

Aalborg Universitet

Opaal

A Lattice Model Checker

Dalsgaard, Andreas Engelbredt; Hansen, Rene Rydhof; Jørgensen, Kenneth Yrke; Larsen,
Kim Guldstrand; Olesen, Mads Chr.; Olsen, Petur; Srba, Jiri
Published in:
Lecture Notes in Computer Science

DOI (link to publication from Publisher):
10.1007/978-3-642-20398-5_37

Publication date:
2011

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Dalsgaard, A. E., Hansen, R. R., Jørgensen, K. Y., Larsen, K. G., Olesen, M. C., Olsen, P., & Srba, J. (2011).
Opaal: A Lattice Model Checker. Lecture Notes in Computer Science, 6617, 487-493.
https://doi.org/10.1007/978-3-642-20398-5_37

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 17, 2024

https://doi.org/10.1007/978-3-642-20398-5_37
https://vbn.aau.dk/en/publications/b4ae7e8e-a7fb-47f0-8340-2d816ac72748
https://doi.org/10.1007/978-3-642-20398-5_37

opaal: A Lattice Model Checker

Andreas Engelbredt Dalsgaard, René Rydhof Hansen, Kenneth Yrke Jørgensen,
Kim Gulstrand Larsen, Mads Chr. Olesen, Petur Olsen, and Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark.
{andrease,rrh,kyrke,kgl,mchro,petur,srba}@cs.aau.dk

Abstract. We present a new open source model checker, opaal, for au-
tomatic verification of models using lattice automata. Lattice automata
allow the users to incorporate abstractions of a model into the model it-
self. This provides an efficient verification procedure, while giving the user
fine-grained control of the level of abstraction by using a method sim-
ilar to Counter-Example Guided Abstraction Refinement. The opaal en-
gine supports a subset of the UPPAAL timed automata language extended
with lattice features. We report on the status of the first public release of
opaal, and demonstrate how opaal can be used for efficient verification on
examples from domains such as database programs, lossy communication
protocols and cache analysis.

1 Introduction

Common to almost all applications of model checking is the notion of an un-
derlying concrete system with a very large—or sometimes even infinite—concrete
state space. In order to enable model checking of such systems, it is necessary to
construct an abstract model of the concrete system, where some system features
are only modelled approximately and system features that are irrelevant for given
verification purposes are “abstracted away”.

The model checker opaal allows for such abstractions to be specified through
user-defined lattices that are part of the model. We call them lattice automata.
Lattice automata are synchronising extended finite state machines which may
include lattices as variable types. The lattice elements are ordered by the amount
of behaviour they induce on the system, that is, larger lattice elements introduce
more behaviour. We call this the monotonicity property.

Lattice automata, as implemented in opaal, are a subclass of well-structured
transition systems [1]. The tool can exploit the ordering relation to reduce the
explored state space by not re-exploring a state if its behaviour is covered by
an already explored state. In addition to the ordering relation, lattices can have
a join operator (the least upper bound), joining two lattice elements into one,
thereby potentially overapproximating the behaviour, with the gain of a reduced
state space. The overapproximated model checking can however be inconclusive.
We introduce the notion of a joining strategy, by specifying which lattice elements
are joinable, allowing the user to specify the amount of overapproximation with

2 Dalsgaard et al.

much more control. This allows for a form of user-controlled CEGAR (Counter-
Example Guided Abstraction Refinement) [2, 3]. The CEGAR approach can easily
be automated by the user, by exploiting application-specific knowledge to auto-
matically derive more fine-grained joining strategies given a spurious error trace.
Using joining strategies can thus, for some systems and properties, provide very
efficient model checking and conclusive answers at the same time.

The opaal tool is released under an open source licence, and can be freely
downloaded at our webpage: www.opaal-modelchecker.com. The opaal is available
both in a GUI and CLI version, shown in Fig. 1. The UPPAAL [4] GUI is used
for creation of models.

Fig. 1: (a) Screenshot of the opaal GUI. (b) Screenshot of the opaal CLI.

The opaal tool is implemented in Python and is a stand-alone model check-
ing engine. Models are specified using the UPPAAL XML format, extended with
some specialised lattice features. Using an interpreted language has the advantage
that it is easy to develop and integrate new lattice implementations in the core
model checking algorithm. Our experiments indicate that although opaal uses an
interpreted language, it is still sufficiently fast to be useful.

