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Abstract. We develop an abstract model of information acquisition
from redundant data. We assume a random sampling process from data
which provide information with bias and are interested in the fraction
of information we expect to learn as function of (i) the sampled fraction
(recall) and (ii) varying bias of information (redundancy distributions).
We develop two rules of thumb with varying robustness. We first show
that, when information bias follows a Zipf distribution, the 80-20 rule
or Pareto principle does surprisingly not hold, and we rather expect to
learn less than 40% of the information when randomly sampling 20%
of the overall data. We then analytically prove that for large data sets,
randomized sampling from power-law distributions leads to “truncated
distributions” with the same power-law exponent. This second rule is
very robust and also holds for distributions that deviate substantially
from a strict power law. We further give one particular family of power-
law functions that remain completely invariant under sampling. Finally,
we validate our model with two large Web data sets: link distributions
to domains and tag distributions on delicious.com.

1 Introduction

The 80-20 rule (also known as Pareto principle) states that, often in life, 20% of
effort can roughly achieve 80% of the desired effects. An interesting question is
as to weather this rule also holds in the context of information acquisition from
redundant data. Intuitively, we know that we can find more information on a
given topic by gathering a larger number of data points. However, we also know
that the marginal benefit of knowing additional data decreases with the size of
the corpus. Does the 80-20 rule hold for information acquisition from redundant
data? Can we learn 80% of URLs on the Web by parsing only 20% of the web
pages? Can we learn 80% of the used vocabulary by looking at only 20% of the
tags? Can we learn 80% of the news by reading 20% of the newspapers? More
generally, can we learn 80% of all available information in a corpus by randomly
sampling 20% of data without replacement?

In this paper, we show that when assuming a Zipf redundancy distribution,
the Pareto principle does not hold. Instead, we rather expect to see less than
40% of the available information. To show this in a principled, yet abstract
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Fig. 1: Processes of information dissemination and information acquisition.
We want to predict the fraction of information we can learn (r̂u) as a func-
tion of recall (r) and the bias in the data (redundancy distribution ρ).

fashion, we develop an analytic sampling model of information acquisition from
redundant data. We assume the dissemination of relevant information is biased,
i.e. different pieces of information are more or less frequently represented in
available sources. We refer to this bias as redundancy distribution in accordance
with work on redundancy in information extraction [11]. Information acquisition,
in turn, can be conceptually broken down into the subsequent steps of IR, IE, and
II, i.e. visiting a fraction r of the available sources, extracting the information,
and combining it into a unified view (see Fig. 1). Our model relies on only
three simple abstractions: (1) we consider a purely randomized sampling process
without replacement; (2) we do not model disambiguation of the data, which is a
major topic in information extraction, but not our focus; and (3) we consider the
process in the limit of infinitely large data sets. With these three assumptions,
we estimate the success of information acquisition as function of the (i) recall of
the retrieval process and (ii) bias in redundancy of the underlying data.

Main contributions. We develop an analytic model for the information
acquisition from redundant data and (1) derive the 40-20 rule, a modification of
the Pareto principle which has not been stated before. (2) While power laws do
not remain invariant under sampling in general [26], we prove that one particular
power law family does remain invariant. (3) While other power laws do not
remain invariant in their overall shape, we further prove that the “core” of such
a frequency distribution does remain invariant; this observations allows us to
develop a second rule of thumb. (4) We validate our predictions by randomly
sampling from two very large real-world data sets with power-law behavior.

This is the full version of a conference paper [16] (pages 1–14). All proofs
and further details are contained in the appendix.

2 Basic notions used throughout this paper

We use the term redundancy as synonym for frequency or multiplicity. We do so
to remain consistent with the term commonly used in web information extrac-
tion, referring to the redundant nature of information on the Web. The notions
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of data and information are defined in various and partly contradicting ways
in the information retrieval, information extraction, database and data integra-
tion literature. In general, their difference is attributed to novelty, relevance,
organization, available context or interpretation. The most commonly found un-
derstanding is that of data as representation of information which can become
information when it is interpreted as new and relevant in a given context [6]. In
this work, we follow this understanding of data as “raw” information and use
the term data for the partly redundant representation of information.

Let a be the total number of data items and au the number of unique pieces
of information among them. Average redundancy ρ is simply their ratio ρ = a

au
.

Let ρi refer to the redundancy of the i-th most frequent piece of information.
The redundancy distribution ρ (also known as rank-frequency distribution) is the
vector ρ = (ρ1, . . . , ρau). Figure 2a provides the intuition with a simple balls-
and-urn model: Here, each color represents a piece of information and each ball
represents a data item. As there are 3 red balls, redundancy of the information
“color = red” is 3. Next, let αk be the fraction of information with redundancy
equal to k, k ∈ [kmax]. A redundancy frequency distribution (also known as
count-frequency plot) is the vector α = (α1, . . . , αkmax). It allows us to describe
redundancy without regard to the overall number of data items a (see Fig. 2b)
and, as we see later, an analytic treatment of sampling for the limit of infinitely
large data sets. We further use the term redundancy layer (also known as com-
plementary cumulative frequency distribution or ccfd) ηk to describe the fraction

of information that appears with redundancy ≥ k: ηk =
∑kmax

i=k αi. For example,
in Fig. 2a, the fraction of information with redundancy at least 3 is η3 = α3 +α6

= 2
5 + 1

5 = 3
5 . Finally, recall is the well known measure for the coverage of a data

gathering or selection process. Let b be a retrieved subset of the a total data
items. Recall is then r = b

a .

We define unique recall as is its counterpart for unique data items. Thus, it
measures the coverage of information. Let bu be the number of unique pieces of
information among b, and au the number of unique pieces of information among
a. Unique recall ru is then ru = bu

au
. We illustrate again with the urns model:

assume that we randomly gather 3 from the 15 total balls (recall r = 3
15 ) and
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Fig. 3: (a, b): Random sampling from an urn filled with a balls in au different
colors. Each color appears on exactly ρ= a

au
balls. (c): Normalized sample

distribution in grey with unique recall r̂u≈0.8 for r=0.5 from α in Fig. 2b.

that, thereby, we learn 2 colors out of the 5 total available colors (Fig. 2c).
Unique recall is thus ru = 2

5 and the redundancy distribution of the sample is
ρ̂=(2, 1).

3 Unique recall

We next give an analytic description of sampling without replacement as function
of recall and the bias of available information in the limit of very large data sets.

Proposition 1 (Unique recall r̂u). Assume randomized sampling without re-
placement with recall r ∈ [0, 1] from a data set with redundancy frequency distri-
bution α. The expected value of unique recall for large data sets is asymptotically

concentrated around r̂u = 1−∑kmax

k=1 αk (1− r)k .

The proof applies Stirling’s formula and a number of analytic transforma-
tions to a combinatorial formulation of a balls-and-urn model. The important
consequence of Prop. 1 is now that unique recall can be investigated without
knowledge of the actual number of data items a, but by just analyzing the nor-
malized redundancy distributions. Hence, we can draw general conclusions for
families of redundancy distributions assuming very large data sets. To simplify
the presentation and to remind us of this limit consideration, we will use the hat
symbol and write r̂u for lima→∞E (ru) ' E (ru).

Figure 3 illustrates this limit value with two examples. First, assume an urn
filled with a balls in au different colors. Each color appears on exactly two balls,
hence ρ = 2 and a = 2au. Then the expected value of unique recall ru (fraction
of colors sampled) is converging towards 1− (1− r)ρ and its variance towards 0
for increasing numbers of balls a (Fig. 3a, Fig. 3b). For example, keeping ρ = 2
and r = 0.5 fixed, and varying only a = 4, 6, 8, 10, . . ., then unique recall varies
as ru = 0.83, 0.80, 0.79, 0.78, . . ., and converges towards r̂u = 0.75. At a = 1000,
ru is already 0.7503±0.02 with 90% confidence. Second, assume that we sample
50% of balls from the distribution α= ( 1

5 ,
1
5 ,

2
5 , 0, 0,

1
5 ) of Fig. 2b. Then we can
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expect to learn ≈80% of the colors if a is very large (Fig. 3c). In contrast, exact
calculations show that if a = 15 as in Fig. 2a, then the actual expectation is
around ≈ 79% or ≈ 84% for sampling 7 or 8 balls, respectively. Thus, Prop. 1
calculates the exact asymptotic value only for the limit, but already gives very
good approximations for large data sets.

