Skip to main content

Optimal Bandwidth Selection for Density-Based Clustering

  • Conference paper
  • 1716 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6637))

Abstract

Cluster analysis has long played an important role in a wide variety of data applications. When the clusters are irregular or intertwined, density-based clustering is proved to be much more efficient. The quality of clustering result depends on an adequate choice of the parameters. However, without enough domain knowledge the parameter setting is somewhat limited in its operability. In this paper, a new method is proposed to automatically find out the optimal parameter value of the bandwidth. It is to infer the most suitable parameter value by the constructed model on parameter estimation. Based on the Bayesian Theorem, from which the most probability value for the bandwidth can be acquired in accordance with the inherent distribution characteristics of the original data set. Clusters can then be identified by the determined parameter values. The results of the experiment show that the proposed method has complementary advantages in the density-based clustering algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankerst, M., Breuing, M.M., Kriegel, H.P.: OPTICS: ordering points to identify the clustering structure. In: Proc. of the 1999 ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM Press, New York (1999)

    Chapter  Google Scholar 

  2. Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia databases with noise. In: Proc of the 4th International Conference on Knowledge Discovery and Data mining, pp. 58–65. AAAI Press, Menlo Park (1998)

    Google Scholar 

  3. George, K., Han, E.H., Kumar, V.: CHAMELEON: a hierarchical clustering algorithm using dynamic modeling. IEEE Computer 27(3), 329–341 (1999)

    Google Scholar 

  4. Ester, M., Kriegel, H.P., Sander, J.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc.of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Menlo Park (1996)

    Google Scholar 

  5. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education, London (2006)

    Google Scholar 

  6. Gentle, J.E.: Computational Statistics. Springer, New York (2001)

    MATH  Google Scholar 

  7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)

    MATH  Google Scholar 

  8. Gan, W.Y., Li, D.Y.: Hierarchical Clustering based on Kernel Density Estimation. Journal of System Simulation 16(2), 302–309 (2004)

    Google Scholar 

  9. Dellaportas, P., Forster, J.J., Ntzourfras, I.: On Bayesian model and variable selection using MCMC. Statistic and Computing 12(2), 27–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman&Hall, London (2004)

    MATH  Google Scholar 

  11. Chen, M.H., Shao, Q.M., Ibrahim, J.G.: Monte Carlo Methods in Bayesian Computation. Springer, New York (2000)

    Book  MATH  Google Scholar 

  12. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Introducing Markov chain Monte Carlo. In: Gilks, W.R., Richardson, S., Spiegelhalter, D.T. (eds.) Markov Chain Monte Carlo in Practice, pp. 1–19. Chapman and Hall, London (1996a)

    Google Scholar 

  13. Terrell, G.R., Scott, D.W.: Variable kernel density estimation. Annals of Statistics (20), 1236–1265 (1992)

    Google Scholar 

  14. Duong, T., Hazelton, M.L.: Plug-in Bandwidth Selectors for Bivariate Kernel Density Estimation. Journal of Nonparametric Statistics (15), 17–30 (2003)

    Google Scholar 

  15. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, Visualization. Wiley, New York (1992)

    Book  MATH  Google Scholar 

  16. Fang, M., Wang, S.L., Jin, H.: Spatial Neighborhood Clustering Based on Data Field. In: Cao, L., Feng, Y., Zhong, J. (eds.) ADMA 2010, Part I. LNCS, vol. 6440, pp. 262–269. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jin, H., Wang, S., Zhou, Q., Li, Y. (2011). Optimal Bandwidth Selection for Density-Based Clustering. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds) Database Systems for Adanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20244-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20244-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20243-8

  • Online ISBN: 978-3-642-20244-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics