linear combination, the obtained
ranking with one produced by an ER system which uses keywords provided by
the user. In this paper we perform ranking combination in the following way9:

rank(ek, q) := λ · baseline(ek, q) + (1− λ) · ReFER(ek), (3)

7 Experimentally exploring the parameter space we obtained best results with α = 10
and β = 50.

8 Experimentally exploring the parameter space we obtained best results with θ = 5.
9 A different option would be to combine RSVs of the baseline ER system with ew(ek )

scores. Due to the variety of approaches that lead to the scores in different ER
systems, we could estimate such scores transforming the rank of entity ek for query
q; we carried out experiments computing the rank-based scores as (1000 − rank)
and (1/rank). As the conclusions resulting from both transformations turned out
identical we perform a simpler combination of ranks.



where rank(ek, q) is the new rank for entity ek on query q, λ ∈ [0, 1], baseline(ek, q)
is the rank assigned by the baseline system, and ReFER(ek) is the rank assigned
to e based on the scores computed by Formula 2.

A second approach would be to use results of an ER system in order to
bootstrap our algorithm (i.e., as elements of the input layer). Thus, in a pseudo-
RFB fashion, we consider top-k retrieved entities as being part of Eq. Again,
in this way we would obtain a ranked list of entities by running the ReFER
algorithm. We can now combine the two available rankings by, for example, in
a linear combination.

A third approach, is the RFB one. After the ER system retrieves results for
a query, the user selects relevant results present in top-k. We can use selected
relevant results as elements of active input layer Eq. Again, we can combine the
two rankings (the original one and the one generated based on Formula 2) by a
linear combination.

5 Experimental Results

In this section we present an experimental evaluation of the proposed model for
RFB in ER. We start describing the test collection we use and we then evaluate
effectiveness of different applications to existing ER baseline systems.

5.1 Experimental Setting

The Entity Ranking track at INEX has developed a test collection based on
Wikipedia. We perform our experiments on this test collection, for an objec-
tive and comparable evaluation. We will consider our RFB approach successful
if it improves consistently upon the measured performance for most (or all) of
the runs submitted to the track, essentially using the participant runs as base-
lines. This is an especially challenging goal in case of runs that already use the
Wikipedia link structure between entities and/or categories.

The document collection used for evaluating our approach is the 2006 Wikipedia
XML Corpus[8] containing 659,338 English Wikipedia articles. In INEX 2008,
35 topics have been selected and manually assessed by the participants10. An
example of an INEX 2008 Entity Ranking Topic is presented in Table 1. The
track distinguishes between the XML Entity Ranking (XER) and the List Com-
pletion (LC) tasks. In the XER task, participants use topic category and topic
title; in the LC case, the example entities provided in the topics can be used by
the system (and should not be presented in the results). Because the assessment
pool has been created using stratified sampling, the evaluation metric used is
xinfAP [19], an estimation of Average Precision (AP) for pools built with a strat-
ified sampling approach. The ranked list of entities produced by ER systems is
divided into disjoint contiguous subsets (strata) and then entities are randomly
selected (sampled) from each stratum for relevance judgement. The metric xin-
fAP is then computed exploiting the estimation of Precision at each relevant
document for each stratum.
10 The test collection we used is available at: http://www.L3S.de/~demartini/XER08/.



Table 1. INEX Entity Ranking Topic example.

Title Italian Nobel prize winners

Categories #924: Nobel laureates

Examples #176791: Dario Fo; #744909: Renato Dulbecco; #44932: Carlo Rubbia

5.2 Using Topic Examples

In order to evaluate the combination of ReFER with previously proposed ER
systems, we decided to apply our algorithm to all the submitted runs at INEX
2008 as baselines as well as to the top performing runs of a later method tested
on the same collection [2]. We then combine the results with baseline systems
following Formula 3.

