
Applying Atomicity and Model Decomposition
to a Space Craft System in Event-B?

Asieh Salehi Fathabadi1, Abdolbaghi Rezazadeh2, and Michael Butler3

University of Southampton, UK
asf08r1,ra32,mjb3@ecs.soton.ac.uk

Abstract. Event-B is a formal method for modeling and verifying con-
sistency of systems. In formal methods such as Event-B, refinement is the
process of enriching or modifying an abstract model in a step-wise man-
ner in order to manage the development of complex and large systems.
To further alleviate the complexity of developing large systems, Event-B
refinement can be augmented with two techniques, namely atomicity de-
composition and model decomposition. Our main objective in this paper
is to investigate and evaluate the application of these techniques when
used in a refinement based development. These techniques have been ap-
plied to the formal development of a space craft system. The outcomes
of this experimental work are presented as assessment results. The expe-
rience and assessment can form the basis for some guidelines in applying
these techniques in future cases.

1 Introduction

Event-B [2] is a formal method that evolved from the B-Method [8] and Action
Systems [10]. Simplicity of notation and structure is one of the primary reasons
for choosing Event-B to develop formal models of our case study. Event-B also
is proven to be applicable in different domains including distributed systems [2].
Moreover Event-B supports refinement and uses mathematical proofs to verify
consistency of models. Furthermore there is good tool support for modeling and
proving.

Exploration of the planet Mercury is the main goal of the BepiColombo
mission [13], which consist of two orbiters. One of the orbiters is the Mercury
Planetary Orbiter (MPO) which performs global remote sensing and radio sci-
ence investigations. An important part of this orbiter consist of a core and four
devices: Solar Intensity X-ray Spectrometer (SIXS-X and SIXS-P) and Mer-
cury Imaging X-ray Spectrometer (MIXS-T and MIXS-C). The whole system
is controlled by mission-critical software. The core and the control software are
responsible for controlling the power of devices and their operation states and
to handle TeleCommand (TC) and TeleMessage (TM) communications. In the
rest of this paper we refer to the core and the devices including control software

? Acknowledgement: This work is partly supported by the EU research project ICT
214158 DEPLOY (Industrial deployment of system engineering methods providing
high dependability and productivity) www.deploy-project.eu.

as the probe system. Our aim is to present a part of the probe system related
to the management of TC and TM communications.

Modeling a large and complex system such as this probe system, can result
in large and complex models with difficult proofs [3]. However Event-B provides
some techniques to address this problem. One such technique is refinement that
allows us to add details during a sequence of models instead of building a model
in a flat manner. The Event-B refinement rules are very general and they do
not explicitly represent relationships between abstract events and new events,
introduced during refinement. Refinement can be augmented with another tech-
nique called atomicity decomposition [4] that provides a structuring mechanism
for refinement in Event-B. Atomicity decomposition provides definitions and a
diagrammatic notation to explicitly represent relationships between refinement
levels. Using atomicity decomposition we can also illustrate the explicit sequenc-
ing between events of a model that is not always explicit in Event-B model. Model
decomposition [6], [7] is another technique to divide a large model into smaller
and more easily manageable sub-models.

Figure 1 presents the development architecture of Event-B model of the probe
system. In the abstraction, M0 , the main goal of the system is modeled. The
details of the system are added through three refinement levels, M1, M2 and
M3. Then the last model, M3, is decomposed to two sub-models, called Core
and Device. The intention in decomposing M3 is to decrease the complexity of
the produced Event-B sub-models. Also this model decomposition reflects the
structure of target architecture by separating the core from the devices. Finally
the core sub-model is refined further in two levels of refinement, M4 and M5.
During the refinement process both before and after model decomposition, the
atomicity decomposition technique is employed to explicitly represent the event
sequencing and relationships between abstract and refined events.

Refinement
D i

M1 M2 M3

Before Decomposition Device

M0
Refinement

After Decomposition

Model Decomposition M4 M5Core

After Decomposition

Fig. 1. Development Architecture of Event-B Model

The contribution of this paper is to assess the Event-B atomicity and model
decomposition techniques in the development of a complex and large distributed
system. In the development process of this case study we will explore how the
atomicity decomposition technique will help us to structure refinement steps.
After some refinement levels we will see how model decomposition can help us
to manage the large model by cutting it into two smaller sub-models. Using the
probe system as a carrier, our intention is to identify challenges and provide
some solutions by using atomicity and model decomposition techniques. These
solutions are presented as assessment results which can lead towards a guideline
in using the atomicity decomposition and model decomposition techniques.

