Skip to main content

Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis

  • Conference paper
NASA Formal Methods (NFM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6617))

Included in the following conference series:

Abstract

Synthesis of finite-state machines from linear-time temporal logic (LTL) formulas is an important formal specification debugging technique for reactive systems and can quickly generate prototype implementations for realizable specifications.

It has been observed, however, that automatically generated implementations typically do not share the robustness of manually constructed solutions with respect to assumption violations, i.e., they typically do not degenerate nicely when the assumptions in the specification are violated. As a remedy, robust synthesis methods have been proposed. Unfortunately, previous such techniques induced obstacles to their efficient implementation in practice and typically do not scale well.

In this paper, we introduce generalized Rabin(1) synthesis as a solution to this problem. Our approach inherits the good algorithmic properties of generalized reactivity(1) synthesis but extends it to also allow co-Büchi-type assumptions and guarantees, which makes it usable for the synthesis of robust systems.

An earlier version of this paper appeared as arXiv/CoRR document no. 1003.1684.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: Mocha: Modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Alur, R., Madhusudan, P., Nam, W.: Symbolic computational techniques for solving games. STTT 7(2), 118–128 (2005)

    Article  MATH  Google Scholar 

  3. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant computing. IEEE Trans. Software Eng. 19(11), 1015–1027 (1993)

    Article  Google Scholar 

  4. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Jobstmann, B.: Robustness in the presence of liveness. In: [24], pp. 410–424

    Google Scholar 

  5. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Interactive presentation: Automatic hardware synthesis from specifications: a case study. In: Lauwereins, R., Madsen, J. (eds.) DATE, pp. 1188–1193. ACM, New York (2007)

    Google Scholar 

  6. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify, compile, run: Hardware from PSL. Electr. Notes Theor. Comput. Sci. 190(4), 3–16 (2007)

    Article  Google Scholar 

  7. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In: FMCAD, pp. 85–92. IEEE, Los Alamitos (2009)

    Google Scholar 

  8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  9. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in omega-regular games. ACM Trans. Comput. Log. 11(1) (2009)

    Google Scholar 

  10. de Alfaro, L., Faella, M.: An accelerated algorithm for 3-color parity games with an application to timed games. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 108–120. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Dimitrova, R., Finkbeiner, B.: Synthesis of Fault-Tolerant Distributed Systems. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 321–336. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Ehlers, R.: Symbolic bounded synthesis. In: [24], pp. 365–379

    Google Scholar 

  13. Ehlers, R.: Generalised Rabin(1) synthesis. arXiv/CoRR abs/1003.1684 (2010)

    Google Scholar 

  14. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: FOCS, pp. 368–377. IEEE, Los Alamitos (1991)

    Google Scholar 

  15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  16. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)

    Article  MATH  Google Scholar 

  17. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mission and motion planning. IEEE Transactions on Robotics 25(6), 1370–1381 (2009)

    Article  Google Scholar 

  18. Krishnan, S.C., Puri, A., Brayton, R.K., Varaiya, P.: The Rabin index and chain automata, with applications to automatas and games. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 253–266. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  19. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65(2), 149–184 (1993)

    Article  MATH  Google Scholar 

  20. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, Weizmann Institute of Science, Rehovot, Israel (March 1989)

    Google Scholar 

  22. Thomas, W.: Automata on Infinite Objects. In: Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 133–191. MIT Press, Cambridge (1994)

    Google Scholar 

  23. Thomas, W.: Church’s problem and a tour through automata theory. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 635–655. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Touili, T., Cook, B., Jackson, P. (eds.): CAV 2010. LNCS, vol. 6174. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  25. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Automatic synthesis of robust embedded control software. In: AAAI Spring Symposium on Embedded Reasoning (2010)

    Google Scholar 

  26. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon control for temporal logic specifications. In: Johansson, K.H., Yi, W. (eds.) HSCC, pp. 101–110. ACM, New York (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ehlers, R. (2011). Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds) NASA Formal Methods. NFM 2011. Lecture Notes in Computer Science, vol 6617. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20398-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20398-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20397-8

  • Online ISBN: 978-3-642-20398-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics