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Abstract. A stochastic approach to spoken sentence recognition is proposed for the

purpose of an automatic voice-based dialogue system. Three main tasks are distin-

guished: word recognition, word chain filtering and sentence recognition. The first

task is solved by typical acoustic processing followed by phonetic word recognition

with the use of Hidden Markov Models (HMM) and Viterbi search. For the second

solution an N-gram model of natural language is applied and a token-passing search

is designed for the filtering of important word chains. The third task is solved due to

a semantic HMM of sentences. The final sentence is recognized and a meaning is as-

signed to its elements with respect to given application domain. A particular spoken

sentence recognition system has been implemented for train connection queries.

1 Introduction

Spoken sentence analysis is a muli-disciplinary problem in which techniques are

involved that originate from signal processing, phonetics, computational linguistics

and natural language processing [1]. In engineering disciplines speech processing

can be decomposed into stages of acoustic-, phonetic-, lexical-, syntactic-, semantic-

and pragmatic analysis. The main application of spoken sentence analysis, that we

consider in this paper, are automatic spoken language dialog systems (e.g. automatic

railway information system) [2]. This limits our interest to first 4 stages of speech

processing and to a limited-scope semantic analysis.

General semantic analysis of natural languages usually requires large data bases.

For example, research in psycholinguistics identifies how humans process a natu-

ral language. The goal of WordNet project [5] was to create a data base for lex-

ical and semantic memory, i.e. allowing to search the dictionary by associations
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originating from the grammar form of a word and/or semantic relations between

words in given language. Its use is much broader than automatic dialogue systems -

a multi-language WordNet will support automatic language translation and speech

understanding (the pragmatic analysis of speech).

The studies on language ontology [11], among others, lead to inheritance rela-

tions between words based on their meanings. Such relations can then support the

pragmatic analysis of sentences, allowing to exchange words with similar meaning

depending on the context of their current use.

The syntactic-semantic analysis of spoken sentences is most often based on: case-

frame grammars [6], probabilistic grammars [7] and stochastic models [10]. They

seem to be useful for specific dialogue systems in which only a limited subset of a

natural language need to be considered. The advantage of a case-frame grammar in

comparison to context-free formal grammars is the ability to express large number

of sentence configurations without a need to generate them all. The idea is to build

the sentence ”around” a key word which represents the main use case of a sentence.

The statistical approach to speech recognition is widely recognized. The acquired

signal is contaminated by noise, the signal shape is of high variability and depends

on the speaker and even the meaning of properly syntactically recognized sen-

tences is often ambiguous. All this motivates the use of stochastic models in speech

recognition.

The paper is organized as follows. Section 2 presents and discusses the structure

of our system. The next section 3 concentrates on the acoustic-phoneticmodelling of

spoken words. In section 4 an N-gram estimation approach is presented. In section 5

the token-passing search is presented, with the goal to filter possible word sequences

by using N-gram models. In section 6 the idea of a HMM for sentence recognition

and meaning assignment is introduced. An example is presented in section 7 - the

recognition of train departure questions.

2 System Structure

The speech recognition system is structured into man abstraction levels: acous-

tic analysis, phonetic analysis (word recognition), word chain filtering and sen-

tence recognition. The symbolic part of sentence analysis is split into the syntax-

driven detection of word sequences and a semantic-driven sentence recognition.

From syntactic point of view a sentence is a chain of words, where each word is

again a sequence of phonemes. From system point of view we can distinguish the

need of model creation and of model use (for the purposes of word and sentence

recognition).

In Fig.1 the proposed structure of our speech analysis system is outlined. The in-

put signal is converted to a sequence of numeric feature vectors, Y = [y1, ...,yn],
that represent acoustic features of consecutive signal frames. This is a feature

detection step.
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Fig. 1 The speech recognition system

The next step is to recognize a sequence of words, W = (w1, ...,wK), that in a
best way (with highest probability among competitive candidates induced by the

language model) matches the measured sequence Y.

