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Abstract. We present a method for the reconstruction of networks,
based on the order of nodes visited by a stochastic branching process.
Our algorithm reconstructs a network of minimal size that ensures consis-
tency with the data. Crucially, we show that global consistency with the
data can be achieved through purely local considerations, inferring the
neighbourhood of each node in turn. The optimisation problem solved for
each individual node can be reduced to a Set Covering Problem, which
is known to be NP-hard but can be approximated well in practice. We
then extend our approach to account for noisy data, based on the Min-
imum Description Length principle. We demonstrate our algorithms on
synthetic data, generated by an SIR-like epidemiological model.
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1 Introduction

There has been increasing interest over recent years in the problem of recon-
structing complex networks from the streams of dynamic data they produce.
Such problems can be found in a highly diverse range of fields, whether deter-
mining Gene Regulatory Networks (GRNs) from expression measurements [9],
or the connectivity of neuronal systems from spike train data [1]. While data
in the the field of GRNs is generally continuous in nature, spike train data is
inherently discrete. Other fields include epidemiology, chemical engineering and
manufacturing [10], but all share the similar challenge of extracting the causal
structure of a complex dynamical system from streams of temporal data.

We here address the challenge of reconstructing networks from data cor-
responding to stochastic branching processes, occurring on directed networks
and where a discrete ‘infection’ is propagated from node to node. The clearest
analogy lies in the field of epidemiology, where instances of infection begin at
particular nodes, before propagating stochastically along edges until the infec-
tion dies out. Another source of such data could be blogs, where initial report
of a story is made on a particular site, before being picked up by other blogs
and ‘cascading’ through the blogosphere [4]. Analysis of such data could permit
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2 Reconstruction of Causal Networks by Set Covering

the reconstruction of a network of readership. Most generally, we could con-
sider data corresponding to ‘memes’, fundamental units of cultural information
which propagate through all systems of communication, notably the news media
system.

The main contributions of this paper are:

1. A novel approach to the reconstruction of networks from data
corresponding to stochastic branching processes. We clearly define
the form of the data and optimisation problem, before reducing it to the
well-known Set Covering problem.

2. A modification extending our approach for use on noisy data. We
use the concept of Minimum Description Length (MDL) to define a criterion
for halting greedy set covering, allowing us to reconstruct networks from
data containing lost entries.

The paper is organised as follows. In Sec. 2 we fully define the nature of
data to be used, the problem we address, and the optimisation problem to be
tackled. Section 3 presents a theoretical analysis of our basic algorithm, before
Sec. 4 introduces an extension to address noisy data, based on the concept of
Minimum Description Length (MDL). Section 5 presents an empirical analysis,
before we outline our conclusions in Sec. 6.

2 Network Reconstruction

2.1 Concepts and Notation

A directed network G is defined by a set of nodes V and a set of oriented edges
E ⊆ V × V between these nodes, and we denote it as G = (V,E). In this
paper we consider two networks over the same set of nodes. GT = (V,ET ) is the
true underlying network, while the reconstructed network we infer from data is
denoted by GR = (V,ER). We assume a dynamic branching process occurs on
the network GT , in which the transfer of ‘markers’ occurs. Markers originate at
a particular node in the network, and then propagate stochastically from node
to adjacent node, ‘traversing’ along only those edges that exist in the set ET .

With analogy to terminology in the field of epidemiology, we refer to the
process of a node becoming a carrier of a marker as infection. Similarly, all
nodes that have undergone infection at any point in the past and remain in a
state where they are infectious are known as infected. Finally, any node that
underwent infection at any point from a particular marker is referred to as a
carrier.

Each marker that is propagated through the network generates a ‘marker
trace’,M i. The set of all marker traces is denoted byM = {M i}, and throughout
the paper we use superscripts to index between markers. The marker trace is
represented by an ordered set of the nodes that carried that marker, in the order
in which they became infected. We will use subscripts to refer to individual nodes
in a marker trace. We formally define the notion of a marker trace as follows.
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Definition 1 (Marker Trace, M i). A Marker Trace M i is an ordered set of
ni distinct nodes wi

j ∈ V , and we denote it as:

M i = (wi
1, w

i
2, . . . , w

i
ni
)

Each marker trace defines a total order over the reporting nodes, and we use
the notation vi <Mi vj to state that the node vi appears before node vj in the
marker trace M i.