This paper is organized into 6 sections. Section 2 outlines the background
of this work. Here we overview Event-B method and related techniques, namely
atomicity decomposition and model decomposition. In Section 3 we present the
Event-B model of the probe system including abstraction and refinement levels.
Assessment results are outlined in Section 4 and finally we outline related work
in Section 5 and conclude this paper in Section 6.

2 Background

2.1 Event-B and Refinement

The Event-B formal method [2] models the states and events of a system. Vari-
ables present the states. Events transform the system from a state to another
state by changing the value of variables. The modeling notation is based on set
theory and logic. Event-B uses mathematical proof to ensure consistency of a
model.

Event-B Structure: An Event-B model [11] is made of several components
of these two types, Context and Machine. Contexts contain the static part(types
and constants) of a model while Machines contain the dynamic part(variables
and events). A context can be “extended” by other contexts and “referenced” by
machines. A Machine can be “refined” by other machines and reference contexts.

Refinement in Event-B: In Event-B development, rather than having
a single large model, it is encouraged to construct the system in a series of
successive layers, starting with an abstract representation of the system. The
abstract model provides a simple view of the system, focusing on main purposes
of the system. The details of how the purposes are achieved are ignored in
the abstract specification. Details are added gradually to the abstract model
in stepwise manner. This process called refinement [3]. In Event-B refinement is
used to introduce new functionality or add details of current functionality. One
of the important features of Event-B refinement is the ability to introduce new
events in a refinement step. From a given machine, Machine1, a new machine,
Machine2, can be built as a refinement of Machine1. In this case, Machine1
is called an abstraction of Machine2, and Machine2 will said to be a concrete
version of Machine1.

Event-B Tool: Rodin [9] is an Eclipse-based tool for formal modeling and
proving in Event-B. Rodin is an extensible tool that can be extended to include
new features.

2.2 Atomicity Decomposition

Although refinement in Event-B provides a flexible approach to modeling, it has
the limitation that we cannot explicitly represent the relationship between new
events in a refinement and abstract events. To overcome this issue, the atomicity
decomposition approach is proposed in [4]. The idea is to augment Event-B re-
finement with a graphical notation that is capable of representing the relations

between abstract and concrete events explicitly. Using the atomicity decom-
position approach has another advantage which is that we can represent event
sequencing explicitly. An example of an atomicity decomposition diagram is pre-

Root, abstract event, is decomposed into sub nodes

Event1 (par)

, , p

A dashed line: refine skip A solid line: refinement relation

Event2 (par) Event3 (par) Event4 (par)Event2 (par) Event3 (par) Event4 (par)

The sub nodes are read from left to right and indicate sequential control

Fig. 2. Atomicity Decomposition Diagram

sented in Figure 2. This diagram explicitly illustrates that the effect achieved
by Event1 at the abstract level is realized at the refined level by occurrence of
Event2 followed by Event3 followed by Event4. The execution order of the leaf
events is always from left to right (this is based on JSD diagrams of Jackson [5]).
We say that Event1 is a causal event for Event2 since it must occur before
Event2 and so on. The solid line indicates that Event4 refines Event1 while
the dashed lines indicate that Event2 and Event3 are new events. In standard
Event-B refinement, Event2 and Event3 do not have any explicit connection
with Event1. Technically, Event4 is the only event that refines Event1 but the
diagram indicates that we break the atomicity of Event1 into three (sub-)events
in the refinement.

The parameter par in the diagram indicates that we are modelling multiple
instances of Event1 and its refining sub-events. Refined sub-events associated
with different values of par may be interleaved thus modelling interleaved ex-
ecution of multiple processes. Further details may be found in [4]. Two more
diagrammatic concepts, “XOR case splitting” and “ALL replicator”, are used
in development of the case study and they will be explained later. Atomicity
decomposition has been applied to a distributed file system in [4] and to a multi
media protocol in [12]. The Event-B model for the diagram of Figure 2 is pre-

event Event2
any par

event Event3
any par

event Event4 refines Event1
any pary p

where
@grd1 par PARAMETERS Event2

then
@act1 Event2 Event2 {par}

y p
where
@grd1 par Event2 Event3

then
@act1 Event3 Event3 {par}

y p
where
@grd1 par Event3 Event4

then
@act1 Event4 Event4 {par}@ {p }

end
@ {p }

end
@ {p }

end

3

Fig. 3. Event-B Model

sented in Figure 3. The effect of a refined event with parameter par is to add
the value of par to a set with the same name as the event, i.e., par ∈ Event1
means that Event1 has occured with value par. The use of a set means that the
same event can occur multiple times with different values for par. The guard

of an event with value par specifies that the event has not already occured for
value par but has occured for the causal event, e.g., the guard of Event3 says
that Event2 has occurred and Event3 has not occurred for value par.