Users can create a new lattice by implementing a simple Python class interface.
The new class can then be used directly in the model (including all user-defined
methods). Joining strategies are defined as a Python function.

An overview of the opaal architecture is given in Fig. 2, showing the five main
components of opaal. The “Successor Generator” is responsible for generating a
transition function for the transition system based on the semantics of UPPAAL
automata. The transition function is combined with one or more lattice imple-
mentations from the “Lattice Library”, which can be easily extended with further
user-defined lattices.

opaal: A Lattice Model Checker 3

Fig. 2: Overview of opaal’s architecture.

The “Successor Generator” exposes an interface that the “Reachability Checker”
can use to perform the actual verification. During this process a “Passed-Waiting
List” is used to save explored and to-be explored states. The “Passed-Waiting
List” uses a user-provided “Joining Strategy” on the lattice elements of states,
before they are added to the list.

2 Examples

In this section we present a few examples to demonstrate the wide applicability
of opaal. The tool has currently a number of readily available lattices which are
used to abstract the real data in our examples.

2.1 Database Programs

In recent work by Olsen et al. [5], the authors propose using present-absent sets
for the verification of database programs. The key idea is that many behavioural
properties may be verified by only keeping track of a few representative data values.

This idea can be naturally described as a lattice tracking the definite present-
and absent-ness of database elements. In the model, this is implemented using
a bit-vector lattice. For the experiment we adopt a model from [5], where users
can login, work, and logout. The model has been updated to fit within the lattice
framework, as shown in Fig. 3(a). In the code in Fig. 3(b), the construct extern
is used on line 3 to import a lattice from the library. Subsequently two lattice
variables, pLogin and aLogin, are defined at line 4 and 5, both vectors of size
N USERS. The lattice variables are used in the transitions of the graphical model,
where e.g. a special method “num0s()” is used to count the number of 0’s in the
bitvector. The definition of a lattice type in Fig. 3(c) is just an ordinary Python
class with at least two methods: join and the ordering.

We can verify that two users of the system cannot work at the same time using
explicit exploration, or by exploiting the lattice ordering to do cover checks, see
Fig. 4.

4 Dalsgaard et al.

pLogin[i] = 0 ; aLogin[i] = 1

aLogin.setall()

pLogin[i] = 1 ;
aLogin[i] = 0

Bad

not aLogin[i]

not pLogin[i]

aLogin[i] == 0

pLogin[i] == 0

Logout

Work

aLogin.num0s() ==
N_USERS

Login

Init

aLogin.num0s() < (N_USERS − 1)

work[i]?

workErr[i]!

loginOK[i]!

login[i]?

logoutErr[i]!

workOK[i]!

logoutOK[i]!

logout[i]?

1 const i n t N USERS =
17 ;

2 . . .
3 extern

In t e r sB i tVec to r ;
4 In t e r sB i tVec to r

pLogin [N USERS] ;
5 In t e r sB i tVec to r

aLogin [N USERS] ;

1 class In t e r sB i tVec to r :
2 def j o i n (s e l f ,

other) :
3 . . .
4
5 def l e (s e l f ,

o ther) :
6 . . .

Fig. 3: (a) State machine of database model. (b) Definition of lattice variables in model
code. (c) Lattice definition from lattice library, in Python.

Number of users explicit exploration cover check

2 224 (<1s) 56 (<1s)
3 2352 (2s) 336 (<1s)
4 21952 (28s) 1792 (2s)
5 192080 (8:22m) 8960 (9s)
6 - 43008 (48s)
7 - 200704 (4:38m)

Fig. 4: Explored states and time for the property “no two users work at the same time”.

Another property to check is that the database cannot become full. For this
property we can exploit a CEGAR approach: A näıve joining strategy will give
inconclusive results, but refining the joining strategy not to join two states if the
resulting state has a full database, leads to conclusive results while still preserving
a significant speedup, see Fig. 5.