4 Unique recall for power law redundancy distributions

Due to their well-known ubiquity, we will next study power law redundancy dis-
tributions. We distinguish three alternative definitions: (1) power laws in the
redundancy distributions, (2) in the redundancy frequencies, and (3) in the re-
dundancy layers. These three power laws are commonly considered to be different
expressions of the identical distribution [3,21] because they have the same tail
distribution1, and they are in fact identical in a continuous regime. However, for
discrete values, these three definitions of power laws actually produce different
distributions and have different unique recall functions. We will show this next.

Power laws in the redundancy distribution ρ. This distribution arises
when the frequency or redundancy ρ of an item is proportional to a power law
with exponent δ of its rank i: ρ(i) ∝ i−δ, i ∈ [au]. Two often cited examples of
such power law redundancy distributions where δ ≈ 1 are the frequency-rank
distribution of words appearing in arbitrary corpora and the size distribution
of the biggest cities for most countries. These are called “Zipf Distribution”
after [27]. Using Prop. 1 we can derive in a few steps r̂uρ(r, δ) = 1−∑∞k=1

(
(2k−

1)−
1
δ −(2k+1)−

1
δ

)
(1−r)k. For the particularly interesting case of δ = 1, this

infinite sum can be reduced to r̂uρ(r, δ=1) = r√
1−r artanh(

√
1− r).

Power laws in the redundancy frequency distribution α. This dis-
tribution arises when a fraction of information αk that appears exactly k times
follows a power law αk = C · k−β , k ∈ N1. Again, using Prop. 1 we can de-

rive in a few steps r̂uα(r, β) = 1 − Liβ(1−r)
ζ(β) , where Liβ(x) is the polylogarithm

Liβ(x) =
∑∞
k=1 k

−βxk, and ζ(β) the Riemann zeta function ζ(β) =
∑∞
k=1 k

−β .
Power laws in the redundancy layers η. This distribution arises when

the redundancy layers ηk ∈ [0, 1] follow a power law ηk ∝ k−γ . From η1 = 1, we
get ηk = k−γ and, hence, αk = k−γ − (k + 1)−γ . Using again Prop. 1, we get in
a few steps r̂u,η(r, γ) = r

1−r Liγ(1− r). For the special case of γ = 1, we can use

the property Li1(x) = − ln(1− x) and simplify to r̂u,η(r, γ=1) = − r ln r
1−r .

Comparing unique recall for power laws. All three power laws show
the typical power law tail in the loglog plot of the redundancy distribution
(loglog rank-frequency plot), and it is easily shown that the exponents can be
calculated from each other according to Fig. 4e However, the distributions are
actually different at the power law root (Fig. 4a) and also lead to different unique
recall functions. Figure 4b shows their different unique recall functions for the
particular power law exponent of γ = 1 (β = 2, δ = 1), which is assumed to be

1 With tail of a distribution, we refer to the part of a redundancy distribution for
η → 0, with root to η → 1, and with core to the interval in between (see Fig. 4a).
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Fig. 4: The three power law redundancy distributions (e) have the same
power law tail and power law core but different power law roots in the loglog
redundancy plot (a). This leads to different unique recall functions (b&d),
and different fractions of information learned after sampling 20% data (c).

the most common redundancy distribution of words in a large corpus [27] and
many other frequency distributions [21,22]. Given our normalized framework, we
can now ask the interesting question: Does the 80-20 rule hold for information
acquisition assuming a Zipf distribution? Put differently, if we sample 20% of
the total amount of data (e.g. read 20% of a text corpus, or look at 20% of all
existing tags on the Web), what percentage of the contained information (e.g.
fraction of different words in a corpus or the tagging data) can we expect to
learn if redundancy follows a Zipf distribution? Figure 4c lists the results for
the three power law distributions and shows that, depending on which from the
three definitions we choose, we can only expect to learn between 32% and 40% of
the information. Note that we can apply this rule of thumb without knowing the
total amount of available information. Also note that these numbers are sensitive
to the power law root and, hence, to deviations from an ideal power law. This
is also why unique recall diverges for our 3 variations of power law definitions
in the first place (Fig. 4a). Finally, Fig. 4d shows that the power law exponent
would have to be considerably different from γ = 1 to give a 80-20 rule.

Rule of thumb 1 (40-20 rule). When randomly sampling 20% of data whose
redundancy distribution follows an exact Zipf distribution, we can expect to learn
less than 40% of the contained information.

5 K-recall and the evolution of redundancy distributions

So far, we were interested in the expected fraction ru of information we learn
when we randomly sample a fraction r of the total data. We now generalize the
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question and derive an analytic description of the overall shape of the expected
sample redundancy distribution (Fig. 3c). As it turns out, and what will become
clear in this and the following section, the natural way to study and solve this
question is again to analyze the horizontal “evolution” of the redundancy layers η
during sampling. To generalize unique recall ru, we define k-recall as the fraction
ruk of information that has redundancy ≥ k and also appears at least k times in
our sample. More formally, let auk be the number of unique pieces of information
with redundancy ≥ k in a data set, and let buk be the number of unique pieces of
information with redundancy ≥ k in a sample. K-recall ruk is then the fraction
of auk that has been sampled: ruk = buk

auk
. The special case ru1 is then simply

the so far discussed unique recall ru. We assume large data sets throughout this
and all following section without always explicitly using the hat notation r̂uk.

K-recall has its special relevance when sampling from partly unreliable data.
In such circumstances, the general fall-back option is to assume a piece of in-
formation to be true when it is independently learned from at least k different
sources. This approach is used in statistical polling, in many artificial intelligence
applications of learning from unreliable information, and in consensus-driven de-
cision systems: Counting the number of times a piece of information is occurring
(its support) is used as strong indicator for its truth. As such, to believe a piece of
information only when it appears at least k times in a random sample serves as
starting point from which more complicated polling schemes can be conceived.
In this context, ruk gives the ratio of information that we learn and consider true
(it appears ≥ k times in our sample) to the overall information that we would
consider true if known to us (it appears ≥ k times in the data set) (Fig. 5a).

We also introduce a variable ωk for the fraction of total information we get
in our sample that appears at least k times instead of just once. Note that
ωk = ηkruk = buk

au
. All ωk with k ∈ [kmax] together form the vector ω repre-

senting the sample redundancy layers in a random sample with r ∈ [0, 1]. As r
increases from 0 to 1, it “evolves” from the kmax-dimensional null vector 0 to
the redundancy layers η of the original redundancy distribution. Because of this
intuitive interpretation, we call evolution of redundancy the transformation of a
redundancy frequency distribution given by the redundancy layers η to the ex-
pected distributionω as a function of r: η

r−→ω, r ∈ [0, 1]. We further use ∆k to
describe the fraction of information with redundancy exactly k: ∆k = ωk−ωk+1.
To define this equation for all k ∈ N0, we make the convention ω0 = 1 and ωk = 0
for k > kmax. We can then derive the following analytic description:

Proposition 2 (Sample distribution ω). The asymptotic expectation of the
fraction of information ωk that appears with redundancy ≥ k in a randomly sam-
pled fraction r without replacement from a data set with redundancy distribution

α is ω̂k = 1−∑k−1
y=0

∑∞
x=y αx

(
x
y

)
ry(1−r)x−y for lima→∞.

The first part of the proof constructs a geometric model of sampling from
infinitely large data sets with homogenous redundancy and derives the binomial
distribution as evolution of the redundancy layers. The second part then applies
this result to stratified sampling from arbitrary redundancy distributions.
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Fig. 5: Given a redundancy frequency distribution α and recall r. K-recall
ruk describes the fraction of information appearing ≥ k times that also
appears ≥ k times in our sample: ruk = ωk

ηk
(a). Sampling from completely

developed power laws leads to sample distributions with the same power law
tail, and ruk ≈ rγ holds independent of k for k & 10 (b). Truncated power
laws are cut off at some maximum value kmax (c). As a consequence, the
tails of the sample distributions “break in” for increasingly lower recalls
(d). However, the invariant power law core with ruk ≈ rγ is still visible.

6 The Evolution of power laws

Given the complexity of Prop. 2, it seems at first sight that we have not achieved
much. As it turns out, however, this equation hides a beautiful simplicity for
power laws: namely, their overall shape remains “almost” invariant during sam-
pling. We will first formalize this notion, then prove it, and finally use it for
another, very robust rule of thumb.

We say a redundancy distribution α is invariant under sampling if, indepen-
dent of r, the expected normalized sample distribution ∆/ω1 is the same as the
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original distribution: ∆kω1
= αk. Hence, for an invariant distribution it holds that

ωk =
∑∞
x=k+1∆x = ω1

∑∞
x=k+1 αx = ω1ηk, and, hence, ruk is independent of k:

ruk = ω1. With this background, we can state the following lemma:

Lemma 1 (Invariant family). The following family of redundancy distribu-
tions is invariant under sampling: αk = (−1)k−1

(
τ
k

)
, with 0 < τ ≤ 1.

