N
N

N

HAL

open science

Graph-based matching of composite OWL-S services

Alfredo Cuzzocrea, Juri Luca de Coi, Marco Fisichella, Dimitrios Skoutas

» To cite this version:

Alfredo Cuzzocrea, Juri Luca de Coi, Marco Fisichella, Dimitrios Skoutas. Graph-based matching of
composite OWL-S services. GDB 2011, Apr 2011, Hong Kong, China. pp.28-39. hal-00725931

HAL Id: hal-00725931
https://hal.science/hal-00725931
Submitted on 28 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00725931
https://hal.archives-ouvertes.fr

Graph-based Matching of Composite
OWL-S Services

Alfredo Cuzzocrea!, Juri Luca De Coi?,
Marco Fisichella?, and Dimitrios Skoutas?,

! ICAR-CNR and University of Calabria, Italy,
cuzzocrea@si.deis.unical.it
2 Forschungszentrum L3S, Hannover 30167, Germany,
{decoi, fisichella, skoutas}@L3S.de

Abstract. Existing techniques for Web service discovery focus mainly
on matching functional parameters of atomic services, such as inputs
and outputs. However, one of the main advantages of Web services is
that they are often composed into more complex processes to achieve a
given goal. Applying such techniques in these cases, ignores the workflow
structure of the composite process, and therefore may produce matches
that are not very accurate. To overcome this limitation, we propose in
this paper a graph-based method for matching composite services, that
are semantically described as OWL-S processes. We propose a graph rep-
resentation of composite OWL-S processes and we introduce a matching
algorithm that performs comparisons not only at the level of individual
components but also at the structural level, taking into consideration the
control flow among the atomic components. We also report our prelimi-
nary results of our experimental evaluation.

1 Introduction

Web services are a key technology for enabling interoperability and software
reuse. Service discovery is the process of matching a service request with a ser-
vice advertisement, and it is based on comparing their descriptions, such as
their input and output parameters. Service composition deals with composing
services to create complex processes that achieve a desired goal given an initial
state. This is an important feature, since it allows atomic services to be com-
bined in a flexible way to complete complex tasks. In the Semantic Web, service
descriptions are semantically annotated using concepts from domain ontologies
in order to facilitate and improve the precision of their automatic discovery and
composition.

Service composition is a very challenging task, either when performed at
design time or, especially, online. Given also that reusability is a key concern
in service-oriented architectures, this makes the discovery of existing composite
services an important problem. When an application needs to create a composite
service to fulfill a given goal, it is more effective and efficient to first search a
repository of existing compositions to find similar ones. Then, the best matches

identified can be modified, extended or combined, to produce the desired com-
posite service instead of composing one from scratch. Moreover, when browsing
a repository of composite processes, the user may find some interesting process
and then issue a “more like this” query to retrieve additional results.

In this paper, we focus on composite Semantic Web services described in
OWL-S [3], since OWL-S provides different parts for explicitly describing the
profile and the model of a service. The service profile is mainly aimed at sup-
porting service discovery, and it includes the functional parameters of the service,
which are the ones typically used for the matchmaking between service descrip-
tions. The service model is primarily aimed at the specification of composite
services. In particular, it describes the internal components and the control flow
of the composite process. In a typical service discovery scenario, a query is for-
mulated as the description of a desired service and the result is a ranked list of
advertised services, the description of which matches the request, according to
a matchmaking algorithm that employs one or more matching criteria. Hence,
existing discovery methods do not differentiate between atomic and composite
services. The service profile is also used for the matchmaking of composite ser-
vices, which means that a complex process is treated as a “black box”; its most
integral part, the process model, is not taken into account. This severely reduces
the accuracy of the results, introducing both false positives and false negatives.

To address this problem, we propose a graph-based method for matching
composite services. Matchmaking is performed on the service model rather than
the service profile, which includes the structural part of the composite service.
In OWL-S, composite services can be composed from atomic ones or from other
simpler composite services, allowing several levels of nesting. To specify how
component services are combined together, a set of control constructs is provided,
similar to the typical control structures found in programming languages. These
allow services to be executed sequentially, in parallel, conditionally or in a loop.

The proposed method performs the matching on two levels. It matches both
the atomic services of the composite process, using their service profiles, as well
as the way these services have been composed to create the composite process. To
avoid the details and specificities of the OWL-S process model, the composite
process is first transformed to a graph representation, containing its compo-
nent services and their interactions. Matchmaking is then performed considering
node similarities and finding common (sub)structures between the two graphs
that represent the requested and the available composite process. To increase the
efficiency of the search, a two step approach is followed. Initially, a set of candi-
date graphs is identified considering mappings between pairs of nodes. Then, the
best candidates are selected and their structural similarity to the query graph is
taken into account in order to filter out false positives and determine the final
ranking of the results.

The rest of the paper is structured as follows. The next section describes our
graph-based representation of composite OWL-S processes. Section 3 introduces
the matchmaking algorithm. A preliminary experimental evaluation is presented

in Section 4. Section 5 discusses related work, and Section 6 concludes the paper
with directions for future work.

2 Graph Representation of OWL-S Processes

The OWL-S description of a Web service comprises three main parts. The Ser-
vice Profile specifies the functional parameters of the service, namely inputs,
outputs, pre-conditions and effects; it may also contain information about the
provider and the category of the service, as well as plain text description. The
Service Model describes the components and the structure of a composite pro-
cess. The Service Grounding specifies the details required by an agent to invoke
the service, such as communication protocol, message formats and port num-
bers. In contrast to typical service discovery approaches that rely on the service
profile for matching atomic services, our matchmaking algorithm utilizes the in-
formation provided by the service model to perform graph-based matchmaking
between complex processes.

In our approach, we represent composite processes as graphs in order to
facilitate their matching. Given a composite OWL-S process P, we describe
below how the corresponding graph representation, denoted as Gp, is derived.
Let C be the set of control constructs supported in OWL-S. Each occurrence of
a control construct C' € C is represented by a pair of nodes, C, and C¢, that
denote its begin and its end part, respectively. We denote the sets of such nodes
as Cp and C., respectively. These nodes allow us to represent the part of the
process that is enclosed by this control construct and, hence, to represent the
nesting of processes. Moreover, each atomic service s in a composite process is
represented by a graph node s. For the sake of simplicity, we use the same symbol
to refer both to the node and to the service it represents, since the distinction
is typically clear from the context. The set of all the atomic services that are
contained in the composite process P is denoted as Sp. Thus, a composite process
P is represented by a graph Gp = (V, E), with node set V = C, UC. U Sp and
edge set E C (Cp x Cp) U (Cp, x Sp) U (Sp x Sp) U (Sp x C.) U (Ce x C¢). The
edges in the graph denote the control flow, as it will be explained below. In the
following, we list the control constructs provided by OWL-S.

— Sequence (SQ). It encloses a list of components to be executed in the specified
order.

— AnyOrder (AO). Tt encloses a bag (according to the OWL-S definition) of
components to be executed sequentially, but without imposing any restric-
tion on the ordering.

— Split (SP). Tt encloses a bag of components to be executed in parallel.

— SplitJoin (SJ). It encloses a bag of components to be executed in parallel.
The difference between SP and SJ is that the latter specifies barrier syn-
chronization, i.e., all the included components need to finish their execution
before the control construct is considered to be finished.

— Choice (CH). It encloses a bag of components, one of which can be chosen
for execution.

Control construct

Added edges Control construct Added edges

Sequence(si, S2, ...

Split(si, s2, ..

Repeat (s) While (cond)

Choice(s1, S2, - ..

Table 1: Construction of the process graph

— IfThenElse (IF). It encloses two components, one of which is executed based
on whether a specified condition is true or false.

— RepeatWhile (RW). It encloses a component that is executed in a loop, as
long as a specified condition is true.

— RepeatUntil (RU). Tt encloses a component that is executed in a loop, until
a specified condition becomes true.

Note that we do not include conditions in our graph representation and in
our matching algorithm. This is out of scope of this paper, given that OWL-S
does not dictate any specific language for expressing such logical conditions. A
possible extension to address the issue of conditions is to include them as labels
on the nodes that correspond to control constructs having a condition, or on
the outgoing edges of these nodes. Then, during the matching, an appropriate
reasoner for the language used to express these conditions can be invoked to
determine the degree of similarity between the condition in the requested service
and the one in the advertised service, e.g., by inferring whether one condition
implies the other (or its negation).