Number of users explicit exploration joining (näıve strategy) joining (refined strategy)

8 6312 (15s) (Inconclusive) 51 (<1s) 787 (1s)
9 14228 (56s) (Inconclusive) 57 (<1s) 1238 (2s)
10 31614 (4:19m) (Inconclusive) 63 (<1s) 976 (2s)
11 69478 (21:35m) (Inconclusive) 69 (<1s) 1036 (2s)
12 - (Inconclusive) 75 (<1s) 1707 (3s)
16 - (Inconclusive) 99 (<1s) 25900 (4:18m)
17 - (Inconclusive) 105 (<1s) 66490 (25:01m)

Fig. 5: Expored states and time for the property “database cannot become full”.

2.2 Asynchronous Lossy Communication Protocol: Leader Election

Communication protocols where messages are asynchronously passed via an un-
reliable (lossy and duplicating) medium can be modelled as a lattice automaton.

opaal: A Lattice Model Checker 5

Number of agents explicit exploration cover check joining

5 840 (5s) 37 (<1s) 17 (<1s)
6 5760 (5:20m) 58 (<1s) 23 (<1s)
7 45360 (671:02m) 86 (1s) 30 (<1s)
15 - 682 (4:21m) 122 (2s)
25 - 2927 (283:16m) 327 (12s)
50 - - 1277 (4:19m)
100 - - 5052 (98:45m)

Fig. 6: Explored states and time for the leader election protocol.

As long as we are interested in safety properties, such a communication can be
modelled as a set of already sent messages called pool. Initially the set pool is
empty. Once a message it sent, it is added to the set pool and it remains there
forever (duplication). As the protocol parties are not forced to read any message
from pool and we ask about safety properties, lossiness is covered by the definition
too.

It is obvious that 2pool , i.e. the set of all subsets of pool, together with the
subset ordering is a complete lattice. As long as the set of messages is finite and
all parties in the protocol behave in the way that their steps are conditioned only
on the presence of a message in the pool and not on its absence, the system will
satisfy the monotonicity property and we can apply our model checker.

We have modelled the asynchronous leader election protocol [6] in opaal. Here
we have N agents with their unique identifications 0, 1, . . . , N − 1 and they select
a leader with the highest id. Experimential data, for the property that only the
agent with the highest id can become leader, are provided in Fig. 6. The cover check
column refers to using only the monotonicity property to reduce the explored state-
space. We can see that while being exact (no overapproximation), the speed-up
is considerable. Moreover, using the join strategy provides even more significant
speed-up while still providing conclusive answers.

2.3 Cache Analysis

To ensure safe scheduling of real-time systems, the estimation of Worst-Case Ex-
ecution Time (WCET) of each task in a given system is necessary [7]. One ma-
jor part of determining WCETs for modern processors is accounting for the ef-
fects of the memory cache. Efficient abstractions exist for analysing some types
of caches [8], which we have implemented as a lattice. By recasting the cache
analysis into our framework we gain the ability to give WCET guarantees, and
gradually refine those guarantees by being more and more concrete with respect
to the data-flow of the program.

On a simple program (binary search in array of size 100) and a simple cache
we get the same WCET using all approaches. The complete state space has 5726
states (computed in 6s), cover update reduces this to 4043 states (3s), while join

6 Dalsgaard et al.

only needs to store 3944 states (3s). On more complex examples join will start to
give overapproximated guarantees, which can be further refined.

2.4 Timed Automata

It is well-known that the theory of zones of timed automata (see e.g. [9, 10]) is a
finite-state abstraction of clock values with a lattice structure. A zone-lattice is
currently being developed for use in opaal, but has not matured to a point where
meaningful experiments can be made yet.

3 Conclusion

We presented a new tool opaal, a model checker for lattice automata, and we
provided a number of examples of its applicability. The expressiveness of the for-
malism, derived from well-structured transition systems, promises a broad appli-
cability of the tool. Our initial experiments indicate that careful abstraction using
the techniques implemented in opaal lead to efficient verification.

We plan on extending the foundations of opaal to additional formalisms such
as Petri nets, as well as on improving the performance of the tool by rewriting core
parts in a compiled language. Of course, additional lattices and areas of application
are also to be investigated.