The proof of Lemma 1 succeeds by applying Prop. 2 to the invariant fam-
ily and deriving ruk = rτ after application of several binomial identities. Note
that the invariant family has a power law tail. We see that by calculating its
asymptotic behavior with the help of the asymptotic of the binomial coefficient(
τ
k

)
= O

(
1

k1+τ

)
, as k →∞, for τ /∈ N. Therefore, we also have αk = O

(
k−(1+τ)

)
for k →∞. Comparing this equation with the power-law in the redundancy fre-
quency plot, αk ∝ k−β , we get the power-law equivalent exponent as β = τ + 1,
with 1 < β ≤ 2. Also note that the invariant family is not “reasonable” according
to the definition of [2], since the mean redundancy

∑∞
k=1 ηk is not finite.

We next analyze sampling from completely developed power laws, i.e. distribu-
tions that have infinite layers of redundancy (kmax →∞). Clearly, those cannot
exist in real discrete data sets, but their formal treatment allows us to also con-
sider sampling from truncated power laws. The latter are real-world power law
distributions which are truncated at kmax ∈ N (Fig. 5c). We prove that the power
law core remains invariant for truncated power laws, and they, hence, appear as
“almost” invariant over a large range, i.e. except for their tail and their root.

Lemma 2 (Completely developed power laws). Randomized sampling with-
out replacement from redundancy distributions with completely developed power
law tails αC leads to sample distributions with the same power law tails.

Theorem 1 (Truncated power law distributions). Randomized sampling
without replacement from redundancy distributions with truncated power law tails
αT leads to distributions with the same power law core but further truncated
power law tails.

The proof for Lemma 2 succeeds in a number of steps by showing that
limi,j→∞

rui
ruj

= 1 for distributions with αC . The proof of Theorem 1 builds

upon this lemma and shows that limk�kmax ∆k(αT , r) = ∆k(αC , r). In other
words, Theorem 1 states that sampling from real-world power law distributions
leads to distributions with the same power law core but possibly different tail
and root. More formally, ruk ≈ rγ for k1 < k < k2, where k1 and k2 depend
on the actual distribution, maximum redundancy and the power law exponent.
Both, tail and root, are usually ignored when judging whether a distribution
follows a power law (cf. Figure 3 in [8]), and to the best of our knowledge, this
result is new. Furthermore, it is only recently that Stumpf et al. [26] have shown
that sampling from power laws does not lead to power laws in the sample, in
general. Our results clarifies this result and shows that only their tails and roots
are subject to change. Figure 5b, Fig. 5c and Fig. 5d illustrate our result.
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Rule of thumb 2 (Power law cores). When randomly sampling from a power
law redundancy distribution, we can expect the sample distribution to be a power

law with the same power law exponent in the core: ruk ≈ rγ for k1 < k < k2 .

7 Large real-world data sets

Data sets. We use two large real-world data sets that exhibit power-law char-
acteristics to verify and illustrate our rules of thumb: the number of links to web
domains and the keyword distributions in social tagging applications.

(1) The first data set is a snapshot of a top level domain in the World Wide
Web. It is the result of a complete crawl of the Web and several years old.
The set contains 267,415 domains with 5.422,730 links pointing between them.
From Fig. 6a, we see that the redundancy distribution follows a power law with
exponent γ ≈ 0.7 (β ≈ 1.7, δ ≈ 1.43) for k & 100. Below 100, however, the
distribution considerably diverges from this exponent, which is why we expect
that rule of thumb 1 does not apply well. We now assume random sampling
amongst all links in this data set (e.g. we randomly choose links and discover
new domains) and ask: (i) what is the expected number of domains and their
relative support (as indicated by linking to it) that we learn as function of the
percentage of links seen? (ii) what is the fraction of domains with support ≥ k
in the original data that we learn with the same redundancy?

(2) The second data set concerns different keywords and their frequencies
used on the social bookmarking web service Delicious (http://delicious.com).
A total number of ≈ 140 Mio tags are recorded of which ≈ 2.5 Mio keywords
are distinct [7]. The redundancy distribution (Fig. 6c) follows a power law with
exponent γ ≈ 1.3 (β ≈ 2.3, δ ≈ 1.3) very well except for the tail and the very
root. Here we assume random sampling amongst all individual tags given by
users (e.g. we do not have access to the database of Delicious, but rather crawl
the website) and ask: (i) what is the expected number of different tags and their
relative redundancies that we learn as function of the percentage of all tags seen?
(ii) what is the fraction of important tags in the sample (tags with redundancy
at least k) that we can also identify as important by sampling a fraction r?

Results. From Fig. 6b and Fig. 6d we see that after sampling 20% of links
and tags respectively, we learn 60% and 40% of the domains and words, re-
spectively. Hence, our first rule of thumb works well only for the second data set
which better follows a power law. Our second rule of thumb, however, works well
for both data sets: In Fig. 6b, we see that, in accordance with our predication,
the horizontal lines for ruk = rγ become apparent for 102 < k < 103, and in
Fig. 6d, for 101 < k < 104 (compare with our prediction in Fig. 5d).

8 Related Work

Whereas the influence of redundancy of a search process has been widely ana-
lyzed [5,19,25], and randomized sampling used in other papers in this field [11,19],

http://delicious.com
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Fig. 6: Original and sample web link distribution (a). Resulting k-recalls
averaged over N =100 repetitions (b). Original and sample tag distribution
on Delicious (c). Resulting k-recalls averaged over N = 10 repetitions (d).

our approach is new in the way that we analytically characterize the behavior of
the sampling process as a function of (i) the bias in redundancy of the data and
(ii) recall of the used retrieval process. In particular, this approach allows us to
prove a to date unknown characteristics of power laws during sampling. Achliop-
tas et al. [2] give a mathematical model that shows that traceroute sampling from
Poisson-distributed random graphs leads to power laws. Their analysis is limited
to “reasonable” power laws, which are such for which α > 2 and also assumes a
very concrete sampling process tailored to their context. This is in contrast with
our result which proves that completely developed power law functions retain
their power law tail, and truncated power laws at least their power law core
during sampling. Haas et al. [18] and Chaudhuri et al. [9] investigate ways to
estimate the number of different attribute values in a given database. This prob-
lem is related in its background but different from its focus. We estimate the
number of unique attributes seen after sampling a fraction and later the overall
sample distribution. Stump et al. [26] show that, in general, power laws do not
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remain invariant under sampling. In this paper, we could show that – while not
in their entirely – at least the core of power laws remains invariant under sam-
pling. General balls-and-urn models have been treated in detail by Gardy [14].
Gardy showed a general theorem which contains Prop. 1 as a special case. How-
ever, she does neither investigate the behavior of power laws during sampling,
nor extends this result to the evolution of the overall distribution Prop. 2. Only
the later allowed us to investigate the overall shape of redundancy distributions
during sampling. Flajolet and Sedgewick [12] study the evolution of balanced,
single urn models of finite dimensions under random sampling, where dimension-
ality refers to the number of colors. Using methods of analytic combinatorics,
they can associate an ordinary differential system of the same dimension to any
balanced urn model, and that an explicit solution of the differential systems pro-
vides automatically an analytic solution of the urn model. They mainly focus on
urn models of dimension 2 (i.e., balls can be of either of two colors), and also
solve some special cases for higher dimensions. They further note, that there is
no hope to obtain general solutions for higher dimensions, however, that special
cases warrant further investigation. Using a similar, but slightly different nomen-
clature, we also studied a special case of balanced, single urn models, however
with infinite dimension (i.e., infinite number of colors). We further showed that
the case of infinite dimensions allows simple analytic solutions which very closely
represent cases with high dimensionality.

In [15], we gave Prop. 1 and motivated the role of different families of re-
dundancy distributions on the effectiveness of information acquisition. However,
we did not treat the case of power laws, nor the evolution of distributions dur-
ing sampling (Prop. 2). To the best of our knowledge, the main results in this
paper are new. Our analytic treatment of power laws during sampling, the in-
variant family, and the proof that sections of power laws remain invariant are
not mentioned in any prior work we are aware of (cf. [10,12,13,14,21,22,24]).

9 Discussion and Outlook

Our target with this paper was to develop a general model of the information
acquisition process (retrieval, extraction and integration) that allows us to esti-
mate the overall success rate when acquiring information from redundant data.
With our model, we derive the 40-20 rule of thumb, an adaptation of the Pareto
principle. This is a negative result as to what can be achieved, in general. A
crucial idea underlying our mathematical treatment of sampling was adopting
a horizontal perspective of sampling and thinking in layers of redundancy (“k-
recall”). Whereas our approach assumes an infinite amount of data, we have
shown our approximation holds very well for large data sets (see Fig. 2b). We
have focused on power laws, as they are the dominant form of biased frequency
distributions. Whereas Stump et al. [26] have shown that, in general, power laws
do not remain invariant under sampling, we have shown that (i) there exists
one concrete family of power laws which does remain invariant, and (ii) while
power laws do not remain invariant in their tails and root, their core does remain
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invariant. And we have used this observation to develop a second rule of thumb
which turns out to be very robust (cp. Fig. 5d with Fig. 6d). In future work,
we intend to extend this analytic method to depart from the pure randomized
sampling assumption and incorporate more complicated retrieval processes.
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A Nomenclature

a total data items
b sampled data items
r recall or coverage of data = b/a
[ ]u subscript for “unique” information contained in data
au total pieces of information
bu acquired pieces of information
ru unique recall or coverage of information = bu/au
ρ average redundancy = a/au
ρi redundancy of a piece of information with rank i
ρ redundancy distribution = (ρ1, . . . , ρau)

[̂ ] accent for approximation by limes = lima→∞ E ([ ])
r̂u approximate unique recall
[ ]uk subscript for information with redundancy k
auk pieces of information with redundancy ≥ k
buk pieces of information acquired with redundancy ≥ k
kmax maximum redundancy
αk fraction of information with redundancy k
α redundancy frequency distribution = (α1, . . . , αkmax)
ηk fraction of information with redundancy ≥ k
η normalized redundancy layers = (η1, . . . , ηkmax)
ωk evolution of the k-th redundancy layer = buk/au
ω vector of sample evolution = (ω1, . . . , ωkmax)
ruk k-recall = buk/auk
ru vector of k-recall = (ru1, . . . , rukmax)
∆k fraction of information with redundancy = k in a sample
∆ redundancy frequency distribution of sample = (∆1, . . . ,∆kmax)

(a)

Original Sample
redundancy redundancy Relative
distribution distribution fraction

Fraction with
αk ∈ α ∆k ∈∆ θk = ∆k

αkredundancy = k

Fraction with
ηk ∈ η ωk ∈ω ruk = ωk

ηkredundancy ≥ k
(b)

Fig. 7: Variables used in this paper (a). Original and sample redundancy
distributions and their ratios (b). Also compare with Fig. 13a and Fig. 13b.

One basic abstraction used throughout this paper is that of a redundancy
distribution, illustrated with a colored balls and urn model in Fig. 2a. The
vertical axis shows redundancy for each color and the horizontal axis lists colors
in order of decreasing values. The two axes information and redundancy span

the area of data. In short: data = information × redundancy .
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B Details Section 3 (unique recall)

B.1 Unique recall for uniform distributions

Here, we first show Prop. 1 for the special case of a uniform redundancy distri-
bution ρ = const, then treat the general case in Section B.2.

Lemma 3 (Uniform unique recall). Assume randomized sampling from a
data set with uniform redundancy distribution ρ with ρi = ρ, and let r be the
recall of the underlying data gathering process. Then the asymptotic expectation
of unique recall ru for large data sets is

lim
a→∞

E (ru) = r̂u = 1− (1− r)ρ . (1)

Proof. Assume an urn filled with balls in au different colors (Fig. 8). Each color
appears on exactly ρ different balls, which makes a total number of a = ρau
balls. We now randomly draw b balls from the urn without replacement. What
is the average number of different colors bu we are expected to see?

1 . . . i . . . au

ρ

Colors

R
ed

u
n
d
a
n
cy

o
f

co
lo

rs

ρau = a bal l s

Fig. 8: An urn filled with a balls in au different colors.

When randomly drawing b from a balls, the outcome is any of
(
a
b

)
equally

likely subsets. The number of those subsets in which any given color i does not
appear is the number of possible subsets when choosing b from a−ρ balls,

(
a−ρ
b

)
.

Hence, the likelihood that any color i does not appear in a random sample is
the fraction of those numbers, or

P [X(i) = 0] =
# of subsets without i

# of total subsets
=

(
a−ρ
b

)(
a
b

) .

The likelihood of color i appearing in the sample at least once is the compliment
of this fraction, or

P [X(i) ≥ 1] = 1−
(
a−ρ
b

)(
a
b

) . (2)
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As this equation holds for each color independently and we can, therefore, treat
the likelihood of appearance for any color as independent events, the expected
number of different colors bu in the draw is equal to

E (bu) = auP [X(i) ≥ 1] = au

(
1−

(
a−ρ
b

)(
a
b

) ) .

Therefore, the expected value of unique recall is

E (ru) =
E (bu)

au
= 1−

(
a−ρ
b

)(
a
b

) . (3)

Now, let us compute the asymptotic expectation for a → ∞ and b propor-
tional to a. We have(

a−ρ
b

)(
a
b

) =

{
(a−ρ)!
a!

(a−b)!
(a−b−ρ)! if b < a− ρ

0 if b ≥ a− ρ.
(4)

Now note that a and a− b tend to infinity whereas ρ is constant. Thus we have

to analyze expressions like (a−ρ)!
a! asymptotically (then plug a − b instead of a

into this formula to get the asymptotic equivalent for the second factor of Eq. 4).
This can be done by Stirling’s formula

n! =
nn

en

√
2πn

(
1 +

1

12n
+O

(
1

n2

))
, as n→∞.

In a few steps we can derive

lim
a→∞

(
a−ρ
b

)(
a
b

) = lim
a→∞

(a− ρ)!

a!

(a− b)!
(a− b− ρ)!

= lim
a→∞

(a− b)ρ
aρ

= (1− r)ρ. (5)

So we have finally
lim
a→∞

E (ru) = r̂u = 1− (1− r)ρ. ut

B.2 Unique recall for general distributions

The previous approach of deriving the basic unique recall formula allows us to
treat general redundancy distributions as well. Only now, each color i appears
with redundancy ρ(i) or ρi (Fig. 9).

Proof (Prop. 1). From Eq. 2, we know that the likelihood of color i appearing
in as random sample of size b at least once is

P [X(i) ≥ 1] = 1−
(
a−ρi
b

)(
a
b

) .
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1 . . . i . . . au

ρ(1)

ρ(i )

ρ(au)

Pieces of information
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ρ
Fig. 9: An urn filled with balls of au different colors with varying redundancy
ρ(i) for each color i.

This equation again holds independently for each color i ∈ [au], which allows us
to simply add the likelihoods of all colors and calculate the expected number of
different colors bu in the draw as

E (bu) =

au∑
i=1

P [X(i) ≥ 1]

= au −
au∑
i=1

(
a−ρi
b

)(
a
b

) .

Therefore, we get as the exact combinatorial expected value ru

E (ru) =
E (bu)

au

= 1− 1

au

au∑
i=1

(
a−ρi
b

)(
a
b

)
= 1− 1

au
(
a
b

) au∑
i=1

(
a− ρi
b

)
. (6)

As we know from our previous limit consideration (Eq. 5)

lim
a→∞

(
a−ρi
b

)(
a
b

) = (1− r)ρi ,

the exact equation can be simplified for large data sets (a→∞) to

lim
a→∞

E (ru) = 1− 1

au

au∑
i=1

(1− r)ρi . (7)

Whereas the latter formula is much simpler to evaluate for a given redun-
dancy distribution, the bias of redundancy is still described by the exact distri-
bution of individual data items ρ = (ρ1, ρ2, ..., ρau). However, in a new step we
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can transform it further to

lim
a→∞

E (ru) = r̂u = 1−
kmax∑
k=1

αk (1− r)k , (8)

with αk standing for the fraction of information with redundancy k, kmax being
the maximum occurring redundancy ρ1, and the sum of the fractions

∑kmax

k=1 αk =
1 summing up to 1.

The variance Var (bu) = E
(
b2u
)
− (E (bu))2 can be calculated by similar but

a bit more intricate calculations as

Var (bu) = a2
u

((
a−2ρ
b

)(
a
b

) −
(
a−ρ
b

)2(
a
b

)2
)

+ au

((
a−ρ
b

)(
a
b

) − (a−2ρ
b

)(
a
b

) )

From that, it can be shown that

Var (ru) ∼ 1

au
(1− r)ρ

(
1− (1− r)ρ

(
1 +

rρ

1− r

))
(9)

which tends to 0, as a→∞. This means that the random variable ru is asymp-
totically concentrated around its mean value. ut

Note, we can calculate the vector α = (αk) from ρ as

αk =

∣∣{i|ρ(i) = k, i ∈ Nau1 ,ρ = (ρi)}
∣∣

au
,

with k ∈ Nkmax
1 , kmax = ρ1 = max(ρ), and au = dim(ρ) being the number of

different data items. The vector α presents an alternative description of bias in
redundancy of data (Fig. 2). However, it is not an equivalent description without
au explicitly stated, which we see by calculating ρ back from α by

ρi = min
{
k
∣∣∣ kmax∑
x=k

αx ≥
i

au
, k ∈ Nkmax

1 ,α = (αx)
}
, (10)

with i ∈ Nau1 , kmax = dim(α), and the number of total pieces of information au
not explicitly given by α. More formally, we can state for two variations of the
mapping:

f : ρ→ α : non-injective mapping

f : ρ→ (α, au) : injective mapping .