The word sequence recognition step (in some works also called as decoding)

solves the following stochastic task:

Ŵ =max
W

[p(W |Y )] (1)

But the distribution p(W |Y ) represents a diagnostic relation (from observed effect
to hidden effect). Hence, it is difficult to obtain its direct model. Applying the Bayes

rule we obtain:

p(W |Y ) =
p(Y |W ) p(W )

p(Y )
(2)

that means, we express the problem in terms of prior probabilities:

Ŵ =max
W

[p(Y |W )] p(Y )] (3)

For word sequence recognition we shall create two stochastic models:

1. a phonetic model - which gives the conditional probability of signal

measurement for given sentence, p(Y |W ), and
2. a language model - which gives probabilities of word sequences, p(W ).

The Hidden Markow Model (HMM) [10], [12] allows for the transition both from

acoustic to phonetic description and from phonemes to words. A sequence of pho-

netic entities representing a spoken is encoded as a sequence of HMM-states,

(s1...sm), whereas the measured sequence of frame features, (y1...yn) is a sequence
of observation variable values in HMM. The Viterbi search [8] is applied to find

the best match between such two sequences, or in other words - the best path in the

HMM of all words.

The required stochastic language model, P(W )∼ P(w1,w2, ...,wn), should allow
to select proper sentences in given language and help to reject wrongly generated
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word sequences. For example, P(”W czym mogȩ Panu pomóc”) should be of high

probability value if compared to P(”Jak biegać kot chodzić pies").

In practice it will be difficult to learn the estimates of all individual sentences. We

shall rely on shorter word sequences and learn probabilistic models, called N-grams,

in which a word’s probability is conditioned upon at most N−1 direct predecessor
words [4], [7], [12]. In this work the languagemodel will be used by a token-passing

search to perform a filtering of word chains.

Another HMM will be applied for sentence recognition, but it will rather repre-

sent the ”semantics” of a sentence in given application. The words will be observed

and accepted by HMM states due to their meaning and not their syntactic role. Thus,

the HMM states represent key structures of a sentence to that allow to recognize the

type of sentence (i.e. question, information, order) and to associate an interpretation

(action, answer) to it.

3 Acoustic-Phonetic Model of Spoken Words

3.1 Acoustic Model

Here we apply the well-known scheme of mel-cepstral coefficients (MFCC) [1].

In every considered signal segment of around 16 ms duration time a vector of 38

numeric features is detected.

3.2 Phonetic Model

All words in a dictionary are given phonetic transcriptions in terms of 39 phonemes.

Each phoneme is divided into 1-, 2- or 3 parts, called three-phones.

The acoustic and phonetic models of spoken words (from given dictionary) are

combined into a single HMM. The phonetic model of every word is expressed by

the structure of a left-to-right HMM, i.e. its states, si, and transition probabilities,

ai j, between pairs of states si and s j, where s j follows si.

The acoustic feature vector y may be attached to a HMM via possible three-

phones and their output probabilities, λ jm (for observed phone m in state j) [10],

[12]. In a so called semi-continues probability model, the output probability takes

the form of a Gaussian mixture, i.e. the probability of observing in state j a vector y

is computed as:

b j(y) =
M

∑
m=1

λ jm N(y;µ jm,σ jm) (4)

3.3 Word Hypothesis Lattice

A slightly modified Viterbi search [1] is applied to find a best match between every

path in the HMM word model and a sequence of signal segments, that we assume

to contain spoken utterances of 1-, 2- or 3-sylab words.
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Fig. 2 Illustration of the word hypothesis lattice. Besides the optimal sequence ("Kiedy bȩdzie

pocia̧g do Warszawy") many other competing sequences are still possible.

The competing word sequences can be represented by a lattice-graph, where the

nodes are ordered according to the (assumed) sylab (and time) index (Fig. 2). Every

arc in this graph represents the best word recognition results achieved for the appro-

priate signal frame. More than one competing word hypothesis can be stored for a

given signal frame, depending on their quality scores.

4 Language Model - N-Grams

In a formal grammar a sentence W belongs or not to some language L. Hence the

probability P(W ) that the sentence is proper in language L is 0 or 1.

In a probabilistic context-free grammar (PCFG) [7], [12] every production rule

has assigned its probability value. Hence, the probability of a sentence is a function

of rule probabilities needed to generate this sequence. The key difficulty is to design

this function that combines probabilities.

In opposite to PCFG-s stochastic word sequence models, called N-grams, are

easy to generate and to modify. But they have to cope with the ”sparse” nature of

training data.