For clarity in future definitions we also formally define a path from one node
to another within a network.

Definition 2 (Path in a network G = (V,E)). A sequence U = u1, . . . , uk

of nodes ui ∈ V is a path in G = (V,E) if ∀ 1 ≤ i < k , (ui, ui+1) ∈ E

2.2 Problem Formulation and Global Consistency

Problem 1 (Informal Description). Given a set M of Marker Traces construct a
network GR, approximating the true network GT that generated M.

Intuitively, it makes sense to choose GR such that it is capable of generating
M itself as well. Given our assumptions on the mechanism of data generation,
this requires that for each marker a path exists from the originator to all other
carrier nodes, passing only through nodes that have been previously infected.
We will refer to this as ‘global consistency’ and formalise the intuitive notion as
follows.

Definition 3 (Globally Consistent, GC).

GR is GC with M i ⇐⇒ ∀wi
j with j > 1 ∃ a path wi

1, . . . , w
i
j in GR

Besides being intuitively satisfying, in Sec. 3 we will prove that ensuring
global consistency also ensures that a large number of edges from GT is guaran-
teed to be reconstructed in GR. Trivially, it is clear that a completely connected
network is consistent with all possible data, and hence we aim to reconstruct a
consistent set ER of minimal size.

Combining the above allows us to formalise our goal in terms of an optimi-
sation problem.

Problem 2 (Formulation in terms of Global Consistency).

argminER
|ER|

subject to

∀ M i ∈ M GR = (V,ER) is GC with M i
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2.3 Local Consistency

For a reconstruction to make intuitive sense we require global consistency be-
tween network and data, but this involves consideration of paths and is imprac-
tical. Below, we demonstrate the equivalence of global consistency with ‘local
consistency’, an alternative that allows us to consider the immediate neighbour-
hood of each node in turn.

Local consistency requires that for each node reporting a particular marker,
the node must have at least one incoming edge from a node that has reported
the marker at an earlier time. This concept is formalised as follows.

Definition 4 (Locally Consistent, LC).

GR is LC with M i ⇐⇒ ∀wi
j with j > 1 ∃ wi

k with k < j : (wi
k, w

i
j) ∈ ER

Theorem 1 (LC ⇐⇒ GC). Demonstrating local consistency between GR and
M i is necessary and sufficient to ensure global consistency.

Proof. We define an approach to constructing a network that ensures every node
has an incoming edge from a node that reported at an earlier time (local con-
sistency), and demonstrate that this necessarily ensures that a path exists from
the originator to every other node (global consistency).

For the case k = 1, we have only the originator node, hence trivially there is
a path from originator to all other nodes. For the case k = 2, we add a node with
an incoming edge from the only other node. Again trivially, there is a path from
the originator to every other node. For the case k = n+ 1 we take the network
for k = n, and add a node with an incoming edge from one of the existing nodes.
If there is a path from originator to all nodes in the k = n network, there will
be a path from originator to the new node in the case k = n + 1. Hence if the
claim is true for k = n then it is also true for k = n+ 1.

Therefore, by induction, LC ⇐⇒ GC. ⊓⊔

This allows us to formulate an alternative but equivalent optimisation prob-
lem, using using the concept of local consistency.

Problem 3 (Formulation in terms of Local Consistency).

argminER
|ER|

subject to

∀ M i ∈ M GR = (V,ER) is LC with M i

Crucially, to establish local consistency, one need only consider the immedi-
ate neighbourhood of each node in turn. Hence we can break this optimisation
problem into N subproblems, where N is the total number of nodes in the net-
work. In each of these subproblems, we establish the minimal set of incoming
edges required to explain all the markers reported by the particular node. From
now on, unless otherwise specified, we describe approaches as applied to discov-
ering the parents of a particular node, which would then be applied to each node
in turn.
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2.4 Formulation in terms of Set Covering

Using the concept of local consistency we are able to treat the reconstruction
on a node-by-node basis, and we denote the node under consideration as v. As
specified by local consistency, in considering the incoming edges for a particular
node we must include at least one edge from a node that has reported each
marker at an earlier time. Each edge therefore ‘explains’ the presence of a subset
of the reported markers, and if the set of all incoming edges together explains all
the reported markers, we ensure local consistency. This problem of ‘explaining’
marker reports may be neatly expressed as a Set Covering Problem.