Table 1 specifies how the graph edges are constructed for each of the OWL-S
control constructs. For simplicity, the table assumes only atomic services as
components inside a control construct. If instead of an atomic service s there
exists a nested composite process P’ enclosed by a control construct C, then:
(a) an edge (v,C}) is added instead of each incoming edge (v, s); (b) an edge
(Ce,v) is added instead of each outgoing edge (s,v); (c) the representation of
the subprocess P’ is computed recursively and added to the graph. Note that for
each new occurrence of a control construct, a new pair of corresponding begin
and end nodes is introduced. Some examples are shown in Figure 1.

3 Matching OWL-S Processes

In this section, we present our matching algorithm for composite OWL-S pro-
cesses. First, we discuss how the degree of match dom is computed between
atomic components and then how the structural similarity is taken into account.

Sn—1, Sn) (SQb, s1), (s1,82), ..., AnyOrder(si, s2, ...Sn—1, Sn) (AOs, s1), (s1,82), ...,
LR (Sn—h S'fl)7 (Sn7 SQE) DR (Sn—h 571)7 (S'na AOG)
. Sn) (SPy,s1), (SPs,s2), ..., (SPs,sn), SplitJoin(si, s2, ...Sn) (S, 1), (STb, s52), ..., (STb, sn),
(s1,SP:.), (s2,5PFe), ..., (sn,SPe) (s1,8Je), (s2,8Je)y - oy (Sn,SJe)
(RWb, s), (s, RWe) Repeat (s) Until (cond) (RUs, s), (s, RU.)
Sn) (CHy,s1), (CHy,s2), ..., (CHy, sn), If (cond) Then (s1) Else (s2) (IFy,s1), (IFy,s2),
(s1,CH.), (s2,CH,), ..., (sn,CH.) (s1,1Fe), (s2,IFe)

3.1 Matching Atomic Components

Let Gr and Gp be the graph representations of a requested and a candidate
composite services R and P, respectively. In the following, we show how to
compute the degree of match between two nodes r € V(Gg) and s € V(Gp).
Recall from Section 2 that each node in the graph corresponds either to an
atomic service or to the begin or end part of a control construct. We compute
the degree of match only between nodes of the same type, i.e., only for the cases
that: (a) r € Sg and s € Sp; or (b) r € Cy and s € Cp; or (¢) r € C, and s € C..
For all other combinations, the degree of match is zero.

First, we define the degree of match between nodes that correspond to atomic
services (also denoted by r and s). The degree of match is computed based
on the input and output parameters of these services. For atomic services, an
offer s matches a request r if: (a) the outputs offered by s match the outputs
requested by r, and (b) the inputs provided by r match the inputs required by
s. Consequently, to compute the degree of match for the inputs of r and s, we
find the best match for each input of s and we normalize based on the number
of input parameters of s:

Z vIgIaK/{T{sim(u, v)}
uEINg (1>

[IN|

Similarly, for the outputs of r and s, we find the best match for each output of
r and we normalize based on the number of output parameters of r:

Z max {sim(u,v)}

coUT veOUTs

dom rs) =~ 2
In Equations 1 and 2, IN, and OUT, denote, respectively, the set of input
and output parameters of an atomic process p. The function sim computes the
similarity between two individual input or output parameters. There are two
basic alternatives for defining this function. The first one is to compare the
corresponding parameter classes u’ and v’ in the ontology O, as defined in the
OWL-S service descriptions. In this case, we compute the similarity based on
the number of common ancestors of these two classes:

domyn(r,s) =

. __ {weo|vW Cwnv' Cuw}
SZm(u’v)_|{w€O\U’Ew}U{w€O\”’Ew}‘ ©

The second alternative is to compare the parameter names using some common
string similarity measure, such as cosine similarity or Jaccard similarity. A hybrid
similarity measure, combining both alternatives, can also be used [11].

The overall degree of match between r and s is then computed by aggregating
the partial degrees of match for the inputs and the outputs, e.g., as the (weighted)
average. This can be extended to include scores derived from additional matching
criteria.