2.3 Model Decomposition

The motivation for model decomposition [6], [7] is to decrease the complexity of
large models, increase the modularity and reflect the target architecture. After
several layers of refinement and as a result of introducing new events, we can end
up having to deal with many events and many state variables. The main idea of
decomposition is to cut a model into sub-models which can be refined separately
and more easily than the initial model. Independent sub-models provides the
possibility of team development which seems a very attractive option for the
industry.

1 e2: any p 3 4

Machine M

e1 e2: any p
G1(p, v1)
G2(p, v2)
then

e3 e4

then
v1 := E1(p, v1)
v2 := E2(p, v2)

V1 V2 V3

M hi M1 M hi M2

e1 e4e3

Machine M1 Machine M2
e2_1: any p
G1(p, v1)
th

e2_2: any p
G2(p, v2)
th

V1 V2 V3

then
v1 := E1(p, v1)

then
v2 := E2(p, v2)

V1 V2 V3

Fig. 4. Model Decomposition, Shared-event Style

In Event-B there are two ways of decomposing a model, shared-variable and
shared-event. The shared-event approach is particularly suitable for message-
passing in distributed systems, whereas the shared-variable approach is more
suitable for concurrent systems. Since the probe system is a distributed system
we use the shared-event approach in decomposing its model after three levels of
refinement. In the shared-event model decomposition, variables are partitioned
among the sub-models, whereas in shared-variable approach, events are parti-
tioned among the sub-models. Shared-event model decomposition is presented
graphically in Figure 4. First variables of the initial model M are partitioned
among sub-models M1; ...;Mn according to the devised policy. Then events of
the initial model, M , are distributed among sub-models M1; ...;Mn, according
to the variable partitioning. Events that are using variables allocated to different
sub-models, called shared events, must be split between these sub-models. For
example event e2 uses both v1 and v2 which are going to different sub-models.

Therefore as depicted we have split it to e2 1 and e2 2 corresponding to vari-
able v1 and v2 respectively. In the next stages the sub-models can be refined
independently.

3 Event-B Model of the Probe System

3.1 An overview of System Requirements and Development Process

The core software (CSW) plays a management role over the devices. CSW is
responsible for communication with Earth on one hand and with the devices on
the other hand. Here is the summary of the system requirements:

– A TeleCommand (TC) is received by the Core from Earth.
– The CSW checks the syntax of the received TC.
– Further semantic checking has to be carried out on the syntactically validated

TC. If the TC contains a message for one of the devices, it has to be sent to
the device for semantic checking, otherwise the semantic checking is carried
out in the core.

– For each validate TC a control TeleMessage (TM) is generated and sent to
Earth.

– For some particular types of TC, one or more data TMs are generated and
sent back to Earth.

As mentioned earlier, we only present the part of the probe system that han-
dles TeleCommands and TeleMessages communications. In Figure 1 of Section 1
we diagrammatically presented the development process of the probe system in
Event-B. The development process consists of:

– Machine M0 models the goal of the probe system. Three main events are
receiving a TC, validating the received TC, and generating one or more
TM(s) if it is needed.

– In machine M1 the validation phase is refined and further details of validation
process are added.

– In machine M2 we distinguish between validation checking of TCs that
should be carried out by the core or the devices.

– In machine M3 we refine the model to introduce the process of sending
related TCs to the devices for further validation and processing.

– Machine M4 and M5 model producing and sending TMs carried out in the
core.

3.2 Abstract Specification

In the abstract model, the main goal of the system is modeled. Abstract events
are illustrated in Figure 5 with a diagram resembling an atomicity decomposition
diagram. Note that the top box is the system name rather than an event name (as
the case in an atomicity decomposition diagram). In addition to this we only use
solid lines to show the events of the abstract specification. After receiving a TC,

three different scenarios are possible. Scenario(a): the received TC is validated
and in response to this TC, it is necessary to produce some data. This is achieved
by the occurrences of the third event. The response is sent back to Earth in the
form of some data TMs by the occurrences of the fourth event. Scenario(b): for
some TC’s type there is no need to generate data TMs in response. Producing
a control TM is later done by refining the TC Validation Ok event. Scenario(c):
it shows the case that the validation of a received TC fails. This is modeled by
TC Validation Fail event.