Before showing how it relates to our reconstruction problem, we formally
state the Set Covering optimisation problem: Given a universe A and a family
B of subsets of A, the task is to find the smallest subfamily C ⊆ B such that
⋃

C = A. This subfamily C is then the ‘minimal cover’ of A. Given this formal
framework, we now define how these sets relate to our reconstruction problem.

Definition 5 (Universe, Av). The universe set of all elements is defined as
the set of all markers that have been reported by the node v:

Av = {i : v ∈ M i}

The node v can have an incoming edge from any other node, and hence the
space of potential incoming edges is Fv = (V/v) × v. As stated above, each
potential incoming edge will ‘explain’ a subset of the markers reported by v, and
therefore every edge fv

j ∈ Fv corresponds to one element Bv
j in the family of

subsets Bv.

Definition 6 (Family of subsets, Bv = {Bv
j }). Each subset Bv

j is defined by
a potential incoming edge (vj , v) = fv

j ∈ Fv, where i is in Bv
j if and only if vj

appears earlier than v in the marker trace M i:

Bv
j = {i : vj <Mi v}

The set covering problem then requires us to find a subfamily Cv ⊆ Bv such
that

⋃

Cv = Av, and this subfamily Cv directly corresponds to a set of incoming
edges for the node v.

Definition 7 (Reconstructed Incoming Edges, Ev
R). The set of reconstructed

edges, Ev
R, consists of the set of all elements in F that correspond to elements

of C:

Ev
R = {fv

j ∈ Fv : Bv
j ∈ Cv}

This then allows us to make a final definition of our optimisation problem,
this time in terms of the Set Covering Problem. The following problem is defined
for each node v ∈ V .
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Problem 4 (Formulation in terms of Set Covering).

argminEv
R
|Ev

R|

subject to

Av =
⋃

Cv where Cv = {Bv
j : fv

j ∈ Ev
R} and Ev

R ⊆ Fv

Finally, repeating this optimisation for all nodes in the network, we get
ER =

⋃

v E
v
R, allowing us to reconstruct the entire network through only lo-

cal considerations.

2.5 Greedy Approximation to Set Covering

The Set Covering Problem is known to be NP-hard, but in practice is easy to
approximate well using a greedy approach (see Sec. 3). The greedy algorithm is
well documented for set covering [2], but below we briefly outline the approach.

We wish to cover the set A by selecting from the family of subsets B. We
first select the subset Bj ∈ B that covers the greatest number of elements in A,
ie. such as to maximise |Bj |. The corresponding edge fj is then added to the
set of reconstructed edges Ev

R. A subset of A has now been covered, and hence
these elements are removed both from A and all subsets in the family B. This
process is repeated until A = ∅.

3 Theoretical Analysis

We have formalised our problem using the intuitive notion of global consistency
of a network with a set of Marker Traces. Here, we will show that this strategy
ensures that the reconstructed network GR is close to the true network GT in a
well-defined sense. In particular, we will consider the number of edges in ER also
in ET , referred to as the True Positives (TP), as well as the number of edges in
ER not in ET , referred to as the False Positives (FP). The number of true and
false positives gives an indication both of how well the approach finds edges that
really exist, and how likely it is to incorrectly identify edges as being part of the
network.