We performed such experiment with both XER and LC runs. The values
of xinfAP for the original runs and the combination with the ReFER run are
presented in Figure 2 for the XER task. The Figure shows how in all cases the

Fig. 2. Comparison of INEX 2008 XER runs merged with ReFER using topic examples.

combination of the baseline with ReFER improves the quality of the original ER
system. For the runs where the initial baseline performs well (a high xinfAP), the
best average value for lambda is close to 0.25 (i.e., giving more importance to
the baseline). Baselines that did not perform that well require a higher λ of 0.75,
giving more importance to ReFER results. For both tasks, the value of λ that
yields best absolute improvement (i.e. 6.4% for XER and 5.2% for LC) is 0.5, so
we present the following experiment results only for this combination strategy.

5.3 Content Based Pseudo Relevance Feedback

How does the ReFER approach perform as compared to standard content based
pseudo-RFB? As we do not have access to the retrieval systems used to create
the various runs, we implemented a system independent method. From each run
we start from the top k retrieved results, from which we take top n common
terms. The terms are ranked based on the cumulated TF-IDF score from the
k documents. Next, we search with both the topic title and the top n common
terms in our index of the INEX Wikipedia and retrieve ranked lists of results for
each run. We then combine such result set with the corresponding original run
by applying Formula 3 with λ = 0.5.

Experimental findings show that this method performed best on average
when using top 5 common terms from top 10 retrieved documents. The maxi-
mum absolute improvement achieved by the content based approach is of 2% on
average. Also, the content based method improved only 79% of the 19 runs.



5.4 Pseudo Relevance Feedback

Instead of using the example entities provided in the topic we can use top-k
retrieved results from each run. In this way, we build a system that requires no
user involvement, but that just builds on top of another method for ER.

For each query q we activate the k nodes in the input layer that correspond to
the top-k retrieved results from the baseline run. Figure 3 (a) shows the xinfAP
values for the original runs and for the combination (i.e., Formula 3 with λ = 0.5)
with such pseudo-RFB run, for different values of k.

Fig. 3. Improvement of xinfAP for each run using all (a) or only relevant results (b) in
top-k retrieved as seed of the algorithm, combining with λ = 0.5.

The effectiveness is always improved for each k. In Table 2 it is possible to
see that, on average, K = 10 gives best improvement both for xinfAP and for
the expected P@20 (as used in [19]). A t-test shows that the xinfAP improvement
using k = 10 and λ = 0.5 over each baseline is statistical significant (p ≤ 0.05)
for all systems but one, where p = 0.53.

Table 2. xinfAP and expected P@20 measured for different values of k for pseudo-RFB
and the relative improvement obtained by the combination over the original runs.

xinfAP expected P@20

K=5 K=10 K=15 K=20 K=5 K=10 K=15 K=20

Original 0.270 0.270 0.270 0.270 0.307 0.307 0.307 0.307
pseudo-RFB 0.266 0.275 0.267 0.256 0.284 0.290 0.277 0.269

Combination λ = 0.5 0.308 0.313 0.307 0.300 0.327 0.328 0.319 0.315

Relative Improvement 14% 16% 14% 11% 7% 7% 4% 3%

The results show how a small but effective seed leads to good results after
applying the score propagation. When analysing the contribution of unique rel-
evant results from the baseline and the pseudo-RFB we can see (Table 3) that
most of the relevant results are present in both runs while only 4 relevant entities
out of 21, on average, are not retrieved.



Table 3. Average unique contribution of relevant results (pseudo-RFB).

K=5 K=10 K=15 K=20

Relevant in baseline 5.158 4.654 4.557 4.495
Relevant in pseudo-RFB 3.289 3.544 3.555 3.425

Relevant in both 10.694 11.198 11.296 11.358
Missed relevant 4.010 3.754 3.744 3.873

5.5 Relevance Feedback

In the next scenario we assume entity ranking in an interactive setting where the
user can click on the relevant entities in the top-k results returned by the baseline
system (i.e., RFB). Because assessing the relevance of entities returned can be
considered to take a much lower effort than reading documents in a traditional
information retrieval setting, we believe the ER setting justifies measuring the
improvement in quality of the full displayed list (as opposed to the rank freezing
or residual ranking methodologies that are more appropriate in the ad-hoc re-
trieval case [14]). When performing an entity retrieval task, the user’s aim is not
to read new relevant documents, but rather to obtain a precise and complete list
of entities that answers the query. Thus, we use only relevant entities in top-k as
seed to our algorithm. For xinfAP, it is possible to see how the algorithm obtains
best performances with k = 20 (cf. Table 4).