BepiColombo (tc)

ReceiveTC (tc) TCValid_ReplyDataTM (tc)TC_Validation_Ok (tc) TC_GenerateData (tc)

(a)
BepiColombo (tc)

(a)
BepiColombo (tc)

ReceiveTC (tc) TC_Validation_Fail (tc)
(c)

ReceiveTC (tc) TC_Validation_Ok (tc)
(b)

Fig. 5. Abstract Events, Machine M0

The sequencing between events is specified by following the rules explained in
Section2.2. In abstract machine, M0, there are five sets used as control variables.
Using sets allows multiple instance of a TC to be processed concurrently in an
interleaved fashion. Figure 6 shows variables and invariants of M0. For each
event there is a variable with the same name as the event, and if one event
appears after another one in the sequence, its variable is a subset of the variable
associated with the former. For example, as described before TC Validation Ok
event can occur only after occurrence of ReceiveTC event, so invariant inv2
describes TC Validation Ok variable as a subset of ReceiveTC variable.

variables
ReceiveTC

invariants
@inv1 ReceiveTC TCReceiveTC

TC_Validation_Ok
TCValid_GenerateData
TCValid ReplyDataTM

@inv1 ReceiveTC TC
@inv2 TC_Validation_Ok ReceiveTC
@inv3 TCValid_GenerateData TC_Validation_Ok
@inv4 TCValid ReplyDataTM TCValid GenerateDataTCValid_ReplyDataTM

TC_Validation_Fail
@inv4 TCValid_ReplyDataTM TCValid_GenerateData
@inv5 TC_Validation_Fail ReceiveTC
@inv6 TC_Validation_Ok ∩ TC_Validation_Fail =

Fig. 6. Variables and Invariants of the Abstract Machine M0

To enforce the exact ordering of Figure 5.(a), when a TC is received we add
it to the variable ReceiveTC of the ReceiveTC event. This event is represented
in Figure 7. The guard of TC Validation Ok event means that only after this
stage, it is possible for the TC Validation Ok event to occur and to add this TC
to the list of validated TCs.

BepiColombo (tc)

event ReceiveTC
any tc
where

event TC_Validation_Ok
any tc
wherewhere

@grd1 tc TC ReceiveTC
then
@act1 ReceiveTC ReceiveTC {tc}

d

where
@grd1 tc ReceiveTC (TC_Validation_Ok TC_Validation_Fail)
then
@act1 TC_Validation_Ok TC_Validation_Ok {tc}

dend end

Fig. 7. Event-B Model of Sequencing between Events of the Abstract Machine M0

3.3 First Level of Refinement: Introducing Validation Steps

In the abstract model, the validation process is carried out in a single stage.
The outcome can be either ok or fail which is modeled by TC Validation Ok and
TC Validation Fail events. However validating a received TC is not an atomic
action, accomplished in a single stage. It is done in two steps, checking the
syntax and semantic of a received TC. After syntax and semantic checks, in
the third step a control TM is produced and sent. These details are modeled
in the first level of refinement, named machine M1. It can be seen in Figure 8
that TC Validation Ok and TC Validation Fail are decomposed to sub-events
which show further details of the validation process. Checking the syntax of a
received TC is modeled by TCCheck Ok and TCCheck Fail events. The seman-
tic checking is modeled by TCExecute Ok and TCExecute Fail events. TCExe-
cOk ReplyCtrlTM, TCExecFail ReplyCtrlTM and TCCheckFail ReplyCtrlTM are
events for generating control TMs. Again the Event-B model can be produced
following the rules explained in Section2.2.

TC_Validation_Ok (tc)

TCCheck_Ok (tc) TCExecute_Ok (tc) TCExecOk_ReplyCtrlTM (tc)

TC V lid ti F il (t) TC V lid ti F il (t)
(a)

TC_Validation_Fail (tc)

() () ()

TC_Validation_Fail (tc)

h k il () h k il l l ()TCCheck_Ok (tc) TCExecute_Fail (tc) TCExecFail_ReplyCtrlTM (tc) TCCheck_Fail (tc) TCCheckFail_ReplyCtrlTM (tc)

(b) (c)

Fig. 8. Atomicity Decomposition of Validation Events, Machine M1

For each solid line in atomicity decomposition diagram there is an invariant
which shows the relation between the set variable corresponding to abstract
event and concrete variable of the refined event. There are three invariants in
machine M1, shown in Figure 9. For example, inv9 shows that concrete variable
of TCExecute Ok is a subset of abstract variable of TC Validation Ok, since the
TCExecute Ok event refines TC Validation Ok event.