References

1. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1-2) (2001) 63–92

2. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. (2002)

3. Ball, T., Rajamani, S.: The SLAM toolkit. In: CAV. (2001)
4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Formal Methods

for the Design of Real-Time Systems: SFM-RT 2004. (2004)
5. Olsen, P., Larsen, K.G., Skou, A.: Present and absent sets: Abstraction for testing

of reactive systems with databases. In: Sixth Workshop on Model-Based Testing,
Paphos, Cyprus (March 2010)

6. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Com-
put. (1982)

7. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat,
G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P.P.,
Staschulat, J., Stenstrm, P.: The Worst-Case Execution Time Problem - Overview
of Methods and Survey of Tools. TECS (2008)

8. Alt, M., Ferdinand, C., Martin, F., Wilhelm, R.: Cache Behavior Prediction by Ab-
stract Interpretation. In: SAS 96: Proceedings of the Third International Symposium
on Static Analysis. (1995)

9. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Information and Computation (1994)

10. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In Desel,
J., Reisig, W., Rozenberg, G., eds.: Lectures on Concurrency and Petri Nets. Volume
3098 of LNCS. Springer Berlin / Heidelberg (2004) 87–124

opaal: A Lattice Model Checker 7

A Theory

For completeness sake we here include some preliminaries, our formal definition of
lattice automata, and a formal description of the algorithms we use in opaal.

A.1 Preliminaries

A partial order on a set L is a reflexive, anti-symmetric and transitive relation
v⊆ L×L. The pair (L,v) is called a partially ordered set. Let (L,v) be a partially
ordered set and let X ⊆ L. An element ` ∈ L is an upper bound of X if x v ` for
every x ∈ X. If furthermore ` v `′ for all upper bounds `′ of X then ` is the least
upper bound of X and is denoted as

⊔
X. The binary least upper bound

⊔
{x, y}

is written as x t y. The notion of lower bounds of X and the greatest lower bound
of X (denoted by

d
X if it exists) are defined analogously. The binary greatest

lower bound
d
{x, y} is written as xuy. Note that least upper bounds and greatest

lower bounds for a given set X are unique.

An element ` ∈ L such that ` v `′ for all `′ ∈ L is called the least element of
(L,v) and is denoted as ⊥L or ⊥ when L is clear from the context. Conversely,
the greatest element of (L,v) is an element ` ∈ L such that `′ v ` for all `′ ∈ L
and is denoted as >L or > when L is clear from the context.

Definition 1 (Join Semi-Lattice and Lattice). A partially ordered set L =
(L,v) where L 6= ∅ is a join semi-lattice if `t`′ exists for all `, `′ ∈ L. If moreover
` u `′ exists for all `, `′ ∈ L then L is called a lattice.

Example 1. Consider the lattice for the abstraction of a database into present and
absent sets mentioned earlier. Let D ⊆ U be a database containing elements from
some universe U of possible values. As an abstraction over this universe we select a
small set of representative values, S ⊆ U . We present two subsets of S the present
set P , and the absent set A. Adapting terminology from the abstract interpretation
community, this forms a must analysis, that is, a value in the present set must be
in the database, and a value in the absent set may not be in the database.

({e}, {e})

(∅, ∅)

({e}, ∅) (∅, {e})

Fig. 7: Lattice example

The set of databases abstracted over with a con-
crete set of present and absent sets is the semantics
of (P,A): [[(P,A)]] = {D ⊆ U|P ⊆ D∩S ∧A ⊆ S\D}.
For instance the present-absent sets ({e}, {f}) ab-
stract over all databases which contain e while not
containing f . These present-absent sets can be or-
dered in a lattice, where smaller sets abstract over
more databases, and therefore give more behaviour
in the model. This lattice is defined as ((S × S),v)
where (P,A) v (P ′, A′) ⇐⇒ P ′ ⊆ P ∧ A′ ⊆ A and
(P,A) t (P ′, A′) = (P ∩ P ′, A ∩ A′). An example of
this lattice with S = {e} is given in Figure 7.

8 Dalsgaard et al.

A.2 Lattice Transition System

Lattice automata are more easily described in terms of the transition systems they
incur.

Definition 2 (Lattice Transition System). A lattice transition system (LaTS)
is a triple T = (S,L,−→) where S is a finite set of states, L = (L,v) is a lattice
and −→⊆ S × L × S × L is the transition relation, usually written as (s, `) −→
(s′, `′) whenever (s, `, s′, `′) ∈−→, such that for all s1, s2 ∈ S and `1, `2, `

′
1 ∈ L

if (s1, `1) −→ (s2, `2) and `1 v `′1 then (s1, `
′
1) −→ (s2, `

′
2) for some `′2 ∈ L with

`2 v `′2.