Next, we discuss how to define the similarity between nodes corresponding to
control constructs. As shown by the description of the OWL-S control constructs
in Section 2, some of them have similar functionality, and therefore, replacing
one with another when searching for similar composite processes should incur a
lower penalty. We examine the following cases.

SEQUENCE and ANYORDER Both of these control constructs specify the ex-
ecution of components in sequence; the difference between the two is that the
latter does not specify the exact order but instead it allows any possible ordering
(as long as there are no overlaps in the execution of two different components).
Hence, a node S@ in the graph of the requested process R can be matched with
a node AO in the graph of a candidate process P with a low effect on the simi-
larity of the two processes. This case, however, is not symmetric. If AO appears
in R and SQ in P, then the offered process is more restrictive than the requested
one; hence, the match should be allowed, but with a lower score.

SPLIT and SPLITJOIN Both of these control constructs specify the execution
of components in parallel; the difference is that the latter specifies also barrier
synchronization. Hence, it is permitted to match one of them with the other one
with low effect on the similarity of the two processes.

REPEATWHILE and REPEATUNTIL Both of these control constructs specify
the execution of the enclosed component in a loop; their difference consists in
whether the condition is checked at the beginning or at the end of each iteration.
Therefore, matching these two control constructs should have a low effect on the
process similarity.

Based on these observations, we define the similarity between two nodes
denoting control constructs as follows:

0.9 for the pair (5Q, AO)
0.5 for the pair (AO, SQ)

dome(r,s) = ¢ 0.8 for the pairs (SP, SJ), (SJ, SP), (4)
(RW, RU) and (RU, RW)
0 otherwise

These values hold when both of the nodes correspond either to the begin or to
the end part of a control construct; otherwise, the degree of match is zero.

3.2 Matching Process Structure

To take into account the workflow structure of composite services, we measure
the “overlap” in their graph representations. For this purpose, we compute their
maximum common subgraph. This technique is often used in other applications,
such as searching and mining databases of chemical structures, pattern recogni-
tion or computer vision [2].

Given a graph G = (V| E), a subgraph of G is a graph G’ = (V' E’) such that
V'CVand E' = EN (V' x V). Moreover, a graph G = (V, E) is isomorphic to
another graph G’ = (V’, E’) if there exists a bijective function f: V — V' such
that for any edge e = (v1,v2) € E there exists an edge ¢’ = (f(v1), f(v2)) € E'.
Then, the maximum common subgraph M C'S of two graphs G; and G5 is defined
as the largest subgraph of GG; that is isomorphic to a subgraph of G5. Given the
above, we can define the degree of match between a request graph G and a
candidate graph Gp.

Definition 1. Let G be the maximum common subgraph between a request graph
Gr and a candidate graph Gp and f be the corresponding bijective function that
maps G to a subgraph of Gp. The degree of match between Gr and Gp is defined
as:

Z domy (v, f(v))

domg (G, Gp) = *=— (5)

where Vi denotes the set of nodes of graph G, |Gg| is the number of nodes
in the query graph and dom,y is a function that computes the degree of match
between pairs of graph nodes based on their type, as described in Section 3.1.
Notice that the MCS of two graphs is not necessarily unique; in that case, the
one with the highest degree of match is considered.

A problem that arises from this approach has to do with the computa-
tional complexity, since the maximum common subgraph isomorphism problem
is known to be NP-hard. Therefore, reducing the number of maximum common
subgraphs to be computed becomes a critical issue. We address this problem
based on the following observation. From Equation 5, it can be seen that, in
order for two graphs to have a large degree of match, they should have a large
number of node pairs with high degree of match. Indeed, if there are only a few
nodes in G that can be mapped with high similarity to nodes of Gp, then the
sum in the numerator of Equation 5 can not be large. However, this is a neces-
sary but not sufficient condition, since the sum is computed over the nodes of
the identified maximum common subgraph. Hence, if the two graphs have many
similar nodes but a small maximum common subgraph, then the sum would
be again small. This is desired in order to prevent matches between composite
services that are different from a structural point of view.