@inv9 TCExecute_Ok TC_Validation_Ok
@inv10 TCExecute_Fail TC_Validation_Fail
@inv11 TCCheck_Fail TC_Validation_Fail

Fig. 9. Invariants, Machine M1

3.4 Second Level of Refinement: Distinguish between Different
Types of TCs

In this stage we are in a position to distinguish between two different types of
TCs. There are TCs that should be handled by the core, called csw TCs, and
TCs that should be sent from the core to the devices, (mixsc, mixst, sixsp, sixsx),
to be processed. To model this new aspect, we define a new function called PID
which maps every TC either to the core or the devices.

So far semantic checking of a received TC is done regardless of considering
the type of TC. Now that we have the distinction between the core TCs and the
devices TCs. If a received TC belongs to the core, its semantic should be checked
in the core, otherwise it should be sent to a one of the devices for validation and
processing. It is helpful to emphasis that syntax checking is exclusively carried
out in the core.

TCExecute_Ok (tc) TCExecute_Fail (tc)

XOR XOR

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc) TCDevice_Execute_Fail (tc)TCCore_Execute_Fail (tc)

(a) (b)(a) (b)

Fig. 10. Case Splitting, Machine M2

To model different cases associated with different types of TCs, both TCEx-
ecute Ok event and TCExecute Fail event are split into two sub-events. The
splitting of these events, illustrated in Figure 10, is carried out using a special
construct, called XOR or case splitting. In case splitting, an event is split into
some sub-events in a way that only one of them is executed. As it can be seen in
Figure 10, XOR, case splitting is graphically represented by a circle containing
an ”XOR”. We draw the attention of the reader to the fact that XOR refers to
mutual exclusion of events’ execution, but guards of events do not need to be
disjoint.

Figure 11 presents the Event-B model of Figure 10.(a). Note that both sub-
events refine the abstract event. In the both sub-events we have added a new
guard, grd2, which check the type of TCs.

3.5 Third Level of Refinement: Refining TCs Processing by the
Devices

In the previous level we introduced the distinction between two types of TCs
that are processed by the core and the devices respectively. In this level our
aim is to refine the case of processing TCs by the devices. As presented in Fig-
ure 12, we applied the atomicity decomposition approach to three events of the
previous level. By introducing communication between the core and devices,
the abstract event, TCDevice Execute ok, is refined to SendTC Core to Device,
CheckTC in Device Ok and SendOkTC Device to Core events. These three events

TCExecute_Ok (tc)

XOR

event TCCore_Execute_Ok refines TCExecute_Ok event TCDevice_Execute_Ok refines TCExecute_Ok_ _ _
any tc
where

@grd1 tc TCCheck_Ok
(TCCore_Execute_Ok TCCore_Execute_Fail)

@ d2 PID(t)

_ _ _
any tc
where

@grd1 tc TCCheck_Ok
(TCDevice_Execute_Ok Device_Execute_Fail)

@ d2 PID(t) { i i t i i }@grd2 PID(tc) = csw
then
@act1 TCCore_Execute_Ok TCCore_Execute_Ok {tc}
end

@grd2 PID(tc) {mixsc, mixst, sixsp, sixsx}
then
@act1 TCDevice_Execute_Ok TCDevice_Execute_Ok {tc}
end

Fig. 11. Event-B Model, Machine M2

model the case where a TC is successfully processed by a device and some re-
sponse is generated for the core. In Figure 12.(b) a very similar approach is
followed for the case when processing of a TC fails in a device and the atomicity
of the abstract event, TCDevice Execute Fail, is decomposed to three sub-events
based on the atomicity decomposition rules. Note that in Figure 12.(a) and (b)
the event with the solid line, which directly refines the abstract event, appears in
the middle rather than being the last one. Finally in Figure 12.(c), we show how
TCValid GenerateData is refined into two events to represent the case where
extra data is produced in response to a TC.