Table 4. xinfAP and expected P@20 measured for different values of k for RFB and
the relative improvement obtained by the combination over the original runs.

xinfAP expected P@20

K=5 K=10 K=15 K=20 K=5 K=10 K=15 K=20

Original 0.270 0.270 0.270 0.270 0.307 0.307 0.307 0.307
RFB 0.281 0.310 0.320 0.327 0.295 0.332 0.339 0.347

Combination λ = 0.5 0.327 0.341 0.347 0.350 0.386 0.382 0.380 0.381

Relative Improvement 21% 26% 29% 30% 26% 24% 24% 24%

If we compare Table 2 and Table 4 we can see that in the pseudo-RFB case,
the best improvement is obtained using the first 10 retrieved results. In the RFB
scenario, given that input entities are all relevant, the higher the value of k, the
better the improvement. We did not study the effect of k > 20 because we do
not expect a user to select relevant results lower than rank 20. A t-test confirms
statistical significance (p ≤ 0.05) of the improvement in xinfAP between the run
using k = 20 and λ = 0.5 and each of the baselines.

If we analyze the contribution of unique relevant results from the baseline
and the RFB results (Table 5) we see that the baseline contributes more than
the pseudo-RFB part. Compared to the contribution of uniquely relevant entities
in the pseudo-RFB scenario (see Table 3), we find however that blind feedback
works better with respect to this aspect. This result can be explained by the fact
that when considering system-topic pairs in almost 20% of the cases there are
no relevant results in top-k retrieved results. There are only 7 topics for which
all systems had relevant results in top 5 retrieved results. Thus in the RFB
scenario we cannot apply our algorithm for all the system-topic pairs, whereas
for pseudo-RFB the algorithm is applied also using only non-relevant entities.



Table 5. Average unique contribution of relevant results (RFB).

K=5 K=10 K=15 K=20

Relevant in baseline 7.14 5.78 5.32 4.95
Relevant in RFB 2.02 2.65 2.96 3.11
Relevant in both 8.71 10.07 10.54 10.91
Missed relevant 5.28 4.65 4.34 4.19

5.6 Hard vs. Smooth Categories

What is the benefit of using hard and smooth categories? In order to observe the
effect of using smoothed categories along with hard categories we experimented
with various sets of categories both in the pseudo-RFB and RFB cases (see Table
6). We used as input nodes top k=10 retrieved results from the baseline (for the
RFB case we only used the relevant from top 10 retrieved results, amounting to
3.63 results per topic). In both cases the use of smooth categories improves the
overall performance of the analyzed systems. Furthermore, in the pseudo-RFB
case, where also non-relevant entities are used as seed, the smoothed categories
have a higher impact on the overall improvement.

Table 6. xinfAP measured for k=10 in the pseudo-RFB and RFB cases. The relative
improvement obtained by the combination over the baseline is also shown.

pseudo-RFB RFB

CH CS CH ∪ CS CH CS CH ∪ CS

Baseline 0.270 0.270 0.270 0.270 0.270 0.270
Pseudo-RFB/RFB 0.269 0.126 0.2753 0.306 0.097 0.310

Combination λ = 0.5 0.308 0.213 0.313 0.338 0.220 0.341

Relative Improvement 14% -21% 16% 25% -19% 26%

6 Conclusions and Further Work

Entity Ranking is a novel search task that goes over document search by finding
typed entities in a collection. The retrieved entities can be used, for example,
for a better presentation of web search results. In this paper, we presented a
model for RFB in the entity retrieval scenario. The proposed model is based
on weight propagation in a directed acyclic graph that represents links between
entity descriptions. We have used as experimental setting the Wikipedia as a
repository of such entity descriptions and have evaluated our approach on the
INEX 2008 benchmark.