The behavioural requirement used at the end of the definition is called the mono-
tonicity property. Lattice transition systems are a subset of well-structured tran-
sition systems. Configurations of an LaTS are pairs of the form (s, `) where s ∈ S
and ` ∈ L and −→∗ denotes the reflexive and transitive closure of −→.

Definition 3 (Path). A finite path in an LaTS T is a finite sequence σ =
(s0, `0)(s1, `1) · · · (sn, `n) such that (si, `i) −→ (si+1, `i+1) for all i, 0 ≤ i ≤ n− 1.

In addition to the standard notion of path we also define abstracted paths.

Definition 4 (Abstracted Path). An abstracted finite path in an LaTS T is
a finite sequence σ̂ = (s0, `0)(s1, `1) · · · (sn, `n) such that ∃`′i+1 ∈ L : (si, `i) −→
(si+1, `

′
i+1) and `′i+1 v `i+1 for all i, 0 ≤ i ≤ n− 1.

In the section to follow, we find an efficient way to answer the following question
(state-reachability problem): given an initial configuration (s0, `0) and a target
state sg, is there some lattice element ` such that (s0, `0) −→∗ (sg, `)?

B General Model Checking Algorithm

In Algorithm 1 we present the pseudocode for a general model checking reachability
algorithm. The algorithm explores the graph using waiting and passed sets and
depending on the chosen update function performs a different level of abstraction.

It is easy to realize that Algorithm 1 with the simple update implements a
search though the whole state space of the lattice transition system. Depending
on the way the waiting list is organized, it can implement e.g. depth-first search,
breath-first rearch, random search and others. The correctness of this search algo-
rithm is well known.

We now define an alternative update function presented in Algorithms 4 that
provides an overapproximation.

B.1 Join Strategies and CEGAR

The approximative nature of model checking with join update, as described in
the previous section, may result in inconclusive verification results such that a
verification result in the abstract model may not be necessarily realizable in the

opaal: A Lattice Model Checker 9

Algorithm 1: Reach(T , (s0, `0), sg)

Input: LaTS T = (S,L,−→), initial configuration (s0, `0), a goal state sg ∈ S
Output: “sg is reachable” or “sg is not reachable”
1: waiting := {(s0, `0)}
2: passed := ∅
3: while waiting 6= ∅ do
4: Select and remove (s, `) from waiting
5: passed := passed ∪ {(s, `)}
6: for all (s′, `′), where (s, `) −→ (s′, `′) do
7: if s′ = sg then
8: return “sg is reachable”
9: end if

10: waiting := Update(passed ,waiting , (s′, `′))
11: end for
12: end while
13: return “sg is not reachable”

Algorithm 2: Update(passed ,waiting , (s, `)) *** Simple Update ***

Input: Sets of states passed and waiting and a configuration (s, `)
Output: Updated set waiting
1: if ∃(s, `) ∈ waiting ∪ passed then
2: return waiting
3: else
4: return waiting ∪ {(s, `)}
5: end if

underlying concrete system. In this case it may be possible to use the lattice
structure to derive a more precise approximation that avoids the inconclusive
verification result previously encountered.

In this section we describe such an approach to abstraction refinement, inspired
by the CEGAR (counter example guided abstraction refinement) principle [2, 3]
The CEGAR approach depends on a few application specific heuristics: a method
for determining the feasibility of a path and a method for refining an approximation
given an infeasible path. These are formalised in the following.

Definition 5 (Path feasibility function). A path feasibility function deter-
mines, in a domain-specific manner, whether an abstracted path is feasible in an
LaTS T = (S,L,−→):

pathfeasible : (S × L)∗ → {True, False}

The path feasibility function usually corresponds to finding concrete lattice ele-
ments for each step in the path, i.e., a concrete path.

Some way of recording the abstractions used in the current state space explo-
ration is needed. At its most abstract this can be viewed as an oracle, answering
queries as to whether two lattice elements are allowed to be joined in a given state.
We define a joining strategy to capture this notion.