TCDevice_Execute_Ok (tc)

(a)

SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc) SendOkTC_Device_to_Core (tc)

TCDevice_Execute_Fail (tc)

(b)

SendTC_Core_to_Device (tc) CheckTC_in_Device_fail (tc) SendFailTC_Device_to_Core (tc)

(d) f ()

TCValid_GenerateData(tc)

TC_GenerateData_in_Device(tc, d) TC_TransferData_Device_to_Core(tc)

(c)

Fig. 12. Atomicity Decomposition Diagrams, Machine M3

3.6 Decomposing the Probe Model to the Core and Devices
Sub-models

So far by applying atomicity decomposition in a few consecutive steps, we have
managed to distinguish between events of the core and devices. Also we have
reached the stage that we have a big model consisting of several events and many
variables. Therefore it is a good time to take the next step and by applying
the model decomposition, divide our current Event-B model to two sub-models,
namely core and devices. When it comes to model decomposition we can identify
three types of events, events that belong to the core or the devices or events that

are shared between them. Shared events usually represent communication links
and they should be split between the core and devices sub-models.

In Figure 13 shared events are presented using rectangles and variables
are presented using ovals. For instance, SendTC Core to Device event uses
TCCheck ok variable from the core sub-model and SendTC Core to Device
from the devices sub-model. Therefore it should be slit between these sub-models.

SendTC_Core_to_Device (tc)SendTC_Core_to_Device (tc) SendFailTC_Device_to_Core (tc)SendFailTC_Device_to_Core (tc)

TCCheck_Ok SendFailTC_Device_to_Core

SendOkTC_Device_to_Core (tc)SendOkTC_Device_to_Core (tc)

SendTC_Core_to_Device CheckTC_in_Device_Fail

TC_TransferData_Device_to_Core (tc)TC_TransferData_Device_to_Core (tc)

SendOkTC_Device_to_Core CheckTC_in_Device_Ok Data_Transfered_to_Core Data_Generated_in_Device

Core Variables Devices Variables Core Variables Devices Variables

Fig. 13. Shared Events

3.7 Further Refinements of the Core Sub-model

After decomposing our intermediate Event-B model to two sub-models, we have
carried out two further refinement of the core sub-model as depicted in Figure 1.
These refinements introduce some details about how TMs are produced in re-
sponse to TCs. We have omitted details of these refinements. Figure 14 presents
the TCValid ReplyCtrlTM event and its two consecutive levels of atomicity de-
composition. This is modeling the case where a TC has successfully processed
and in response some data TMs should be produced and sent back to Earth.

Here using Figure 14 an extra atomicity decomposition concept is explained.
In response to a TC, it is possible to produce more than one data TM . To
model such a situation we have used a construct [12] called “ALL replicator”
applied to TCV alid ProcessDataTM event. The ALL, parameterized by tm,
means that TCV alid ProcessDataTM occurs for multiple values of tm and the
TCV alid CompleteDataTM can only occur when all the values of tm associated
with a tc have occurred. In Event-B we model this by adding a parameter, which
is a set containing all possible TMs that should be produced in response to a
TC.

Another interesting aspect in Figure 14 is the sequencing order between
leaf events. Based on the atomicity decomposition rules, Produce DataTM event
should be completed before TCValid CompleteDataTM event. However there is
no sequencing enforced between Send DataTM and TCValid CompleteDataTM
events. This means that sending TMs to Earth can be carried out before or
after occurrence of TCValid CompleteDataTM event. This concept is discussed
in more detail in [12].

TCValid_ReplyDataTM (tc)

ALL (tm)ALL (tm)

TCValid_ProcessDataTM (tc, tm) TCValid_CompleteDataTM (tc)

ALL (tm)

Produce_DataTM (tc, tm) Send_DataTM (tc, tm)

Fig. 14. “ALL” Construct, the Core Sub-Model

4 Assessment

In this section we discuss how the atomicity and model decomposition techniques
helped us in enhancing the development process of the probe system. We also ex-
plain notable effects of these techniques in term of methodological contribution
that can form a basis for a set of future guidelines. As a part of our formal mod-
eling, we have developed a substantial set of Event-B models including three
levels of refinement before model decomposition and two levels of refinement
after it. In total the Rodin tool produced 174 proofs, 158 of them discharged
automatically. The remaining proofs are discharged interactively. Atomicity de-
composition diagrams enabled us to explore and explain our formal development
without getting into technical details of the underlying Event-B models. We con-
sider this as an advantage of the atomicity decomposition technique. The next
important advantage of this technique is that we can explicitly represent re-
finement relations between events of different levels. Another merit of atomicity
decomposition technique is the capability of representing sequencing between
events of the same model. Further aspects are discussed in the following sec-
tions.