To make the search process more efficient, we identify first those candidate
graphs that have nodes that can be mapped with high similarity to the nodes
of the query graph, and we select the top-k’ ones. This provides a list with
candidate matches for the query which contains also false positives due to the
reason explained previously. Then, we apply Equation 5 on this subset in order to
compute the actual degree of match and to obtain the final list of top-k matches,
after filtering out the false positives. The value of k&’ has to be larger than k to
account for the presence of false positives, but it can still be significantly smaller
than the total number of candidate graphs to be examined.

To obtain the top-k’ list of candidate graph matches, we apply a process
based on the Hungarian algorithm (also referred to as the Kuhn-Munkres al-
gorithm) [13], which has also been applied in a similar way to provide an ap-
proximation for the graph edit distance [15]. The algorithm can be used to solve
the assignment problem in polynomial time and relies on a square cost matrix
{c;:-}7 where each element cz- represents the cost of assigning the job j to the
worker ¢. The output of the algorithm is the assignment minimizing the overall
cost. We use this to compute the optimal assignment between the nodes of the
query graph G and those of the candidate graph Gp. Based on the similar-
ity between graph nodes, computed as described in Section 3.1, we construct
a |Ggr| X |Gp| cost matrix, where the cost for each pair of nodes is calculated
as ¢ = 1 — domy(u,v). In the general case, the number of nodes of the two
graphs is not the same, which means that not every node of the one graph can
be mapped to a node of the other. To deal with this case, we introduce the con-
cept of e-node. The assignment of a node v to an e-node (resp. of an e-node to a
node v) denotes that there is no mapping from (resp. to) node v. In other words,
this corresponds to removing (resp. adding) a node in the graph. To make the
cost matrix a square matrix, we introduce ||Gg| — |G p|| e-nodes and we add the
corresponding rows or columns in the matrix, as needed. We also set the cost for
an assignment involving e-nodes to 1. The optimal assignment between nodes
is provided by the output of the algorithm. The overall cost of the assignment
is computed as the sum of the costs of the pairwise mappings. The results are
sorted in increasing order of cost and the top-k’ ones are selected. For each one
of these results, the degree of match to the query is then computed according to
Equation 5, as explained previously, in order to obtain the final ranking.

4 Experimental Evaluation

Since existing approaches to service discovery focus on atomic services, we are not
aware of an appropriate benchmark for evaluating the task of composite service
matchmaking. To overcome this limitation, we have conducted experiments on
a synthetically generated dataset of composite OWL-S processes, which were
composed randomly from a set of publicly available real-world atomic OWL-S
services. We describe first our experimental setup and methodology and then we
present our results.

We implemented a synthetic generator for composite OWL-S processes. For
each process, the generator first selects randomly one control construct, and then
chooses how many atomic services or control constructs will be nested in it. This
number is bound by a minimum and maximum value specified in a configuration
file, which also defines the probability for selecting an atomic service or a given
control construct. The number of maximum nested levels for control constructs
is also specified. The atomic OWL-S services are selected from the OWLS-TC
v2 collection®, which is a publicly available collection of OWL-S services used
to evaluate and compare different matchmaking algorithms. It comprises 1007

3 http://projects.semwebcentral.org/projects/owls-tc/

services from 7 different domains. All these are atomic services, hence we could
not use the provided queries and their corresponding relevance sets to evaluate
our matchmaking algorithm for composite processes. Using the generator, we
created a dataset comprising the graph representations of 100 composite OWL-S
processes and 10 queries.

We have implemented the matchmaking algorithm described in Section 3
in Java, reusing existing libraries whenever possible. In particular, we used the
OWL-S API* for parsing the descriptions of OWL-S services in order to match
their inputs and outputs, the SimPack® library for the computation of the maxi-
mum common subgraph and a Java implementation of the Hungarian algorithm®.

For each one of the 10 queries, we first ran the matchmaking process based on
the Hungarian algorithm to obtain a candidate list of matches, and we selected
the 20 graphs with the lowest assignment cost. These are graphs that contain
nodes with high similarity to the nodes of the query graph, but do not necessarily
match the structure of the requested process. Then, for each one of these top-20
candidate matches, we computed the degree of match to the query based on the
maximum common subgraph and we retrieved the top-10 results.