B.3 Further observations

Illustration of the limit value. Figure 3a illustrates with three example
values that the basic unique recall formula poses a good approximation for Eq. 3
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as exact combinatorial solution of E (ru) for a → ∞ with a being the total
number of redundant data items. Figure 3b in addition plots the 5th and 95th
percentile of the random variable ru. For this plot, we randomly sampled and
averaged over 1000 times for each data point. Given any pair of values ρ and r,
only certain combinations of a, b, au and bu, and thus, certain values of ru are
possible. As a consequence, the resulting percentile graphs are ragged. Finally,

Figure 10 illustrates with our running example Fig. 2 r̂u is a good approxi-
mation not only for E (r), but also for E (b) = auE (r). Even the absolute error
in ∆ = E (bu)− aur̂u generally decreases with the size of the data set.
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α ρ1 = (6, 3, 3, 2, 1) ρ2 = (6, 6, 3, 3, 3, 3, 2, 2, 1, 1)
a→∞ au = 5, a = 15 au = 10, a = 30
r r̂u b E (bu) aur̂u ∆ b E (bu) aur̂u ∆

0.2 0.455 3 2.420 2.274 0.146 6 4.684 4.548 0.136
0.4 0.712 6 3.671 3.561 0.110 12 7.230 7.123 0.107
0.6 0.862 9 4.369 4.308 0.061 18 8.677 8.616 0.061
0.8 0.949 12 4.771 4.744 0.027 24 9.511 9.488 0.023

(c)

Fig. 10: Comparing E (bu(ρ, r)) – the exact solution for the expected num-
ber of pieces of information learned – for ρ1 and ρ2 with the approximate
solution E (bu) ' aur̂u(α, r) shows that Prop. 1 is a good approximation
of the exact solution Eq. 6 for large data sets (a → ∞): For constant
α = ( 1

5
, 1
5
, 2
5
, 0, 0, 1

5
), not only the error of expected unique recall E (ru) − r̂u,

but also the error in the expected number of learned pieces of information
∆ = E (bu)− aur̂u decreases, in general, with increasing a.

Analogy. On a side note, the following problem presents an interesting math-
ematical analogy: Assume that a web crawler finds each available online copy
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of a research paper with probability γ. The probability of missing a document
is 1 − γ, the probability of missing a document with c copies online (1 − γ)c,
and, hence, the probability of finding and indexing a document with c copies
online 1 − (1 − γ)c [23]. Though the nature of the solution is the same as the
one to our problem and both problems seem to be identical at first sight, the
underlying question is different from asking how many different documents one
could retrieve on average. The reason is that expectations cannot be added in
the presence of mutual correlations. Looking at one particular document has an
exact solution which is always true: 1−(1−γ)c. The exact answer to our problem
is Eq. 3, which only approaches Eq. 1 when taking the limes.

The difference is best illustrated with the first few red dots in Fig. 3a: Ex-
pected unique recall is 0.83 for a = 4 and the ρ = 2, r = 0.5 and au = 2 different
documents, and not 0.75.

Geometric interpretation. Equation 8 also allows an interesting geometric
interpretation of unique recall for a general redundancy distribution as the mean
of all unique recalls r̂u(k, r) for uniform redundancies k ≤ kmax, weighted by their
fractions αk:

r̂u =

kmax∑
k=1

αk r̂u(k, r) .

The intuition why this formula must hold is the same why stratification in statis-
tics does not change the expected outcome of a sampling process. In stratified
sampling, first, a population to be sampled is grouped into MECE (mutually ex-
clusive, collectively exhaustive) subgroups and then a fraction is sampled from
each strata that is proportional to their relative sizes [24]. The mathematical
justification is that, on average, the fractions sampled in a random draw are
the same across all strata and the total population. For the same reason, when
sampling a fraction r of the total amount of data, r will also be the expected
fraction that is sampled from each subset or strata with constant redundancy.
Hence, we get back Eq. 8 for the formula of unique recall r̂u(α, r) of a general
redundancy distribution α:

r̂u(α, r) =

kmax∑
k=1

αkru(k, r)

=

kmax∑
k=1

αk
(
1− (1− r)k

)
= 1−

kmax∑
k=1

αk(1− r)k .

We will use this possibility to average over fractions with constant redundancy
again in Section D when we calculate the evolution of the general redundancy
distribution.
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C Details Section 4 (unique recall for power laws)

C.1 Power laws in the redundancy distribution

Here, we consider the case when the frequency or redundancy ρ of an item is
proportional to a power law with exponent δ of its rank i:

ρ(i) ∝ i−δ , i ∈ [au] .

One often cited example of this distribution with δ ≈ 1 (Zipf distribution) is the
frequency rank distribution of words appearing in arbitrary corpora [27].

In the normalized redundancy distribution, this power law translates into

ρ(η) ∝ η−δ , η ∈ [0, 1] ,

whereby the above two relations could only hold closely if real values were pos-
sible for ρ(i) and ρ(η). If we assume some underlying continuous process that is
responsible for the observed discrete power law, then the natural way to model
above relation is by rounding to the nearest possible redundancy k ∈ N0,

k(η) = round
(
ρ(η)

)
= round

(
C · η−δ

)
= bC · η−δ + 0.5c .

The last step uses the floor function bxc to describe the greatest integer less or
equal to x, which, in the next step, helps us calculate the fraction of information
ηk that appears at least k times. As we only consider positive integers for k, we
can leave away the floor function when expressing ηk = η(k) and get

k = C · η−δk + 0.5

or

ηk =

(
k − 0.5

C

)− 1
δ

.

As the fraction of information that appears at least one time is equal to 1 and,
thus η1 = 1, we have C = 0.5. So we get

ηk = (2k − 1)
− 1
δ .

From their definitions in Section 2, we know that αk = ηk − ηk+1 and, hence,

αk = (2k − 1)−
1
δ − (2k + 1)−

1
δ . (11)

Then, from Prop. 1 we know r̂u(r) = 1 −∑∞k=1 αk(1 − r)k and can now state
approximate unique recall for a redundancy distribution that follows a power
law with exponent δ as

r̂u(r) = 1−
∞∑
k=1

(
(2k − 1)−

1
δ − (2k + 1)−

1
δ

)
(1− r)k .
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This infinite sum cannot be reduced in general. However, it does have a closed
solution for δ = 1. To see this, we substitute with x =

√
1− r to get

r̂u(x) = 1−
∞∑
k=1

(
(2k − 1)−

1
δ − (2k + 1)−

1
δ

)
x2k

= 1− x
∞∑
k=1

(2k − 1)−
1
δ x2k−1 +

1

x

∞∑
k=1

(2k + 1)−
1
δ x2k+1

= 1− x
∞∑
k=1

(2k − 1)−
1
δ x2k−1 +

1

x

∞∑
k=0

(2k + 1)−
1
δ x2k+1 − 1

= 1− x
∞∑
k=1

(2k − 1)−
1
δ x2k−1 +

1

x

∞∑
k=1

(2k − 1)−
1
δ x2k−1 − 1

=
1− x2

x

∞∑
k=1

(2k − 1)−
1
δ x2k−1

︸ ︷︷ ︸
S

.

It is interesting to observe the relation of the power series S to the polylogarithm:
S consists just of the odd terms from the power series of the polylogarithm. To
the best knowledge of the author, there is no generally known function defined for
this series nor a way to reformulate it as a function of other basic and generally
known functions defined in mathematics. For δ = 1, however, S is simply the
power series of tanh−1(x) = artanh(x), the inverse hyperbolic tangent [4, p. 484]
as

artanh(x) = x+
x3

3
+
x5

5
+ · · · .

Thus, analogous to the polylogarithm being a generalization of the logarithm
with Li1(x) = log(x), S could be considered a similar extension to artanh(x).
Not being defined as such and, therefore, most likely not commonly found in
mathematics, we can reformulate unique recall at least for δ = 1 as

r̂u(x) =
1− x2

x
artanh(x) .