4.1 Providing Insight for Appropriate Event Decomposition

During the development process, atomicity decomposition diagrams helped us
to spot some flaws in our decomposition approach. For example if the adapted
approach did not cover all desired scenarios, we managed to discover this from
the diagrams before attempting to produce any Event-B code.

TC V lid ti (t)

XOR

TC_Validation (tc)

TC_Validation_Ok (tc) TC_Validation_Fail (tc)

TCCheck Ok (tc) TCExecute Ok (tc) TCCheck Fail (tc)

XOR

TCExecute Fail (tc)TCCheck_Ok (tc) TCExecute_Ok (tc) TCCheck_Fail (tc) TCExecute_Fail (tc)

Fig. 15. An Example of Wrong Atomicity Decomposition

To clarify this further, in Figure 15 we present one possible way of decom-
posing the atomicity of TC validation process. Applying two successive levels of
atomicity decomposition to the abstract event TC Validation results in four sub-
events. The diagram shows that the possible scenarios are: <TCCheck OK(tc)

and TCExecute OK(tc)> or <TCCheck Fail(tc)> or <TCExecute Fail(tc)>.
Clearly this approach does not cover the case where TCCheck Ok and TCEx-
ecute Fail events can happen together as described in Section 3.3. This helped
us to go back to the abstract level and followed an appropriate of atomicity
decomposition which was presented in Section 3.3.

4.2 Assessing the Influence of Atomicity Decomposition and Model
Decomposition over each other

In this case study we have used both atomicity decomposition and model decom-
position together. One interesting aspect is to investigate whether by analyzing
atomicity decomposition diagrams a decision can be made on a proper point
that model decomposition can be applied. Atomicity decomposition diagrams
provide an overall visualization of the refinement process. By grouping relevant
events together, it is easier to decide about the point at which we can apply
model decomposition.

Usually when we develop a system, we have a target architecture in mind.
Therefore the outcome of the model decomposition should give us the desired
sub-models. To be able to decompose an Event-B model, all events should either
belong to one of sub-models or otherwise they should model communication
links between its sub-models. In this regard model decomposition can provides
us with some hint to which events, atomicity decomposition should be applied
as a preparation stage for model decomposition.

BepiColombo(tc)

ReceiveTC(tc) TCValid_ReplyDataTM(tc)TC_Validation_Ok(tc) TCValid_GenerateData(tc)

()()

TC_TransferData_Device_to_Core(tc)TC_TransferData_Device_to_Core(tc)

ALL (tm)

TC_GenerateData_in_Device(tc, d)TC_GenerateData_in_Device(tc, d)

TCCheck_Ok(tc) TCExecute_Ok(tc) TCExecOk_ReplyCtrlTM(tc)

XORXOR

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

SendTC_Core_to_Device (tc)SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc)CheckTC_in_Device_Ok (tc) SendOkTC_Device_to_Core (tc)SendOkTC_Device_to_Core (tc)

Fig. 16. Overall Refinement Structure before Model Decomposition

To clarify this aspect we use a part of development process presented in Fig-
ure 16. As a preparation for model decomposition, we have applied atomicity
decomposition to events such as TCExecute Ok to distinguish between function-
ality of the core and devices. Note that leaf events satisfy the pre-mentioned
condition that either should belong to one of the sub-models or represent com-
munication links.

5 Related Work

The desire to explicitly model control flow is not restricted to Event-B. To ad-
dress this issue usually a combination of two or more formal methods are sug-
gested. A good example of such approach is Circus [14] combining CSP [15] and
Z [16]. The combination of CSP and Classical B [8] also has been investigated
in [17] and [18] with some differences. To explicitly define event sequencing in
Event-B the Flows Approach is suggested in [19]. Another method to provide
explicit control flow for an Event-B model is presented in [20] which is again
based on using CSP alongside Event-B. These methods only deal with event se-
quencing; they do not support the explicit refinement of atomicity decomposition
diagrams. UML-B [21] provides a “UML-like” graphical front-end for Event-B.
It adds support for class-oriented and state machine modeling. State machines
provide us with a graphical notation to explicitly define event sequencing.