3.1 Lower bound on True Positives

The number of true positives found by the reconstruction approach is simply the
number of edges found in both the true and reconstructed networks, given by

TP = |ER ∩ ET | (1)

The nature of the set covering algorithm allows us to set a lower limit on
TP, given a particular M. In achieving a complete coverage we can be certain
of including all those edges that were traversed first in the propagation of any
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marker. In other words, all pairs of nodes that appear first and second in any
marker trace are guaranteed to represent a true edge, and will also inevitably
be included in the covering. There is only a single subset covering this partic-
ular marker report, an hence it must be included in the final reconstruction.
We therefore only need count the number of such edges to determine the least
number of true edges we will identify, and thus a lower bound TP− on TP

In assessing performance it is useful also to define the True Positive Rate
(TPR), which is the fraction of true positives successfully recovered, given by

TPR =
|ER ∩ET |

|ET |
(2)

Trivially, if |ET | is known, we can use TP− to directly obtain a lower bound
TPR− on TPR.

3.2 Upper bound on False Positives

While we may correctly include all genuine edges, it is also important to suc-
cessfully exclude all false edges from our reconstruction. This is quantified by
the number of False Positives (FP):

FP = |ER/ET | (3)

We denote the highest possible number of false positives as FP+, and in
order to specify this bound we need to make the following definitions. The set
ER is obtained from a greedy approximation to set covering, and therefore is
not guaranteed to be optimal. We denote the optimal covering as E∗

R, which
will always be equal or smaller in cardinality than ER. We also know that the
true set of edges will always provide a valid covering, and hence provides an
upper bound on the size of the optimal covering, giving |E∗

R| ≤ |ET |. Finally,
the heuristic ratio is defined as the upper bound on the size of the obtained set
relative to the size of the optimal set, H ≥ |ER|/|E∗

R|.
We can now specify the upper bound on false positives as follows:

FP = |ER| − TP (4)

FP ≤ |ER| − TP− (5)

≤ H.|E∗
R| − TP− (6)

≤ H.|ET | − TP− (7)

∴ FP+ = H.|ET | − TP− (8)

The greedy approximation to set covering is known to be as good as any
polynomial-time approximation, and the literature gives us two useful values for
H . The first bound is related to the maximum size of the subsets from which we
construct the covering, maxBj∈B |Bj |, and provides a limit on the quality of the
covering related to the logarithm of the size of this set [2]. This first bound H1

is given by
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H1 = 1 + ln

(

max
Bj∈B

|Bj |

)

(9)

The second bound approaches the problem from an alternative perspective,
considering the maximum number of covering subsets of which any element is
a member, m0 [7]. In other words, for each element of the ground set we need
to cover, how many subsets can be selected from in order to cover the element
in question. In the case of our algorithm this is related to the length of marker
traces. The elements of the ground set we need to cover are reports of a marker at
a node, and the number of ways of explaining the presence of this marker is equal
to the number of nodes that have reported at an earlier time. The maximum
membership across all elements in the ground set, m0, is therefore related to the
maximum length of marker traces. This second bound is then

H2 = m0 (10)

=

(

max
Mi∈M

|M i|

)

− 1 (11)

Initially H2 appears to provide a less useful bound, since it is linear as op-
posed to logarithmic, but the behaviour of the bounds as the number of markers
increases is markedly different. While the maximum size of covering set contin-
ues to increase with number of markers, the maximum length of marker trace
rapidly tends to a fixed value. This limit is a property of the network and marker
propagation, but at most is limited by the size of the network, not the dataset.
Therefore, as the amount of data used in the reconstruction increases, the tighter
bound switches from H1 to H2. Hence, we can define the heuristic ratio as the
minimum of these two alternatives, and therefore bound the false positives as
shown in equation 12. Again, determining this bound requires knowing the set
of markers and |ET |:

FP+ = |ET |.min(H1, H2)− TP− (12)

The total number of possible false positive is given by (|V |2−|V |)−|ET |, and
hence we can also define an upper bound on the False Positive Rate (FPR+):

FPR+ =
|ET |.min(H1, H2)− TP−

(|V |2 − |V |)− |ET |
(13)

3.3 Jaccard Distance

To assess the overall quality of our reconstructions, we require a measure of how
well the reconstructed set of edges matches the true set. In comparing two sets
over the same elements, it is appropriate to use the Jaccard Distance (JD). For
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identical sets this has a value zero, and a value of one if the two sets have no
elements in common at all. The JD is given by

JD =
|ET ∪ ER| − |ET ∩ ER|

|ET ∪ ER|
(14)

A lower value of Jaccard Distance indicates a closer match between true and
reconstructed networks, and hence a bound on worse-case performance is an
upper limit on JD. This can be calculated from bounds on the number of true
and false positives as follows:

JD ≤ 1−
TP−

|ET |+ FP+

(15)

This upper limit on JD is determined given a particular set of marker traces,
and constitutes a worst-case scenario for our success in reconstructing the true
underlying network.