We compared the lists of top-10 graphs before (Lg) and after performing
the last step (Larcs). Our purpose was to examine how much the former rank-
ing differs from the latter one, i.e., for how many graphs and how much the
ranking changes once the structural similarity between the query and candidate
processes is taken into account. For this purpose, we used Spearman’s footrule
distance [10], a commonly used distance measure for comparing different rank-
ings. In particular, we used the extended version proposed by Fagin et al. [6],
denoted in the following by F*, which handles also the case where the compared
rankings do not refer to the same set of items. This measure can be applied to
our case as follows:

Z |pos(i, L) — pos(i, Lares)]
F*(Ly, Laros) =

(6)

maxF*

where G denotes the set of graphs in the two ranked lists and the function
pos(i, L) returns the position of ¢ in the list £ if i € £ and |£| + 1 otherwise.
mazF* denotes the maximum possible value that the numerator can take, which
equals to n(n+ 1), assuming that the lists to be compared consist of n elements.
Higher values of this measure indicate higher difference between the rankings.
For two identical rankings the value is zero, whereas the maximum value 1 is
obtained when the two lists do not have any elements in common.

Fig. 2 shows the Spearman’s distance between the Ly and Lj;cg rankings
for our 10 queries. As shown, in all cases the set of results and/or their ranking
is affected after the structural similarity is taken into account. This is because

4 http://www.mindswap.org/2004/owl-s/api/
® http://www.ifi.uzh.ch/ddis/simpack.html
S http://sites.google.com/site/garybaker/hungarian-algorithm/assignment

. - Query 1 Query 3

Ly Lycs Ly Lycs

os|] 9 9 27 27

8 10 62 3 62
g os * 62 10 83 73
g | } | 6 73 71 96
§ 04T NN & o . ‘ 1 42 6 96 57
’ NN N \ BN 22 22 28 99
oz N NN B 89 35 95 9
SN NN A NN NNN 35 46 73 35

0 T2 3 4 5 6 7 8 9 10 30 89 76 53

Queries 3 83 53 10
Table 2: Spearman’s distance for each Table 3: Top-10 graphs for

one of the 10 queries

queries 1 and 3

(a) Query graph 1

b = 5
54 CH.
ey B —[5 —(5 {5 /A0
]
wav—-+ SR,
) Rank 2 result in the £g list (c) Rank 2 result in the Lycs list

Fig. 1: A sample of query results

some of the initial matches are identified as false positives and they are removed
or ranked lower.

We examine in more detail how the results change for queries 1 and 3, which
are the ones with the lowest and highest Spearman’s distance, respectively. Since
the query graphs are also contained in the dataset, the top-1 result in all cases is
an exact match with the query graph itself. Table 3 shows the graph IDs in the
Ly and Ly;cs rankings for these two queries. Notice, for example, how graph
73, which does not appear in the Ly list of query 1, is ranked 4th in the Ly;cg
for the same query, whereas graph 42, initially at the 5th rank, does not appear
in the final list of the top-10 results. The differences are even more apparent for
the two result lists of query 3.

As an illustrative example, Fig. 1 shows the results at rank 2 returned by
the algorithm taking (Fig. 1c) and not taking (Fig. 1b) structural similarity into
account for query 1 (Fig. 1a). The result returned at rank 2 in the L£y/cg list is
clearly more similar to the query than the one returned in the £y list. Structural
similarity plays a major role in realizing that (c¢) is more similar to (a) than (b),

despite the fact that (a) and (b) share a higher number of nodes, and for this
reason result to a lower assignment cost for the Hungarian algorithm.

5 Related Work

Traditional service discovery approaches employ IR-based techniques, such as
keyword search on the textual descriptions of the services or matching of pa-
rameter names using common string similarity measures. A clustering algorithm
is used in [5] to group parameter names into semantically meaningful concepts,
which are used to identify similar services. An online search engine for Web ser-
vices is seekda”, which crawls and indexes service descriptions from the Web.
Users can search for services using keywords, tag cloud navigation or faceted
browsing, e.g., by country or service provider.