Atomicity decomposition approach provides a graphical front-end to Event-B
along other features such as supporting event sequencing and expressing refine-
ment relations between concrete and abstract events. Also it can be combined
effectively with other techniques such as model decomposition.

6 Conclusion

In this paper we demonstrated how atomicity decomposition diagrams provide a
systematic means of introducing control structure into the Event-B development
process. It also provides a means to express refinement relations between events
of different refinement levels, through a set of hierarchal diagrams. In addition it
can be merged with model decomposition technique to manage the complexity
of large models. We have done an assessments of this approach and some merits
of it explained in the previous section. In future work we hope that the outcomes
of this stage can contribute toward providing some guidelines for atomicity and
model decomposition. During the development of this case study, translation
from atomicity decomposition diagrams to Event-B was carried out manually.
As a continuation of this work, currently we are working on a tool providing
support for producing atomicity decomposition diagrams as well as translating
them to Event-B. This tool will be developed as a plug-in for the Rodin toolset.

References

1. Jean-Raymond Abrial: Formal Methods: Theory Becoming Practice. J.UCS 13(5):
619-628, (2007)

2. Jean-Raymond Abrial: Modeling in Event-B: System and Software Engineering.
Cambridge University Press, (2010)

3. Jean-Raymond Abrial: Refinement, Decomposition and Instantiation of Discrete
Models. In Abstract State Machines, pages 17–40, (2005)

4. Michael Butler: Decomposition Structures for Event-B. In Integrated Formal Meth-
ods iFM2009, volume LNCS 5423. Springer, (2009)

5. M.A Jackson: System Development. Prentice-Hall, Englewood Cliffs (1983)

6. Renato Silva, Carine Pascal, T.S. Hoang and Michael Butler: Decomposition Tool
for Event-B. ABZ, (2010)

7. Carine Pascal, Renato Silva: Event-B Model Decomposition. DEPLOY Plenary
Technical Workshop, (2009)

8. Jean-Raymond Abrial: The B-book: Assigning Programs to Meanings. Cambridge
University Press, (1996)

9. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta and Laurent Voisin: Rodin: An Open Toolset for Modelling and
Reasoning in Event-B. Technical Report, DEPLOY Project, http://deploy-
eprints.ecs.soton.ac.uk/130/, (2009)

10. Ralph-Johan Back, Reino Kurki-Suonio: Distributed Cooperation with Action
Systems. ACM Trans. Program. Lang. Syst., 10(4):513–554, (1988)

11. Stefan Hallerstede: Justifications for the Event-B Modelling Notation. In B, volume
LNCS 4355, pages 49–63. Springer, (2007)

12. Asieh Salehi Fathabadi, Michael Butler: Applying Event-B Atomicity Decomposi-
tion to a Multi Media Protocol. In FMCO Formal MEthods for Components and
Objects, (2010)

13. ESA Media Center, Space Science. Factsheet: Bepicolombo.
http://www.esa.int/esaSC/120391 index 0 m.html

14. F. Zeyda, A. Cavalcanti: Mechanised Translation of Control Law Diagrams into
Circus. In M. Leuschel and H. Wehrheim, editors, Integrated Formal Methods,
volume 5423 of LNCS, pages 151-166, Springer, (2009)

15. C. A. R. Hoare: Communicating Sequential Processes. Prentice Hall. ISBN 0-13-
153289-8, (1985)

16. Jim Davies, Jim Woodcock Using Z: Specification, Refinement and Proof. Prentice
Hall International Series in Computer Science. ISBN 0-13-948472-8, (1996)

17. Michael Butler: csp2B: A Practical Approach to Combining CSP and B. Formal
Aspects of Computing, vol. 12, pp. 182-196, ISSN 0934-5043, (2000)

18. S. Schneider, H. Treharne: Verifying Controlled Components. In In Proc IFM,
Springer, pp. 87-107, (2004)

19. Iliasov, Alexei: Tutorial on the Flow plugin for Event-B. In: Workshop on B
Dissemination [WOBD] Satellite event of SBMF, Natal, Brazil, November 8th-9th
2010

20. Steve Schneider, Helen Treharne and Heike Wehrheim: A CSP Approach to Control
in Event-B. IFM, pages 260-274, (2010)

21. M. Y. Said, M. Butler, C. Snook: Language and Tool Support for Class and State
Machine Refinement in UML-B. In: FM2009 - 16th International Symposium on
Formal Methods, Eindhoven. pp. 579-595, 2-6th November (2009)