Resubstituting
√

1− r for x, we finally get

r̂u(r) =
r√

1− r artanh(
√

1− r) .

C.2 Power laws in the redundancy frequency plot

Next, we assume that the fraction of information αk that appears exactly k times
follows a power law

αk = C · k−β , k ∈ N1 .
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Here, we use β as exponent when αk follows a power law to distinguish this case
from the previous one where ρ(η) followed a power law with exponent δ. From
k = 1, we see that the constant of proportionality C is equal to α1 and, hence,

αk = α1k
−β .

Using the normalizing condition
∑∞
k=1 αk = 1, we get

α1

∞∑
k=1

k−β = 1 .

The infinite sum on the left side is known in mathematics as the Riemann zeta
function [17, p. 263],

ζ(z) =

∞∑
k=1

k−z ,

which allows to state

α1 =
1

ζ(β)
,

and further

αk =
k−β

ζ(β)
.

From their definitions in Section 2, we know that the fraction of information ηk
that appears at least k times (or has redundancy ≥ k) is

ηk = 1−
k−1∑
x=1

αk

= 1− 1

ζ(β)

k−1∑
x=1

x−β .

The series on the right side is known as the generalized harmonic number of

order (k − 1) of β. The generalized harmonic number H
(z)
k of order k of x [20,

p.74] is defined as

H
(z)
k =

k∑
x=1

x−z ,

which, for k =∞, is equal to the Riemann zeta function:

H(z)
∞ =

∞∑
x=1

x−z = ζ(z) .

We, therefore, have

ηk = 1− H
(β)
k−1

ζ(β)
.
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Then, from Prop. 1 we know r̂u(r) = 1−∑∞k=1 αk(1−r)k and get as approx-
imate unique recall

r̂u = 1− 1

ζ(β)

∞∑
k=1

k−β(1− r)k.

The infinite series on the right side is known in mathematics as polylogarithm.
The polylogarithm Liz(x) is defined as

Liz(x) =

∞∑
k=1

k−zxk ,

which, for x = 1, is again equal to the Riemann zeta function:

Liz(1) =

∞∑
k=1

k−z = ζ(z) .

We can, therefore, write unique recall for a redundancy distribution where the
redundancy frequencies αk follow a power law with exponent β as

r̂u = 1− Liβ(1− r)
ζ(β)

.

C.3 Power laws in the redundancy layers

Here, we assume that the redundancy layers ηk ∈ [0, 1] follow a power law

ηk ∝ k−γ .

As η1 = 1 (the first layer must always be 1), we can directly write

ηk = k−γ .

From αk = ηk − ηk+1 we know the fraction of information that appears exactly
with redundancy k to be

αk = k−γ − (k + 1)−γ , (12)

and from r̂u(r) = 1−∑∞k=1 αk(1− r)k, we get approximate unique recall as

r̂u(r) = 1−
∞∑
k=1

(
k−γ − (k + 1)−γ

)
(1− r)k .
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Like in the previous subsection, the infinite series can be expressed by the poly-
logarithm; this time, however, after some transformations:

r̂u(r) = 1−
∞∑
k=1

k−γ(1− r)k +

∞∑
k=1

(k + 1)−γ(1− r)k

= 1−
∞∑
k=1

k−γ(1− r)k +
1

1− r
∞∑
k=1

(k + 1)−γ(1− r)k+1

= 1−
∞∑
k=1

k−γ(1− r)k +
1

1− r
∞∑
k=2

k−γ(1− r)k

= 1−
∞∑
k=1

k−γ(1− r)k +
1

1− r
∞∑
k=1

k−γ(1− r)k − 1

=
r

1− r
∞∑
k=1

k−γ(1− r)k .

Using the definition for the polylogarithm, we learn unique recall for a redun-
dancy distribution where the redundancy layers ηk follow a power law with
exponent γ as

r̂u(r) =
r

1− r Liγ(1− r) .

For the special case of γ = 1, we can use the property Li1(x) = − ln(1− x),
and simplify unique recall as

r̂u(r) = − r ln r

1− r .

C.4 Comparing the power law tails

All three power laws show the typical power law straight line in the loglog redun-
dancy frequency plot for their tails (Fig. 4a). The coefficients can be calculated
from each other as follows. We first calculate γ = γ(β). From the binomial
theorem, we can expand

(k + 1)−γ = k−γ − γk−γ−1 +
γ(γ − 1)

2
k−γ−2 − · · · .

Applying this formula to Eq. 12, we get

αk = k−1 − (k + 1)−1

= γk−γ−1 − γ(γ − 1)

2
k−γ−2 + · · ·

= O
(
k−(γ+1)

)
.

Hence, we can calculate β from γ by

β = γ + 1 .
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We next calculate δ = δ(β). Again using the binomial theorem, this time to

(2k ± 1)−
1
δ , we get

(2k ± 1)−
1
δ =

∞∑
x=0

(− 1
δ

x

)
(2k)−

1
δ−x(±1)x

= (2k)−
1
δ ±

(
−1

δ

)
(2k)−

1
δ−1 +

(
− 1
δ

) (
− 1
δ − 1

)
2

(2k)−
1
δ−2 ± · · · .

Applying this formula to Eq. 11, we get

αk = (2k − 1)−
1
δ − (2k + 1)−

1
δ

= −2

(
−1

δ

)
(2k)−

1
δ−1 + · · ·

=
2−

1
δ

δ
· k− 1

δ−1 + · · ·

= O
(
k−( 1

δ+1)
)
,

and, hence,

β =
1

δ
+ 1 .

Figure 4e shows the relations between the individual power law exponents.

D Details Section 5 (evolution of redundancy
distributions)

D.1 Evolution of the uniform distribution

We develop a geometric model of stratified sampling to first deduce the evolution
of the uniform distribution ρ = const. We will then generalize this approach in
Section D.2 and prove Prop. 2.

We assume the total amount of information to be large. Therefore, our fo-
cus can shift from individual pieces of information to fractions of uncountable
information where each piece of evidence is infinitesimal. Without loss of gen-
erality we set the total amount of unique information to 1. As all information
has redundancy ρ, the total amount of data is then ρ and we can depict this
uniform redundancy distribution as a stack of ρ layers of the same unique in-
formation (Fig. 11a). We consider a random sampling process of fraction r in
such way, that before sampling, we divide the population into different sub-
populations or strata (‘strata’ means ‘layers’), and then take samples from all
sub-populations in proportion to their relative sizes. In statistics, this process is
known as stratification, the process of grouping members of the population into
relatively homogeneous and MECE (mutually exclusive, collectively exhaustive)
subgroups and then proportional allocation of sample sizes to the subgroups [24].
As, on average, the fractions sampled in a random draw are the same across all
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Fig. 11: (a): Geometric interpretation of sampling from a normalized uni-
form redundancy distribution: Sampling happens from layer 1 to layer ρ,
one after the other. In each layer, existing divisions are further divided into
two fractions of size proportional to r (grey) and 1−r (white). (b): The pro-
cess of building the divisions from one layer to the next can be compared to
a upside-down tree where at each node going left happens with probability
r and right with probability 1− r.

strata and the total population, stratification does not change the expected out-
come of a sampling process. In our case, where we consider the limit case of very
large data sets with a → ∞ data points, this step of subdividing populations
and then sampling in proportion to their sizes can be repeated arbitrarily often
and does not change the expected outcome of the overall sampling process.

We start bottom up from layer 1 to layer ρ, and at each layer further divide
all existing divisions from previous layers into two parts: one of relative size r
from which we sample (grey) and one of relative size 1 − r from which we do
not sample (white). At the first layer, we divide into two strata: a fraction r
of sampled information and a fraction 1 − r of unsampled information. In the
second layer, we first divide the total amount of information into the same two
groups of information already seen in the first layer of size r and a second group
with information not yet seen of size 1− r. Then we choose samples from both
subgroups of proportion r of their sizes, thus getting one fraction of size r2 of
twice seen information, two strata with size r(1 − r) of once seen information,
and one strata with size (1− r)2 of not yet sampled information in either layer.
Iteratively repeating this process, we have 2k divisions of the total amount of
information at any layer k. The formation of the divisions in the highest layer
ρ can be imagined by the growth of a tree where each division is connected to
the division in the previous layer from which it originated (Fig. 11b). The size
of each division depends on the number of times it was created by choosing the
sample option with proportion r or the not-sample option with size 1 − r. As
an example, the arrows in Fig. 11b point to those 4 divisions in the fourth layer
which represent one time sampling and three times non-sampling out and which
are, therefore, of size r(1 − r)3. More general, the size of the divisions in layer
ρ representing k times sampling and ρ − k times non sampling is rk(1 − r)ρ−k.
The number of such divisions is equal to the number of ways that k objects



29

0 0.2 0.33 0.5 0
0

0.5

1

Recall r

E
v
o
lu

ti
o
n

o
f

re
d
.

la
y
er

s
ω

k

ω1
ω2
ω3
ω4
ω5
ω6

(a)

0 1ω2ω3ω4ω5

Δ1

Δ2

Δ3

Δ4

Δ5
6

5

4

3

2

1

Evolution of red. layers ωk

R
ed

u
n
d
a
n
cy

k

(b)

Fig. 12: Evolution of the redundancy layers ωk, first as function of r (a) and
then in the normalized redundancy plot for r = 0.5 (b).

can be chosen from among ρ objects, regardless of order, which is equal to the
binomial coefficient

(
ρ
k

)
. Multiplying these number, we get as result that the

expected fraction of information that appears with redundancy k in a sample
from a uniform redundancy distribution with redundancy ρ is equal to the bi-
nomial distribution

(
ρ
k

)
rk(1 − r)ρ−k, which is the probability of getting exactly

k successes in ρ independent yes/no experiments, each of which yields success
with probability r:

∆k(k, ρ, r) =

(
ρ

k

)
rk(1− r)ρ−k .

Note that ∆k(k, ρ, r) is actually defined for all ρ ∈ N1, k ∈ N0 and r ∈ [0, 1]:

∆k(k, ρ, r) =


(
ρ
k

)
rk(1− r)ρ−k if 0 < k < ρ

rρ if 0 < k = ρ

(1− r)ρ if 0 = k < ρ

0 if k > ρ .

The evolution ωk can then be simply calculated from ωk = 1−∑k−1
y=0 ∆y as

ω̂k(k, ρ, r) = 1−
k−1∑
y=0

(
ρ

y

)
ry(1− r)ρ−y . (13)

Figure 12 illustrates this result.

D.2 Proof Prop. 2 (evolution of general distributions)

Proof. We again use stratification and divide the overall redundancy distribution
into homogenous blocks with constant redundancy x and unique information αx
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Fig. 13: The evolution ωk of the k-th redundancy layer of a general redun-
dancy distribution α is the weighted mean of the evolution of this layer in
in all uniform distributions.

before sampling a fraction r from each block in turn (Fig. 13b). The mathemat-
ical justification is that, on average, the fractions sampled in a random draw are
the same across all sub-populations and the total population [24].

We know that sampling from each block with constant redundancy x follows
the previously established relationship of evolution of the uniform (Eq. 13). The
amount of information with redundancy k is then the base of the block αx times
∆k(k, x, r). At the same time, the total amount of information ∆k(k,α, r) with
redundancy k is equal to the sum of αx∆k(k, x, r) in each block. Hence, the
evolution of a general redundancy distribution is the mean of the evolution of of
all uniform distributions x ≤ kmax, weighted by their fractions αx:

∆k(k,α, r) =

kmax∑
x=1

αx∆k(k, x, r)

=

kmax∑
x=1

αx

(
x

k

)
rk(1− r)x−k .

The evolution of ω(k,α, r) can again be simply calculated stepwise from
∆(k,α, r) by ωk = ωk−1 −∆k−1 with ω1 = 1−∆0 as

ωk = 1−
k−1∑
y=0

∆y ,

= 1−
k−1∑
y=0

m∑
x=y

αx

(
x

y

)
ry(1− r)x−y .

Further, k-recall is then given by

ruk =
ωk
ηk

. ut
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D.3 Illustration of the limit value of Prop. 2

Figure 14 illustrates that the mathematics developed indeed predicts sampling
from large data sets very well. In grey, the individual frames show the horizontal
evolution of the example normalized redundancy distribution α = ( 1

5 ,
1
5 ,

2
5 , 0, 0,

1
5 )

for r = 0.5. In red, they show the actual expected vertical redundancy distri-
butions as given by Monte Carlo simulations, where the total number of pieces
of information au ∼ a increases from 5 in Fig. 14a to 1000 in Fig. 14d. Note
how the horizontal layers of redundancy become visible in the vertical perspec-
tive with increasing a. These layers become even more apparent in the sample
redundancy distribution when taking the median instead of the mean of indi-
vidual draws in the Monte Carlo simulations (we show here the mean). This
observation suggests that the normalized, horizontal perspective is actually the
inherently natural perspective to analyze sampling from large data sets.
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Fig. 14: Comparing the expected evolution of the redundancy layers r̂uk
(grey) with the expected sample redundancy distributions ρ̂i given by
Monte Carlo simulations (red): For large data sets (au → ∞), Prop. 2 pre-
dicts the sampled distributions increasingly well and the horizontal redun-
dancy layers actually become visible in the vertical sample distributions.
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E Details Section 6 (evolution of power laws)

E.1 Proof Lemma 1 (evolution of the invariant)

Proof. We prove that the redundancy distribution αI = (αk) with

αk = (−1)k−1

(
τ

k

)
, and 0 < τ ≤ 1 ,

is invariant under sampling. We show this by proving that the following holds
for αI :

ruk(k,α, r) = rτ .

The statement then follows from ruk being independent of k and ruk = ru1 = ω1.
We make use of the following easy-to-verify identity(

i

k

)(τ
i

)(
τ
k

) =

(
τ − k
i− k

)
,

and use θk = ∆k
αk

to describe the fraction of information with redundancy equal
k in the sample to that with redundancy equal k in the original distribution.
Starting from

∆k(k,α, r) =

∞∑
i=k

∆k(k, i, r)αi ,

we can write θk = ∆k/αk as

θk(k,α, r) =

∞∑
i=k

∆k(k, i, r)
αi
αk

.

Then, for αI = (αk)

θk(k,αI , r) =

∞∑
i=k

(
i

k

)
rk(1− r)i−k (−1)i−1

(
τ
i

)
(−1)k−1

(
τ
k

)
=

∞∑
i=k

rk(1− r)i−k(−1)i−k
(
τ − k
i− k

)

= rk
∞∑
i=k

(r − 1)i−k
(
τ − k
i− k

)

= rk
∞∑
i=0

(r − 1)i
(
τ − k
i

)
= rk ((r − 1) + 1)

τ−k

= rτ .
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Further,

ωk(k,αI , r) =

∞∑
x=k+1

∆x =

∞∑
x=k+1

θxαx = rτηk ,

and, hence,

ruk(k,αI , r) = rτ , with 0 < τ ≤ 1 . ut

E.2 Necessary condition for invariants during sampling

We next argue that the invariant family is the only type of redundancy distribu-
tion that remains invariant under sampling. We proceed in two step. We first give
an conjectured property that must hold for every distribution that is invariant.
As our argumentation does not stand the requirements of a rigorous proof, we
call this Conjecture 1. We then show with Corollary 1, if this conjecture is true,
then the invariant family is indeed the only redundancy distribution invariant
under sampling without replacement.

Conjecture 1 (Necessary condition for invariants). The following is a
necessary condition for an invariant of sampling

ruk(k,α, r) = rτ with 0 < τ ≤ 1 . (14)

Intuitive argument for Conjecture 1. If a function remains invariant during
the evolution, then we know that the k-recall ruk is the same for each redun-
dancy layer k. Now while the overall recall r grows, the total amount of sampled
data has to be accommodated by the “space” formed by the growing layers of
redundancy. This space is formed by the dimensionality of the shape of the dis-
tribution. While this shape is filled with more and more data, unique recall has
to grow according to some function that simulated this filling of the space. Com-
paring such a shape with a higher dimensional triangle or tetrahedron of higher
dimension (Fig. 15a and Fig. 15b), the functions would be the n-th square for
dimension n, which translates in a function that grows according to

ruk(αI , r) = r1/n .

Since unique recall ru1 is concave and always bigger than r except for r ∈ {0, 1},
n must be bigger than 1. Hence, the following condition must hold

ruk(αI , r) = rτ , with 0 < τ ≤ 1 . (15)

Figure 15c and Fig. 15d show such an example invariant redundancy distribution
with n = 2 and the resulting unique recall function with ru =

√
r. The function

could therefore be called a function of dimensionality 2.

Corollary 1 (Invariant family). No other distribution than the distributions
defined in Lemma 1 is invariant under sampling.
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Fig. 15: Intuition for Corollary 1: When sampling from a smooth and regular
n-dimensional data space, the only function that can describe a realistic
concave sampling success is the n-th root, thus giving information = n

√
data.