We have used the submitted runs as baselines and have shown, firstly, that
performing fusion with the result of our algorithm using relevant entity examples
as initial seed always improves over the baseline effectiveness. We have also
evaluated our algorithm using as seed the top-k retrieved results in a pseudo-
RFB fashion. The experiments demonstrate that, while in all cases the baselines
were improved, using top 10 results yields the best improvement. Finally, we have
shown how an emulated interactive feedback session (by using only the relevant
entities in the top-k retrieved results) leads to an even higher improvement when
performing a fusion with the baseline (i.e., a 0.12 absolute improvement in xinfAP
using the relevant entities encountered in top 20).



We conclude that the proposed approach can be easily applied to any ER
system in order to improve search effectiveness, and that the model performs
well on the test collection we used. A limitation of this work is the use of a
single test collection. As future work, we aim at evaluating our approach on a
different ER setting such as, for example, graph-based tag recommendation [9].

References

1. P. Bailey, N. Craswell, A. De Vries, and I. Soboroff. Overview of the TREC 2007
Enterprise Track. Proceedings of TREC-2007, Gaithersburg, MD, 2008.

2. K. Balog, M. Bron, and M. de Rijke. Category-based query modeling for entity
search. In ECIR, pages 319–331, 2010.

3. H. Bast, A. Chitea, F. Suchanek, and I. Weber. Ester: efficient search on text,
entities, and relations. In SIGIR ’07, pages 671–678, New York, USA, 2007. ACM.

4. T. Cheng and K. Chang. Entity Search Engine: Towards Agile Best-Effort Infor-
mation Integration over the Web. CIDR2007, pages 108–113, 2007.

5. T. Cheng, X. Yan, and K. C.-C. Chang. Entityrank: Searching entities directly
and holistically. In Proceedings of VLDB, pages 387–398, 2007.

6. G. Demartini, C. Firan, T. Iofciu, R. Krestel, and W. Nejdl. Why finding entities
in wikipedia is difficult, sometimes. Information Retrieval, 13(5):534–567, 2010.

7. G. Demartini, M. M. S. Missen, R. Blanco, and H. Zaragoza. Entity summarization
of news articles. In SIGIR, pages 795–796, 2010.

8. L. Denoyer and P. Gallinari. The Wikipedia XML corpus. ACM SIGIR Forum,
40(1):64–69, 2006.

9. Z. Huang, W. Chung, T. Ong, and H. Chen. A graph-based recommender system
for digital library. In Proceedings of the 2nd ACM/IEEE-CS joint conference on
Digital libraries, pages 65–73. ACM New York, NY, USA, 2002.

10. R. Kumar and A. Tomkins. A characterization of online search behavior. IEEE
Data Eng. Bull., 2009.

11. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. 1998.

12. J. Pehcevski, A.-M. Vercoustre, and J. A. Thom. Exploiting locality of wikipedia
links in entity ranking. In Proceedings of ECIR, pages 258–269, 2008.

13. H. Rode, P. Serdyukov, and D. Hiemstra. Combining document- and paragraph-
based entity ranking. In SIGIR, pages 851–852, 2008.

14. I. Ruthven and M. Lalmas. A Survey on the Use of Relevance Feedback for Infor-
mation Access Systems. Knowl. Eng. Rev., 18(2):95–145, 2003.

15. P. Serdyukov, K. Balog, P. Thomas, A. Vries, and T. Westerveld. Overview of the
TREC 2009 Entity Track, 2009.

16. T. Tsikrika, P. Serdyukov, H. Rode, T. Westerveld, R. Aly, D. Hiemstra, and A. P.
de Vries. Structured document retrieval, multimedia retrieval, and entity ranking
using pf/tijah. In INEX, pages 306–320, 2007.

17. D. Vallet and H. Zaragoza. Inferring the most important types of a query: a
semantic approach. In SIGIR, pages 857–858, 2008.

18. A. P. Vries, A.-M. Vercoustre, J. A. Thom, N. Craswell, and M. Lalmas. Overview
of the INEX 2007 entity ranking track. In INEX.

19. E. Yilmaz, E. Kanoulas, and J. A. Aslam. A simple and efficient sampling method
for estimating ap and ndcg. In SIGIR, pages 603–610, 2008.

20. H. Zaragoza, H. Rode, P. Mika, J. Atserias, M. Ciaramita, and G. Attardi. Ranking
very many typed entities on wikipedia. In CIKM, pages 1015–1018, 2007.