4 Reconstruction from Noisy Data

Our approach and analysis has thus far assumed perfect and noise free data from
which to reconstruct networks. In reality this is an unrealistic assumption, and
hence we define an adaptation of our approach to accommodate noisy data.

Our basic Set Covering approach assumes that a minimal network consistent
with the data will result in a perfect reconstruction (given infinite data and
perfect minimal covering set). Every report of a marker is assumed to be due
to direct infection from an earlier infected node, and hence we require that the
presence of every marker at every node be explained. When noise is present these
assumptions do not hold, and missing marker reports may incorrectly suggest
the presence of edges that are not really present. This will lead to a large number
of false positives, increasing with the quantity of data used in reconstruction.

In executing the greedy approximation to Set Covering, we first select those
subsets that cover the greatest number of remaining elements, which in our
case corresponds to choosing edges that explain the greatest number of marker
reports. While the noise level remains low, therefore, we will first select true
edges, since the incorrect edges suggested by the noise will tend to be relatively
low in frequency. We can therefore expect that, in general, the noise-induced
false positives will be added toward the end of the set covering process. This is
demonstrated empirically in Fig. 2a, Sec. 5.4, and motivates the definition of a
criterion to halt the covering early.

4.1 Minimum Description Length

In selecting the optimal point to halt the set covering when reconstructing from
noisy data, we appeal to the Minimum Description Length (MDL) principle [11].
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This states that in model selection one should prefer models that are able to
communicate the data in the lowest number of bits. This is in principle equivalent
to considering Maximum Likelihood Estimation [5], but our case lends itself
particularly well to the use of MDL.

Marker Trace Coding Scheme We choose to describe the network in the
most simple way, in which all edges are explicitly assigned 0 or 1, and hence the
network is description is of fixed length. As such, our coding scheme contains
no inherent preference for sparsity, and the Description Length (DL) is entirely
dependent on how efficiently the set of all markers can be expressed.

In order to describe a marker trace we need to specify in order all those
nodes that are members of the set M i. A simple ordered list requires lnN bits
of information per node, where N is the number of nodes in the network. This is
straightforward, but using the framework of the underlying network may allow
us to describe this same information in a compressed form. Instead of simply
listing the reporting nodes, we describe the progression of the marker through
the network.

When the network is consistent with the data, we are able to describe all
markers exactly with the following approach. We first identify the originator
node, at a cost of lnN . We then describe each node of the marker by first
identifying its parent (from the set of those that have already reported), and
then specifying the particular child of this node. The cost of identifying the
2nd report is then (ln 1 + ln dp2

), where dp2
is the out-degree of the parent.

The 3rd report then requires ln 2 bits to specify the parent, since there are two
possibilities, and also ln dp3

to specify which child. This progresses similarly for
all subsequent reports in the trace. By then summing the description lengths of
all marker traces we get the cost of describing the set of data completely.

To render this coding scheme useful in practice we need to be able to describe
markers that are not consistent with the network, for which we need only make a
simple extension, allowing for the coding of ‘exceptions’. We do this by defining
a ‘supernode’ in addition to the standard network, which is the originator of
all markers and by definition a parent of every other node. The description of
the first report then becomes (ln 1 + ln dp1

) = lnN , where the cost of specifying
the parent is ln 1 = 0 (since all markers originate at the supernode) and the
cost of specifying the child is lnN . For the second report there are now two
potential parents, and hence to specify the second reporting node we require
(ln 2+lndp2

) bits. If the first reporter is a parent of the second, dp2
will be equal

to the out-degree of the first reporter, and otherwise dp2
= N , the out-degree of

the supernode. Similarly, the cost for the third report is (ln 3 + ln dp3
) bits, the

fourth (ln 4 + ln dp4
) and so on.