Proof. Assume that Eq. 15 holds. We show that the invariant family of Lemma 1
necessarily follows from this conjecture. First, we notice that Eq. 15 also has to
hold for k = 1 and, hence, we have with η1 = 1,

ru(αI , r) = rτ .

Calculating the derivatives of ru(r), we get

ru(r) = rτ

r′u(r) = τ rτ−1

r′′u(r) = τ(τ − 1) rτ−2

...
r(k)
u (r) = τk rτ−k ,

and for the interesting point r = 1,

r(k)
u (r)

∣∣∣
r=1

= τk .
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At the same time, we get from Prop. 1:

r̂u(r) = 1−
m∑
k=1

αk (1− r)k

r̂′u(r) =

m∑
k=1

kαk (1− r)k−1

r̂′′u(r) = −
m∑
k=2

k(k − 1)αk (1− r)k−2

...

r̂(n)
u (r) = (−1)n−1

m∑
k=n

kn αk (1− r)k−n . (16)

The term kn in the last equation stands for the falling factorial powers (or short,
“falling factorial” or “k to the n falling”) kn = k(k− 1) · · · (k−n+ 1) [17, p.47].
For the end point r = 1, or actually taking the limit value for r → 1 of Eq. 16,
we get that, in the limit, all terms in the sum disappear except for k = n:

r̂(n)
u (r)

∣∣∣
r=1

= lim
r→1

r̂(n)
u (r) = (−1)n−1n! αn ,

and we can express αk, the fraction of information with redundancy k, as simple
function of the kth derivative of ru:

αk = (−1)k−1 r̂
(k)
u (1)

k!
.

From that, we can now calculate αI as

αk = (−1)k−1 r̂
(k)
u (1)

k!

= (−1)k−1 τ
k

k!
,

where the last equation can be written as

αk = (−1)k−1

(
τ

k

)
,

since the binomial coefficient is defined for all τ ∈ R [20, p.51].

E.3 Proof Lemma 2 (sampling from complete power laws)

The statement of the tail remaining invariant during evolution is equivalent to

lim
i,j→∞

rui
ruj

= 1 ,

and, hence ruk being independent of k for large k. This is what we prove in two
steps. First we have to prove the limit value in the following Lemma 4, then use
this limit value to prove Lemma 2.
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Lemma 4 (Convergence of Θ(k, i, β)).

lim
k→∞

(i− β)i−k

ii−k

(
k

i

)−β
︸ ︷︷ ︸

Θ(k,i,β)

= 1 , for i ≥ k, β > 1 , (17)

Proof.

Θ(k, i, β) =

(
k

i

)−β
(i− β)i−k

ii−k

=

(
k

i

)−β
(k − β + 1)i−k

(k + 1)i−k
|transform to rising factorial

=

(
k

i

)−β
(k − β)i−k+1

(k)i−k+1

k

k − β |β 6= k

=

(
k

i

)−β
(1− β)i

(1)i
(1)

k

(1− β)
k

|β /∈ {1, . . . , k}

=
k−βk!

(1− β)
k︸ ︷︷ ︸

Ω(k,β)

(1− β)i

i−βi!︸ ︷︷ ︸
Ψ(i,β)

Note that Ψ(k, β) = Ω(k, β)−1. Hence, to show limk→∞Θ(k, i, β) = 1 for i ≥ k,
it suffices to show (i) that Ω(k, β) monotonically increases in k above a certain
k0, and (ii) that Ω(k, β) converges for k →∞.

Monotonicity follows from direct calculation:

Ω(k + 1, β) > Ω(k, β)

(k + 1)−β(k + 1)!

(1− β)k(k + 1− β)
>

k−βk!

(1− β)k

k + 1

k + 1− β >

(
k + 1

k

)β
j

j − β >

(
j

j − 1

)β
|j := k − 1 ≥ 2

(j − 1)β > (j − β)jβ−1

jβ −
(
β

1

)
jβ−1 +

(
β

2

)
jβ−2 − . . . > jβ − βjβ−1 |binomial theorem(

β

2

)
jβ−2 − . . . > 0 ,

which is true for j > β − 1, and, hence k > k0 = max[β, 2].
Convergence for β /∈ N follows from

lim
n→∞

Ω(n, β) = Γ (1− β) ,
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which follows from Euler’s formula for the Gamma function [1, Eq. 6.1.2]

Γ (z) = lim
n→∞

nzn!

(z)n+1
.

or

Γ (1− β) = lim
n→∞

n1−βn!

(1− β)n+1
.

lim
n→∞

Ω(n, β) = lim
n→∞

n−βn!

(1− β)
n

= lim
n→∞

n1−βn!

(1− β)
n+1

n+ 1− β
n

= Γ (1− β) lim
n→∞

n+ 1− β
n

= Γ (1− β) .

In the above derivation, we had to state β /∈ N due to the otherwise undefined
value of 0

0 . To include all β > 1, we can note

Θ(k, i, β) =
(z − β)i−z+1

i−βi!︸ ︷︷ ︸
Ψ(i,β,z)

k−βk!

(z − β)
k−z+1︸ ︷︷ ︸

Ω(k,β,z)

, (18)

where z ∈ N is chosen so i ≥ k ≥ z > β > 1.

Proof (Lemma 2). From Fig. 4, we know that the three power laws have the
same tail distributions. Without loss of generality, we consider here power laws
in the redundancy frequency plot αC with

αk =
k−β

ζ(β)
.

Starting from

∆k(k,α, r) =

∞∑
i=k

∆k(k, i, r)αi ,

we can write θk = ∆k/αk as

θk(k,α, r) =

∞∑
i=k

∆k(k, i, r)
αi
αk

,

and, for αC = (αk)

θk(k,αC , r) =

∞∑
i=k

(
i

k

)
rk(1− r)i−k

(
i

k

)−β
.
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From Eq. 17, we know

lim
k→∞

(
i

k

)(
i

k

)−β
=

(
i

k

)
(i− β)i−k

ii−k

=

(
i

k

)
(i− β) · · · (k − β + 1)

ii−k

=

(
i

k

)
(β − k − 1) · · · (β − i)(−1)(i−k)

ii−k

=

(
i

k

)
(β − k − 1)i−k

ii−k
(−1)(i−k)

=
i!

(i− k)!k!

(β − k − 1)i−k

ii−k
(−1)(i−k)

=
(β − k − 1)i−k

(i− k)!
(−1)(i−k)

=

(
β − k − 1

i− k

)
(−1)(i−k) .

We can now write

lim
k→∞

θk(k,αC , r) =

∞∑
i=k

rk(1− r)i−k(−1)i−k
(
β − k − 1

i− k

)

= rk
∞∑
i=k

(r − 1)i−k
(
β − k − 1

i− k

)

= rk
∞∑
i=0

(r − 1)i
(
β − k − 1

i

)
= rk ((r − 1) + 1)

β−k−1

= rβ−1 .

Then,

lim
k→∞

ωk(k,αC , r) = lim
k→∞

∞∑
x=k+1

∆x

= lim
k→∞

∞∑
x=k+1

θxαx

= rβ−1ηk ,

and, hence,
lim
k→∞

ruk(k,αC , r) = rβ−1 ,

which is independent of k. ut
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Figure 16 illustrates Lemma 2 for 3 power law coefficients.
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Fig. 16: Sampling from any completely developed power law leads to other
power laws since k-recall ruk is independent of k above a certain threshold.
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F Proof Theorem 1 (sampling from truncated power
laws)

Proof. Theorem 1 follows readily from Lemma 2. Assume αT is a truncated
power law with maximum redundancy kmax. (1) for k > kmax ∆k = 0 by defini-
tion. (2) For k ≤ kmax we know

∆k(k,α, r) =

kmax∑
i=k

∆k(k, i, r)αi

=

∞∑
i=k

∆k(k, i, r)αi −
∞∑

i=kmax

∆k(k, i, r)αi ,

(2a) For k � kmax, the second summand is small as compared to the first
one and we get

lim
k�kmax

∆k(k,αT , r) = ∆k(k,αC , r)

from which follows that at the lower side, the sample distribution from a trun-
cated power law behaves the same as from a completely developed power law.

(2b) For k → kmax the second term becomes increasingly dominant and ∆k

and, hence, ruk too become smaller. If now kmax is sufficiently enough (large data
sets), the observed distribution must have an observed power law distribution.

ut
Figure 17, together with Figure 5c and Fig. 5d illustrate Theorem 1.
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Fig. 17: Theorem 1: Sampling from truncated power law distributions leads
to power law distributions with the tail “breaking in” for increasingly lower
recalls. However, the core of the power law still shows ruk ≈ rγ , and the
sample distribution thus is a power law. The larger the data set, the better
the approximation.
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