For services on the Semantic Web, logic-based matching is applied to in-
crease the accuracy of the discovery process [14,12]. A reasoner is used to infer
equivalence, subsumption or disjointness between the ontology classes describing
the compared service parameters and the type of match is characterized accord-
ingly as ezact, plug-in, subsumes, subsumed-by or disjoint. In [1], the problem of
matching requested and offered parameters in Semantic Web service descriptions
is modeled as the one of matching bipartite graphs. Furthermore, the degree of
match can be computed as a continuous, normalized value in the [0,1] inter-
val, by defining some similarity measure between classes in the ontology [4, 17].
Hybrid solutions have also been proposed for combining IR and logic-based tech-
niques [11,9].

However, all the aforementioned approaches deal with the discovery of atomic
services, ignoring the internal structure and components of a composite process.
Our approach addresses this limitation by proposing a graph-based matchmaking
algorithm for composite services.

Further work has dealt with the problem of workflow discovery. A search en-
gine for workflows has been presented in [16], which allows for keyword queries
to be issued over workflows. A workflow is retrieved if it contains components
that match the keywords in the query. myEzperiment® is another search engine
for scientific workflows. Again, search is based on keyword queries or tags. In [7],
workflow descriptions are augmented with constraints derived from properties
about the workflow components used to process data, as well as the data itself.
However, structural similarity is also not taken into account during matchmak-
ing. Finally, [8] presents an approach and a tool to discover workflows that em-
ploys matching at the workflow structure level. However, they consider generic
workflows and therefore they do not deal with how to match individual compo-
nents or how to handle control constructs. To the best of our knowledge, our
method is the first one to address the problem of discovering composite OWL-S
services.

" http://seekda.com/
8 http://www.myexperiment.org/

6 Conclusions and Future Work

We have proposed a graph-based method for matching composite OWL-S ser-
vices. In contrast to existing approaches, which deal with atomic services, we
focus on the internal components and structure of composite services and we
perform the matching based on their process model. We employ a graph rep-
resentation of composite OWL-S services, where the nodes represent atomic
services and OWL-S control constructs. Based on this, the matching algorithm
computes the degree of match between two composite processes based on both
node similarity and structural similarity.

As future work, we plan to conduct a more thorough experimental evaluation,
and to extend our algorithm to consider conditions on graph nodes, as well as
graph indexing to increase search efficiency.

References

1. Bellur, U., Kulkarni, R.: Improved matchmaking algorithm for semantic web ser-
vices based on bipartite graph matching. In: ICWS. pp. 86-93 (2007)
2. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters 19(3-4), 255-259 (1998)
3. Burstein, M., et. al.: OWL-S: Semantic markup for web services. In: W3C Member
Submission (November 2004)
4. Cardoso, J.: Discovering semantic web services with and without a common ontol-
ogy commitment. In: IEEE SCW. pp. 183-190 (2006)
5. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: VLDB. pp. 372-383 (2004)
6. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: SODA. pp. 28-36
2003)
7. (Gril, Y., Kim, J., Puga, G.F., Ratnakar, V., Gonzélez-Calero, P.A.: Workflow
matching using semantic metadata. In: K-CAP. pp. 121-128 (2009)
8. Goderis, A., Li, P., Goble, C.A.: Workflow discovery: the problem, a case study
from e-science and a graph-based solution. In: ICWS. pp. 312-319 (2006)
9. Kaufer, F., Klusch, M.: WSMO-MX: A logic programming based hybrid service
matchmaker. In: ECOWS. pp. 161-170 (2006)
10. Kendall, M., Gibbons, J.D.: Rank Correlation Methods. Edward Arnold, London
(1990)
11. Klusch, M., Fries, B., Sycara, K.P.: Automated semantic web service discovery
with OWLS-MX. In: AAMAS. pp. 915-922 (2006)
12. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web
technology. In: WWW. pp. 331-339 (2003)
13. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32-38 (1957)
14. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web
services capabilities. In: ISWC. pp. 333-347 (2002)
15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vision Comput. 27(7), 950-959 (2009)
16. Shao, Q., Sun, P., Chen, Y.: WISE: A workflow information search engine. In:
ICDE. pp. 1491-1494 (2009)
17. Skoutas, D., Simitsis, A., Sellis, T.: A ranking mechanism for semantic web service
discovery. In: IEEE SCW. pp. 41-48 (2007)