10 Dalsgaard et al.

Algorithm 3: Update(passed ,waiting , (s, `)) *** Cover Update ***

Input: Sets of states passed and waiting and a configuration (s, `)
Output: Updated set waiting
1: if ∃(s, `′) ∈ waiting ∪ passed : ` v `′ then
2: return waiting
3: else
4: return waiting r {(s, `′′) | `′′ v `} ∪ {(s, `)}
5: end if

Algorithm 4: Update(passed ,waiting , (s, `)) *** Join Update ***

Input: Sets of states passed and waiting and a configuration (s, `)
Output: Updated set waiting
1: if ∃(s, `′) ∈ waiting ∪ passed : ` v `′ then
2: return waiting
3: else if ∃(s, `′) ∈ waiting ∪ passed then
4: return waiting r {(s, `′)} ∪ {(s, `′ t `)}
5: else
6: return waiting ∪ {(s, `)}
7: end if

Definition 6 (Joining Strategy). A joining strategy is a function able to an-
swer questions of the form:

strategyjoining : S × L× L→ {True, False}

given an LaTS T = (S,L,−→).

The joining strategy can answer that at one state all lattice elements are to be
joined, or no elements are to be joined, but it can also answer very selectively which
lattice elements to join. In this way the strategy can exploit additional knowledge
about the domain: e.g. for integer values, in some parts of the state space the exact
value of a variable is needed, in other parts only the parity is relevant, and in yet
other parts the signed-ness is important.

The joining strategy need not be perfect. It might give an approximation that
leads to an abstracted path to a goal state, which is then deemed infeasible by
the path feasibility function. In this situation the strategy is allowed to reconsider
some of its answers, at the cost of recomputing the parts of the state space that
depended on those answers: a join at some state is allowed to be split. Which state
to split at is given by a state split heuristic.

Definition 7 (State split heuristic). A state split heuristic determines, in a
domain-specific manner, which state to split at, given an infeasible abstracted path
in an LaTS T = (S,L,−→):

hsplitstate : (S × L)∗ → S

opaal: A Lattice Model Checker 11

Algorithm 5: CEGAR(T , (s0, `0), sg)

Input: LaTS T = (S,L,−→) (with path feasibility function pathfeasible, state
split heuristic hsplitstate , and joining strategy strategyjoining), initial
configuration (s0, `0), a goal state sg ∈ S

Output: “sg is reachable” or “sg is not reachable”
1: waiting := {(s0, `0)}
2: passed := ∅
3: pred := ∅ ; predecessor edges
4: while waiting 6= ∅ do
5: Select and remove (s, `) from waiting
6: passed := passed ∪ {(s, `)}
7: for all (s′, `′), where (s, `) −→ (s′, `′) do
8: pred := pred ∪ {(s′, `′)→ (s, `)} ; record predecessor
9: if s′ = sg then

10: σ̂ := (s0, `0) . . . (sg, `
′) ; some abstracted path from sg to s0 in the reverse

configuration graph given by vertices passed ∪ {(sg, `′)} and edges pred
11: if pathfeasible(σ̂) then
12: return “sg is reachable”
13: else
14: ; path was not feasible, due to abstraction
15: ssplit := hsplitstate(σ̂)
16: ; redo exploration from ssplit
17: redo := {(t, `′′)|(ssplit,)→ (t, `′′) ∈ pred}
18: passed := passed \ {(t,)|t descendant of ssplit}
19: waiting := waiting \ {(t,)|t descendant of ssplit} ∪ redo
20: pred := pred \ {(,)→ (t,)|t descendant of ssplit}
21: end if
22: else
23: ; add (s′, `′) to waiting, possibly abstracting by joining
24: joinelements := {`′′|(s′, `′′) ∈ passed ∪ waiting ∧ strategyjoining(s′, `′, `′′) =

True}
25: `joined := `′ t (

⊔
joinelements)

26: pred := pred ∪ {(s′, `joined)→ (t, `′′′)|`′′ ∈ joinelements s.t.
(s′, `′′)→ (t, `′′′) ∈ pred}

27: passed := passed \ {(s′, `′′)|`′′ ∈ joinelements}
28: waiting := waiting ∪ {(s′, `joined)} \ {(s′, `′′)|`′′ ∈ joinelements}
29: end if
30: end for
31: end while
32: return “sg is not reachable”

We can now present the complete algorithm for CEGAR exploration of a LaTS
in Algorithm 5. The explorations will start from an abstraction level close to that
of the join update (depending on the joining strategy) and become less abstract
until it at some point becomes the same as the cover update, unless a conclusive
answer is found before that.