A crucial characteristic of this coding scheme is that, while there is no explicit
cost to defining edges, nodes of higher degree are more expensive to use as the
parent of a report. Therefore, while it is expensive to describe a report as an
exception, there is a trade off between creating a network that does not require
any exceptions and the increased cost of describing all of the marker reports. In
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general, therefore, the network that allows the shortest description of all marker
traces will lie at some point between completely disconnected and completely
connected.

4.2 MDL as Stopping Criterion

To use MDL as a stopping criterion requires a minor change to the set covering
reconstruction algorithm, in which the addition of edges is considered globally,
rather than simply on a node by node basis. We still perform greedy set covering
for each node in turn, but instead of placing selected edges directly into the
reconstructed network, we make a note of each edge and the number of additional
elements covered when it is selected. After doing this for all nodes we have a list
of edges across the whole network, along with their explanatory power within the
greedy set covering framework. We then rank them all by the elements covered,
and follow this order in adding edges to the network.

While the Jaccard Distance requires knowledge of the true network to calcu-
late, we can calculate the description length using only the data and the current
reconstructed network. We can therefore calculate the new DL after each edge
is added, and subsequently select the network ER that gave the lowest total
description length.

5 Empirical Evaluation

5.1 Generation of Synthetic Data

The model for generation of our generalised ‘markers’ is based on an SIR epi-
demiological model. We simulate each marker separately, dropped at random
into the network and subsequently propagated between outlets in a stochastic
fashion. The definition of this model then falls into three sections; the network
itself, the generation of markers and the model used for noise in the data.

Network Model The definition of the network consists of a non-symmetric
binary adjacency matrix, (i, j) = 1 indicating an edge connecting from node i
to node j. We use a directed Erdős-Rényi model, in which each edge exists with
probability p = 2/N , where N is the total number of nodes. This results in an
average of 2 outgoing and 2 incoming edges per node, resulting in a relatively
sparse network that is likely to be a single weakly-connected component.

Marker Generation Throughout the simulation, each node can be in one of
three states; Susceptible (S), Infected (I) or Recovered (R). All nodes begin in
state S, before the marker initially ‘seeded’ at a randomly selected node, set to
I. The state of each node in the next time step is determined stochastically from
its current state and that of all its parents. The potential transitions of a node
and their associated probabilities are shown in table 1. We select parameters to
generate markers paths of reasonable length and frequency, with pI = 0.1 and
pR = 0.1.
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Generation of noisy data We consider the most basic model of noise for
the type of data we are looking at, in which each marker report has a certain
probability of being ‘lost’. The single parameter is ploss, giving the likelihood
that a carrier node is omitted from the marker.

Table 1: The transition probabilities for nodes, dependent on current
state. nI is number of incoming edges from infected nodes, pI is probability
that infection will pass along an edge in a time step, and pR is probability that
node will recover from infection in a time step.

Susceptible Infected Recovered

P (S) = (1− pi)
nI P (I) = 1− pR P (R) = 1

P (I) = 1− (1− pi)
nI P (R) = pR

5.2 Naive Approaches

We define two naive algorithms for network reconstruction, to which it will be
instructive to compare our Set Covering approach.

Naive 1 The most immediately obvious explanation for the creation of a marker
trace is that each node became infected by that node immediately preceding it in
time. Indeed, assuming all network structures are equally likely, and considering
a trace in isolation, this would be our best guess. We therefore simply take
the union of all edges implied by a literal interpretation of each marker trace.
The resultant network is capable of producing the observed data, and hence is
consistent. This set of edges is given by

EN1
=

⋃

Mi∈M

(wi
n, w

i
n+1) ∀n (16)

Naive 2 In the second naive approach to reconstruction, we consider only those
marker reports for which only one edge can provide the explanation. In other
words, we take only those edges that are guaranteed true positives. This does
not make full use of the available information, since it effectively throws away
all reports of a marker beyond the second, but ensures no false positives are
included. The set of edges given by the second naive method is given by

EN2
=

⋃

Mi∈M

(wi
1, w

i
2) (17)
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5.3 Naive vs. Set Covering Approaches - Noise Free Case

Figure 1 shows the results of network reconstruction using our Set Covering
algorithm, along with baseline results and the worst-case bound. Probably the
clearest result is that the bound on performance holds for both true and false
positives, but more important is comparison of our algorithm with the naive
baseline approaches.