4.1 The N-Gram Model

LetW,W = (w1w2...wn), be a word chain. When the word chain satisfies a Markov
random process of order (N−1), where N ≤ n, its N-gram model is:

P(W ) =
n

∏
i=1

P(wi|wi−N+1, ...,wi−1) (5)

In practice the N-grams are limited to N = 2,3,4 and such special cases are called as
[4]: unigram, P(wi), bigram, P(wi|wi−1), three-gram, P(wi|wi−1,wi−2), four-gram,
P(wi|wi−1,wi−2,wi−3). These distributions are estimated during a learning process
that is based on themaximum likelihood rule (ML). The elementary learning approach

is to count the appearance frequency of given word chain in the training data.

LetC(wi−N+1...wi−N+N) is the number of training set appearances of given word
chain of length N. The unigram estimation is simple (wk means any word in the

training set):
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P(wi) =
C(wi)

∑wk
wk

(6)

The bigram estimation needs to count the number of appearances of given pair of

words and of the first word:

P(wi|wi−1) =
C(wi−1wi)

C(wi−1)
(7)

This can be generalized for an N-gram as:

P(wi|wi−N+1,wi−N+2, ...,wi−1) =
C(wi−N+1wi−N+2...wi)

C(wi−N+1wi−N+2...wi−1)
(8)

4.2 N-Gram Learning with Smoothing

The drawback od elementary N-gram learning approach is the sparsity of available

training data, even when the number of words is large. For example in a text that

contains several million of words around 50% of three-grams may appear only one

time, and around 80% of three-grams - no more than 5 times. Obviously such sparse

data set will lead to large N-gram estimation errors.

To eliminate such drawback a common procedure in N-gram learning is to ap-

ply a smoothing operation on the estimated probability distribution. The simplest

smoothing method, called Laplace smoothing, is to add 1 to the number a sequence

appeared in the training set [4].

4.3 The Katz Smoothing Method

In this work we apply the so called Katz method [9]:

1. for frequent N-tuples of words apply the elementary estimation approach,

2. for rare N-tuples of words apply the ’good Turing estimate,

3. for non-observedN-tuples of words apply a smoothing method by returning to

(N-1)-grams.

The good Turing estimate takes the form (for a bigram):

C∗(wi|wi−1) =











r, r > k

drr, 0< r ≤ k

α(wi−1)P(wi), r = 0

(9)

Here r denotes the appearance number, i.e. r = C(wi−1,wi), dr - the discount rate,

and α - a normalization coefficient. The parameter k, that selects one of the 3

approaches, is set by default - for example it may be set to 5.

α(wi−1 is estimated in such a way to satisfy the following condition:

∑
wi

C∗(wi−1,wi) = ∑
wi

C(wi−1,wi) (10)
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The discount rate is computed as:

dr =

r∗

r
−

(k+1)nk+1
n1

1−
(k+1)nk+1

n1

(11)

for r = 1,2, ...,k. Where nr denotes the number of N-tuples, that appear exactly r

times in the training set, and r∗ is the good Turing estimate, i.e.:

r∗r = (r +1)
nr+1

nr

(12)

Thus the probabilities in a three-gram model are estimated according to the follow-

ing options:

P∗(wi|wi−1,wi−2) =











C(wi−2wi−1wi)
C(wi−2wi−1)

, r > k

dr
C(wi−2wi−1wi)
C(wi−2wi−1)

, 0< r ≤ k

α(wi−1,wi−2)P(wi|wi−1), r = 0

(13)

5 Token-Passing Search

We developed a general-purpose search, called token-passing search, in order to

convert the lattice of word hypotheses into meaningful sentences of words. This is a

breadth-first search controlled by evaluations of partial word sequences (paths) and

which uses the N-grammodel, corresponding to the dictionary of current application

domain, to prune paths with inconsistent n-tuples of words. Thus the token passing

search takes as input: 1) the dictionary model, represented by the integrated HMM

for words, and 2) the languagemodel given by N-grams.

A tokenmeans a data structure associated with the search tree node that contains:

1) the score (evaluation) of corresponding path, P, and 2) a pointer, link, to path

description (a structure R).

A search tree node passes its token to its successor nodes. A new structure of

type R is created for every successor node that holds: a link to obtained predecessor

token, the new added word with its lattice time index and its quality score. Then

the score of every new token is modified by the product of N-gram probability (of

added word upon the condition of N−1 predecessor words) and its quality score.

6 Semantic HMM

A sentence is a sequence of words. We propose the use of another HMM model for

representation of a stochastic syntax of sentences in given application. States in this

model correspond to word categories, whereas observations can be specific words

given in the dictionary.



744 W. Kasprzak and P. Przybysz

The categories of words are distinguished from point of view of the application

domain. Hence, the states of such HMM represent semantic entities, rather than

syntactic ones.

Semantic HMM is based on assumption that every sentence is combined from

parts containing atomic semantic information. For example, an atomic part may be:

a question form (when, where, at what time), a time period (at eight a.m., afternoon,

at evening) or destination (Warszawa).

Prior probability of a valid sequence of semantic parts is expressed by transition

probabilities along the appropriate path in HMM. Posterior probability is found by

including the word acceptance (observation) probabilities in states along such path.

Specific features of the semantic HMM are:

• It can represent a sentence category (many sentences with the same meaning)

rather than a single sentence ;

• During the recognition process a particular sentence from given category is de-

tected along with sentence meaning. Hence, speech recognition system could

execute an action according to recognized sentence;

• Semantic parts can be used as a elements of many semantic HMMs.

In a general use of this approach the HMM states would be rather of syntactic mean-

ing, i.e. they may represent:

• the role in a sentence: subject, predicate, object;

• a syntax category: noun, verb, conjunction, adjective, number, etc.

7 Example

The HMM in Fig. 3 allows a very flexible modelling of sentences. It represents the

application domain: question on train departure. The word dictionary contains at

least 38 words in base form, like: from, to, train, hour, minute, day, when, Mon-

day, today, etc. This can be further extended by the names of cities for which train

connections are needed.

Some words appear multiple times, but in different grammar forms of common

base word. They are included in the word recognition stage. For simplicity of the

semantic model, after the word sequence detection they are converted into the base

form.

The states of HMM represent following 11 meaning (and not directly syntactic)

categories: question attribute, departure form, day, day-time, train attribute, train,

from, to, departure city, destination city, end of sentence. Every state can emit sev-

eral words with specific probabilities. For example the state called train attribute

can accept the following words: "nearest", "last", "fastest", "first".

Here are examples of valid sentences accepted by this model:When the train from

Warszawa to Krakow departs? (”Kiedy bȩdzie pocia̧g do Warszawy z Krakowa?”),

When the first train from Krakow to Warszawa departs? (”Kiedy jest pierwszy

pocia̧g z Krakowa do Warszawy?”), When the train from Krakow to Warszawa de-

parts tomorrow? (”Kiedy jest jutro pocia̧g z Krakowa do Warszawy?”), When the
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next train to Wrocław departs? (”Kiedy jest najbliższy pocia̧g do Wrocławia?”),

When the first train from Krakow to Warszawa departs? (”O której odjeżdża pier-

wszy pocia̧g z Krakowa do Warszawy?”), When the first train from Krakow to

Warszawa departs tomorrow afternoon? (”O której bȩdzie jutro pierwszy pocia̧g

po południu z Krakowa do Warszawy?”), When tomorrow afternoon the first train

from Krakow to Warszawa departs?, (”O której jutro bȩdzie pierwszy pocia̧g po

południu z Krakowa do Warszawy?”), When afternoon the first train from Krakow

to Warszawa departs a day after tomorrow? ( ”O której pojutrze bȩdzie pierwszy

pocia̧g po południu z Krakowa do Warszawy?”), When the train to Warszawa de-

parts? (”O której jest pocia̧g doWarszawy?”),When tomorrow the train to Grodzisk

leaves ? (”O której jutro odjeżdża pocia̧g do Grodziska?”).
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Fig. 3 Illustration of a semantic HMM for train departure information.

8 Summary

A design of a spoken sentence recognition system applied for the purpose of man-

machine dialogue systems was proposed. The novel elements can be characterized

as follows:

1. the stochastic modelling of words and sentences in given language by means

of HMMs and N-gram models;

2. a token-passing search as a word filtering stage in this system;

3. a semantic HMM for spoken sentence recognition and meaning (action)

association in some application domain (e.g. train departure information).
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