Figures 1b and 1c clearly show that false positives are the cause of the poor
performance of the first naive approach. This is entirely expected, but illus-
trates that it is not sufficient to simply find any network that is consistent with
the data. Both the first naive approach and our Set Covering algorithm return
a network that is consistent with the data, but the results clearly show that
searching for one that is maximally sparse leads to a reconstruction closer to the
true network.

We also see in Fig. 1 that the Set Covering algorithm exceeds the performance
of the second naive approach. The second naive method never returns any false
positives but throws away everything except the first two reports of every marker
trace. This loses valuable information, and hence does not perform as well as the
Set Covering algorithm.

5.4 Jaccard Distance and MDL during set covering

In Sec. 4 we introduced a criterion for early stopping, arguing that this would
result in improved performance on noisy data. Figure 2a gives the empirical
verification for this, showing that for noisy data the closest match to the true
network is obtained before the Set Covering is complete.

The circles plotted in Fig. 2 indicate the point at which the minimum descrip-
tion length was obtained, and hence the point at which the set covering would
be halted. Figures 2c and 2d demonstrate that halting using MDL includes the
majority of true positives, but limits the inclusion of false edges.

5.5 Noisy Data with MDL Stopping

Finally, in Fig. 3 we show results of network reconstruction for various noise
levels, with and without the use of MDL stopping. Figure 3c clearly shows that
when we use MDL stopping the rate of false positives remains bounded as the
amount of data increases, in stark contrast to results for the basic algorithm.

The use of MDL does not completely compensate for the presence of noise,
however, as evidenced by the lower performance shown in Fig. 3b. The order in
which edges are added to the set ER determines the proportion of true positives
added before halting, and the results show that for higher noise conditions, more
false edges will end up included in the final network. In the limit of large amounts
of data, both TPR and FPR tend to a fixed level, determined by the exact nature
of the network and markers, as well as the level of noise.
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Fig. 1: Performance of Set Covering Reconstruction, relative to naive
approaches and theoretical bounds. For TPR, the data for naive 2 and set
covering bound coincide. FPR for naive 2 is always zero, and hence not shown.
Results are shown for networks of 100 nodes.
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Fig. 2: Plots showing variation of JD, DL, TPR and FPR with the
progress of set covering. Circles indicate the point at which the MDL criterion
would have halted the covering. Each line shows reconstruction of a network of
100 nodes, using 1000 markers.
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Fig. 3: Performance of reconstruction for various levels of noise, with
and without MDL stopping. Results are shown for a network of 100 nodes.

6 Conclusions

Our work demonstrates a novel approach to the reconstruction of causal net-
works underlying stochastic branching processes, such as from data representing
information flow or the spread of an epidemic on a network. Using the intuitive
notion of consistency between a network and such data, we demonstrated that
the entire network can be reconstructed node by node, using only local consid-
erations. In this way, we were able to reformulate the problem in terms of the
Set Covering problem, which is NP-hard but can be approximated well using an
efficient greedy algorithm.

We developed two versions of the algorithm for different settings. The first
version attempts to achieve perfect consistency with the data, and is therefore
restricted to noise-free and fully-observed settings. This version is likely to be
useful in controlled settings, such as in fault propagation networks in large en-
terprises. The second version was designed for the more common noisy setting,
e.g. where certain marker observations may not have been observed or detected.
It is based on the empirical observation that reliable edges tend to be added
first, such that early stopping combined with our first algorithm is sufficient to
provide good results. As a stopping criterion, the MDL principle proved to be
an excellent measure, as shown by our experiments.

In further work we plan to investigate direct optimisation of the MDL cost
function, rather than using MDL only as a stopping criterion. Another avenue
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for extending the approach is the use of exact times, rather than our current
approach considering only the order of reports. Finally, we intend to apply our
methods to various real-life data sets, such as the propagation of memes on the
media network [3,8], and fault propagation data [6].
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